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Abstract—We present GNNHLS, an open-source framework to
comprehensively evaluate GNN inference acceleration on FPGAs
via HLS, containing a software stack for data generation and
baseline deployment and FPGA implementations of 6 well-tuned
GNN HLS kernels. Evaluating on 4 graph datasets with distinct
topologies and scales, the results show that GNNHLS achieves up
to 50.8× speedup and 423× energy reduction relative to the CPU
baselines. Compared with the GPU baselines, GNNHLS achieves
up to 5.16× speedup and 74.5× energy reduction.

Index Terms—field-programmable gate arrays, graph neural
networks, high-level synthesis

I. INTRODUCTION

Machine learning (ML) on graphs has experienced a surge

of popularity recently since traditional ML models, which are

designed to process Euclidean data with regular structures,

are ineffective at performing prediction tasks on graphs. Due

to their simplicity and superior representation learning ability,

Graph Neural Networks (GNNs) [4], [9], [13], [14], [16] have

achieved impressive performance on various graph learning

tasks, such as node classification, graph classification, etc.

To implement GNNs, a set of widespread libraries, such as

PyTorch Geometric (PYG) and Deep Graph Library (DGL),

are built upon ML frameworks (e.g., PyTorch) targeting both

CPUs and GPUs. However, the performance and energy con-

sumption of GNN execution is hindered by both hardware plat-

forms and software frameworks: (1) Distinct from traditional

NNs, GNNs combine the irregular communication-intensive

patterns of graph processing and the regular computation-

intensive patterns of NNs. (2) These frameworks execute

functions sequentially, which leads to extra memory accesses

and implicit barriers for intermediate results.

Field-Programmable Gate Arrays (FPGAs) are an attractive

approach to GNN inference acceleration. FPGAs’ massive

fined-grained parallelism provides opportunities to exploit

GNNs’ inherent parallelism. They also deliver better perfor-

mance per watt than general-purpose computing platforms. In

addition, FPGAs’ reconfigurability and concurrency provide

great flexibility to solve the challenges of hybrid computing

patterns. Most of the prior works investigating FPGAs focus

on accelerating a specific GNN model implemented using

Hardware Description Languages (HDL). AWB-GCN [6] pro-

poses a GCN accelerator to solve the workload imbalance

problem. BoostGCN [15] proposes a graph partition algorithm

in a preproessing step to address workload imbalance issues.

High-Level Synthesis (HLS) tools have also been used to

create GNN kernels using popular languages such as C/C++.

With the help of HLS, development time is substantially

shortened relative to HDL designs. Lin et al. [11] proposes an

HLS-based accelerator for GCN with separated sparse-dense

matrix multiplication units and dense matrix multiplication

units which are connected by shared memory and execute

sequentially. GenGNN [1] proposes a framework to accelerate

GNNs for real-time requirements where the whole graph and

corresponding intermediate results are stored on the FPGA.

Despite promising results, this work is limited to small-scale

graphs with low edge-to-node ratio due to memory usage being

proportional to graph scale and feature dimensions.

Distinct from pure software programming, HLS developers

need to adopt multiple optimization pragmas and follow cer-

tain coding styles to achieve best performance and energy cost.

The performance difference between a well-optimized version

and a non-optimized version of the same kernel can be two to

three orders of magnitude. This invites an open question: how

effectively can modern HLS tools accelerate GNN inference?

In this paper, we introduce GNNHLS1, an open-source

framework for comprehensive evaluation of GNN kernels on

FPGAs via HLS. GNNHLS contains a software stack extended

from a prior GNN benchmark [5] based on PyTorch and DGL

for input data generation and conventional platform baseline

deployments (i.e., CPUs and GPUs). It also contains six well-

optimized general-purpose GNN applications: Graph Convo-

lutional Network (GCN) [9], GraphSage (GS) [7], Graph

Isomorphism Network (GIN) [14], Graph Attention Network

(GAT) [13], Mixture Model Networks (MoNet) [12], and

Gated Graph ConvNet (GatedGCN)) [2]. These kernels can be

classified into 2 classes: (1) isotropic GNNs (GCN, GS, and

GIN) in which every neighbor contributes equally to the update

of the target vertex, and (2) anisotropic GNNs (GAT, MoNet,

and GatedGCN) in which edges and neighbors contribute

differently to the update due to the adoption of operations

such as attention and gating mechanisms. In this paper, we

make the following contributions:

• We propose GNNHLS, a framework to evaluate GNN

inference acceleration via HLS, containing: (a) a software

stack based on PyTorch and DGL for data generation

1Released as a benchmark suite [17] and also available at https://github.
com/ChenfengZhao/GNNHLS
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Fig. 1. Diagram of the GNNHLS framework.

and baseline deployment, and (b) FPGA implementation

including 6 well-tuned GNN HLS kernels which can also

be used as benchmarks.

• We provide a comprehensive evaluation of our GNN

HLS implementations on 4 graph datasets, assessing both

performance improvement and energy reduction.

Our results show that GNNHLS provides up to 50.8× speedup

and 423× energy reduction relative to the multicore CPU base-

lines. Compared with the GPU baselines, GNNHLS achieves

up to 5.16× speedup and 74.5× energy reduction.

II. FRAMEWORK DESCRIPTION

A. GNNHLS Overview

The GNNHLS framework, as depicted in Figure 1, com-

prises two primary components: data generation and HLS

FPGA. The former is designed to generate input and output

files and measure baselines on a CPU and a GPU, while the

latter is designed to implement the optimized HLS applications

on an FPGA. The data generation component mainly consists

of the training system and the inference system.

The HLS FPGA component implements the GNN kernels

on the FPGA. These kenels match the functionality of the

DGL baselines and are optimized with several optimization

techniques [3]. The optimized HLS kernels are compiled by

Vitis and executed on the FPGA. Detailed descriptions of the

optimized GNN HLS kernels, experimental methodology, and

computation characterization are all included in the supple-

mentary material [17].

III. EXPERIMENTAL METHODOLOGY

Datasets: Table I shows the graph datasets used in our evalua-

tion. All these graphs are from Open Graph Benchmark [8] and

have a wide range of fields and scales. These graphs represent

two classes of graphs with distinct topologies: MH and MT

consist of multiple small dense graphs, while AX and PT each

consist of one single sparse graph. The maximum and average

degree shown in Table I indicates their varying distributions

ranging from regular-like to powerlaw-like.

Evaluation methods: To perform evaluation, we use a Xil-

inx Alveo U280 FPGA card, provided by the Open Cloud

Testbed [10], to execute the HLS kernels. We compare our

HLS implementation with CPU and GPU baselines with

PyTorch and the highly-optimized DGL library.

TABLE I
GRAPH DATASETS.

Dataset Node # Edge # Max. Avg.
Deg. Deg.

OGBG-MOLTOX21 (MT) 145459 302190 6 2.1

OGBG-MOLHIV (MH) 1049163 2259376 10 2.2

OGBN-ARXIV (AX) 169343 1166243 13155 6.9

OGBN-PROTEINS (PT) 132534 79122504 7750 597.0

TABLE II
RESOURCE UTILIZATION OF HLS GNN MODELS.

Frequency LUT FF BRAM DSP

GCN 250 MHz 264485 413197 41 2880

GS 204 MHz 253608 358722 33 2766

GIN 190 MHz 278251 421915 55 3264

GAT 255 MHz 168559 248424 81 1718

MN 250 MHz 289208 428917 212 2236

GGCN 270 MHz 151497 235484 124 1036

IV. EVALUATION

A. Resource Utilization

We first examine the resource utilization and clock fre-

quency after place & route. FPGA resources include look-

up tables (LUT), flip-flops (FF), BRAM, and digital-signal-

processors (DSP). Table II shows these results. Among these

kernels, GraphSage achieves a low frequency due to some

critical paths unresolvable by the tool. In addition, we observe

that the resources on the FPGA are not over-utilized.

B. Performance

We next examine the performance improvement by showing

the overall speedup, defined as the execution time of the GNN

HLS kernels relative to CPU-DGL (using all 10 cores on the

CPU), in Figure 2. Focusing on the first and third bar of each

kernel, we observe that the speedup of our HLS kernels ranges

from 0.47× to 50.8× over the multi-core CPU baselines.

Among isotropic GNN kernels, GCN achieves better per-

formance than GraphSage and GIN, ranging from 1.08× to

1.98× because its simpler structure enables us to create two

CUs. In contrast, we can only create one CU for GraphSage

and GIN because of their complex structure and heavy re-

source usage. In addition, we observe that the performance

of GraphSage and GIN are close. Thus, we conclude that the

distinction on the structure of these two GNN models will not

substantially affect HLS implementation results.

Among anisotropic kernels, MoNet achieves the highest

performance improvement, ranging from 6.04× to 50.8× due

to: (1) its single pipeline structure with computation order

optimization where the node-wise operations are placed behind

the edge-wise operations, and (2) well-designed MHVMM

modules with lower II , reduced from O(dk) to O(d + k).
In spite of the 2-pipeline structure of GAT, we observe

that it still achieves 4.31× to 6.61× speedup. In addition,

since the feature size of GatedGCN is smaller, leading to

more performance improvement for CPU baselines with time

complexity of O(d2), its speedup is not comparable to other

anisotropic kernels, ranging from 0.5× to 1.16×.
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Fig. 2. Speedup of HLS kernels relative to DGL-CPU. Higher is better.

Turning our attention to how the performance benefit of

HLS implementations varies across graph datasets, we observe

that the speedup of isotropic kernels relative to DGL-CPU

on regular-like graphs (i.e., MT and MH) is higher than

powerlaw-like graphs (i.e., AX and PT) because (1) the edge-

wise operations are less computation-intensive than node-

wise operations in these kernels, making the baselines more

computationally efficient on powerlaw-like graphs containing

more edges than nodes; and (2) the edge-wise aggregation

operations in HLS implementations are executed sequen-

tially without leveraging edge-level parallelism, making these

HLS kernels less computationally efficient for powerlaw-

like graphs. Distinct from isotropic kernels, the speedup of

anisotropic kernels on powerlaw-like graphs is higher than

regular-like graphs because the edge-wise operations of these

kernels are more computation-intensive than isotropic kernels,

making baselines less efficient on powerlaw-like graphs.

Focusing on the second and the third bar, we observe that

DGL-GPU outperforms HLS implementations in many cases,

due to the high-performance fixed-function accelerators in

the GPU. The speedup of HLS kernels relative to the GPU

baselines ranges from 0.13× to 5.16×. Note that GPU results

for GAT, MN, and GGCN on PT cannot be obtained because of

out of memory (OoM) limitations. In spite of the promising

GPU performance, there are still some drawbacks of GPU

compared with HLS implementations. For the execution of

isotropic GNN models, DGL-GPU achieves lower speedup

than HLS on small-scale graphs such as MT and AX. It is

speculated that the GPU is designed to achieve high throughput

in the cost of latency which plays a more important role

for small-scale graphs than large-scale graphs. In addition,

compared with HLS implementations on FPGA, GPU is also

not suitable for the execution of anisotropic GNN models on

large-scale, especially powerlaw-like graphs (e.g., PT) due to:

(1) the non-trivial memory footprint caused by its sequential

execution, storing intermediate results of edge-wise operations,

and (2) insufficient memory capacity on the GPU. That is why

we failed to execute anisotropic GNNs on PT with GPU. This

is addressed by the HLS implementations’ pipeline structure

not storing the intermediate results.

Since GenGNN [1] also discusses 3 of the GNN models

included in this paper (GCN, GIN, and GAT), we can make

a limited comparison of our GNN HLS implementations with

TABLE III
EXECUTION TIME OF VARIOUS OPTIMIZATION TECHNIQUES FOR

GRAPHSAGE ON MH.

Optimizations Execution Time (s) Speedup

No Pragmas 129.59 1.00×

Dataflow 65.11 1.99×

Loop Unroll 11.11 11.7×

Vectorization 4.44 29.2×

Split Loops 0.98 132×

theirs. The two are not directly comparable for a number of

reasons: (1) the feature dimensions of our GNN HLS kernels

are higher, (2) we use off-chip memory instead of on-chip

memory, (3) our general-purpose GNN HLS kernels focus

more on throughput rather than real-time latency, and (4) the

FPGAs are from the same family, but are not same part. The

performance of our HLS kernels exceeds that of GenGNN,

achieving overall speedup of 35×, 5×, and 6× over GCN,

GIN, and GAT, on MT, respectively.

C. Optimization Techniques

As described in Section II, we apply multiple optimization

techniques to the HLS kernels. In order to evaluate the efficacy

of these techniques, we use GraphSage on MT as a case

study. Table III presents the execution time of GraphSage

with the combined impact of optimization techniques applied.

The reported execution time of each technique represents the

effect of both the current technique and above techniques

listed in the table. In the table, No Pragma means we don’t

intentionally apply any pragmas to the HLS code, except

for those automatically applied by Vitis (i.e., Pipeline, Loop

Merge, and Memory optimizations). Dataflow denotes that we

apply dataflow pragma and FIFO streams to exploit the task-

level parallelism of each application. Loop Unroll means we

apply loop unroll pragmas to completely or partially unroll

for loops, keeping II as low as possible while exploiting

instruction parallelism. Vectorization means using vector data

types to widen the width of FIFO streams and corresponding

operations to decrease the cost of FIFO accesses. Split Loops

means splitting the outer-most node loop and putting it inside

each function connected by streams to further optimize FIFO

properties inferred from loop indices.

We observe that Loop Unroll achieves the highest perfor-

mance improvement. Therefore, exploiting instruction paral-
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Fig. 3. Energy consumption reduction of HLS kernels relative to DGL-CPU (logarithmic scale). Higher is better.

lelism is still the primary choice for GNN HLS optimization.

In order to further improve performance, exploiting task-level

parallelism is necessary. Focusing on the first and second row

in the table, we observe that only performing the dataflow

pragma and streams in a naive way obtains 1.99× performance

improvement. By applying Vectorization and Split Loops as

complementary techniques of Dataflow, performance is further

improved by 2.5× and 3.9×, respectively. After applying

all the optimization techniques together we observe that the

performance of GraphSage is improved by 132×.

D. Energy Consumption

We next present a quantitative analysis of the energy con-

sumption. Figure 3 displays the energy reduction of both DGL-

GPU and HLS implementations relative to DGL-CPU. Energy

reduction is calculated as the energy consumption of DGL-

GPU or HLS divided by that of DGL-CPU. Examining the

final bar of each application and dataset, we observe that HLS

implementations consume less energy than CPU and GPU

baselines in all cases, the energy reduction ranging from 2.95×
to 423× and from 2.38× to 74.5×, respectively. It is because

of the low power of FPGA logic, low clock frequency, and

efficient pipeline structure of HLS implementations.

Focusing on the first and last bar, we observe a similar

tendency in energy reduction as in performance: for isotropic

GNN models, denser graphs result in lower energy reduction,

whereas for anisotropic GNN models, denser graphs result

in higher energy reduction. This leads us to conclude that

improving GNN applications generally will require some

degree of graph topology awareness.

V. CONCLUSIONS

We propose GNNHLS, an open-source framework to com-

prehensively evaluate GNN inference acceleration on FPGAs

via HLS. GNNHLS consists of a software stack for data

generation and baseline deployment, and 6 well-tuned GNN

HLS kernels. We evaluate the HLS kernels on 4 graph datasets

with various topologies and scales. Results show up to 50.8×
speedup and 423× energy reduction relative to the multi-

core CPU baselines. Compared with GPU baselines, GNNHLS

achieves up to 5.16× speedup and 74.5× energy reduction.

GNNHLS has been released as a benchmark suite [17].
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