
IP Protection in TinyML 
 
 
Jinwen Wang 
Yuhao Wu 
Han Liu 
Bo Yuan 
Roger Chamberlain 
Ning Zhang 
 
 
 
 
 
 
 

Jinwen Wang, Yuhao Wu, Han Liu, Bo Yuan, Roger D. Chamberlain, and 
Ning Zhang, “IP Protection in TinyML,” in Proc. of 60th ACM/IEEE Design 
Automation Conference (DAC), July 2023. 
 
 
 
 
 
 
 
 
 
 
Dept. of Computer Science and Engineering 
McKelvey School of Engineering 
Washington University in St. Louis 
 
Dept. of Electrical and Computer Engineering 
Rutgers University 



IP Protection in TinyML
Jinwen Wang1‡, Yuhao Wu1‡, Han Liu1, Bo Yuan2, Roger Chamberlain1, Ning Zhang1

1Department of Computer Science & Engineering, Washington University in St. Louis
2Department of Electrical and Computer Engineering, Rutgers University

{jinwen.wang, yuhao.wu, h.liu1, roger, zhang.ning}@wustl.edu; bo.yuan@soe.rutgers.edu

Abstract—Tiny machine learning (TinyML) is an essential
component of emerging smart microcontrollers (MCUs). How-
ever, the protection of the intellectual property (IP) of the model
is an increasing concern due to the lack of desktop/server-grade
resources on these power-constrained devices. In this paper, we
propose STML, a system and algorithm co-design to Secure IP
of TinyML on MCUs with ARM TrustZone. Our design jointly
optimizes memory utilization and latency while ensuring the
security and accuracy of emerging models. We implemented a
prototype and benchmarked with 7 models, demonstrating STML
reduces 40% of model protection runtime overhead on average.

I. INTRODUCTION

With recent advances in deep learning (DL) [1], there
is a growing need to deploy the machine learning (ML)
models on smart microcontrollers (MCUs) at the Edge for
communication efciency and privacy protection. This de-
ployment paradigm on MCUs is often referred to as tiny
machine learning (TinyML) [2]. Nevertheless, deploying these
costly deep learning models that require considerable effort to
train onto low-cost MCUs with less security protection raises
considerable concerns for manufacturers seeking to safeguard
their valuable models against intellectual property (IP) theft.
Existing Attacks and Defense on Deep Learning Mod-
els: Due to its importance, the security of deep learning
has received signicant attentions, focusing on key security
properties, such as condentiality [3], [4], integrity [5], [6],
and availability [7]. Among these attacks, model stealing
attack [4] is closely related to model IP protection. These
attacks can be generally divided into two categories, system
approach [3] (via illegal memory access or side channel) or
algorithm approach [4] (via interaction with the model). Due to
the prevalence of API-based access paradigms, most existing
work focuses on defense against algorithm-level attacks using
watermarking, differential privacy, or data perturbation [8],
little has been done to protect ML deployment on MCUs.
Lack of IP Protection Mechanism on MCU: To prevent
IP thief, models can be encrypted while at rest. However,
an attacker who compromises the software on the MCU can
still extract the model from the memory while the system
is in use. To defend against such attacks, we propose to
leverage trusted execution environment (TEE), an increasingly
available feature on modern embedded processors. Different
from the existing TEE-based methods that focus on high-end
devices [9]–[13], leveraging this hardware feature on MCU for
model IP protection presents several unique challenges.

‡ Equal Contribution.

Challenges and Our Solution: In this paper, we propose
Secure TinyML (STML) to protect model IP on MCUs under
an untrusted software stack based on commercial off-the-shelf
hardware. There are two main challenges:
1) Constrained Memory. TEE utilizes isolation to safeguard
memory contents, but when implemented naively with static
memory allocation for the secure world and normal world
on MCUs, it can lead to memory scarcity for DL inference
execution in the secure world and other tasks in the normal
world due to the limited available memory resources. To ad-
dress this challenge, STML dynamically allocates memory for
applications in the secure world and normal world according
to runtime requirements, swapping essential contents between
internal memory and external storage during world switches
to create space for efcient task execution.
2) Co-Optimization. The memory swapping during world
switches of TrustZone and the use of cryptographic operations
for swapped data protection signicantly increase the runtime
latency of DL execution. Previous work [14] considers three
key dimensions, i.e, memory usage, latency, and accuracy,
without security considerations. To address the challenge, we
formulate and solve a unied TinyML optimization problem
considering the security, memory, latency, and accuracy. STML
can optimize latency and memory usage at both the system
level and algorithm level while meeting the security and
accuracy requirements.

Contributions: We have made the following contributions.
• We propose STML, a system designed to protect the IP of

TinyML models in the presence of untrusted privileged
software by leveraging trusted execution environment.

• We propose an adaptive optimization framework to search
the memory resource allocation strategies with the goal
to minimize the model execution latency.

• We implement and evaluate STML on STM32L562E-DK
MCU with 7 benchmark models. Results show that STML
protects model IP while reducing 40% runtime overhead
than non-optimized security mechanism.

II. BACKGROUND AND RELATED WORK

Tiny Machine Learning: TinyML [2] is at the intersection
of low-end embedded devices and deep learning. As both
academia and industry show growing interest in this area,
several ML frameworks for enabling TinyML on embedded
systems have been developed, including Tensorow Lite Micro
(TFLM), Embedded Learning Library (ELL), Graph Lowering



(GLOW). Despite these advancements, there remains signi-
cant challenges in implementing real-world TinyML applica-
tions from different aspects, including memory usage, power
consumption, network throughput, data privacy, reliability, and
robustness [15]. On the algorithm-level, TinyML models can
be optimized to t specic execution environments [16], while
on the system-level, execution environments or ML frame-
works can be designed or customized to run specic TinyML
models [17]. In this work, we integrate both approaches by
rstly building a secure execution environment tailored for
TinyML applications, followed by optimizing the model to
seamlessly t within this environment.

TEE for Deep Learning Protection: TEE provides a pow-
erful abstraction of a trusted machine to guarantee the con-
dentiality and integrity of code and data loaded inside [18],
[19]. Among different TEE solutions, TrustZone [20] is widely
deployed on devices with ARM processors (both Cortex-M
and Cortex-A). There are a secure world and a normal world
divided through hardware-enforced isolation. The sensitive
data and processing in the secure world can be protected
even if the normal world is compromised. As TEE technol-
ogy advances, it is increasingly being utilized to ensure the
condentiality and integrity of on-device ML execution [9]–
[13]. TEE-based Model IP protection [11], [13], in particular,
has gained popularity, as models are typically derived from
extensive computational resources and proprietary data during
training and processing. Nevertheless, existing TEE-based IP
protection approaches target high-end devices and are not
directly applicable to MCUs, which possess signicantly less
computational and memory resources.

III. THREAT MODEL AND SYSTEM GOAL

Threat Model: We assume that the device hardware supports
a TEE such as ARM TrustZone. The hardware and secure
world software stack are attested during system initialization
and trusted. The normal world software stack is not trusted
and attackers aim to steal model details, including architecture
and parameters, in the system. Specically, attackers attempt
to extract DL model details by arbitrarily reading or writing
normal world memory, executing normal world code, and
accessing peripherals accessible from the normal world, such
as SD cards shared between the normal world and secure
world. Denial of service, cryptography-based attacks, side-
channel attacks, and physical attacks are out of our scope.

System Goal: STML aims to protect TinyML IP on MCUs,
i.e., preventing attackers from extracting model architecture
and parameters, while minimizing model execution latency and
maintaining developer-specied accuracy requirements.

IV. SYSTEM DESIGN

A. System Overview

STML protects the IP of TinyML models using a system
and algorithm co-design approach. As shown in Fig. 1, STML
consists of an ofine optimization engine and a runtime IP
protection mechanism. The ofine optimization engine outputs

Runtime Latency
Optimization

Allocation
Strategy

Model Inference

A
cc

ur
ac

y
Th

re
sh

ol
d

Fe
ed

b
ac

k

Oine Optimization Engine

System Profiling Statistics

Memory Swapping

Scheduler

B
es

t
A
llo

ca
tio

n
S
tr
at
eg

y

Swapping

TinyML
Model

I/O Parallel

Normal
TInyML Protection

Param Load & Decrypt

Flash Layout Optimization World

World
Secure

Fig. 1. Overview of STML.

a resource allocation strategy to minimize the TinyML task ex-
ecution delay. Specically, it rst generates a storage strategy
for storing model parameters within internal ash memory,
optimizing ash memory usage and minimizing the overhead
associated with loading parameters. Secondly, STML searches
a runtime SRAM partition strategy that reallocates memory
between the secure world and normal world during world
switches to minimize the task execution delay. At runtime,
the IP protection mechanism efciently protects the DL model
IP by running the DL model within a TEE and dynamically
allocating SRAM, following the memory allocation strategy
obtained from the ofine optimization engine.

B. Runtime IP Protection Mechanism

The MCU is equipped with R KiB of SRAM, I KiB of
internal ash memory, and E KiB of external ash memory.
After enabling TrustZone, with the conguration of Implemen-
tation Dened Attribution Unit (IDAU), the maximum SRAM
and ash memory size that can be allocated to the normal
world are a · R KiB (0 < a < 1) and b · I KiB (0 < b < 1),
respectively. The MCU runs one TinyML task t0 and k other
tasks T = {t1, t2, . . . , tk}. To prevent attackers from reading
DL model details in SRAM during DL model execution, STML
isolates DL model execution from untrusted software, i.e.,
DL model t0 runs in the secure world and other tasks run
in the normal world. However, memory isolation exacerbates
on-chip memory (internal ash and SRAM) constraints. To
tackle the internal ash constraint challenge, part of the model
parameters are stored in external ash memory, e.g., SD card.
To prevent attackers from stealing model details from external
ash memory, the corresponding parameters are encrypted
before being stored. Before using these parameters, they are
loaded from the external ash memory to SRAM in the
secure world and subsequently decrypted. To tackle the SRAM
shortage problem, STML employs two strategies: reducing the
SRAM space needed for DL model execution and allocating
more available SRAM space for task execution. Specically,
STML executes the DL model layer-by-layer to reduce SRAM
requirement. Furthermore, STML uses memory swapping that
dynamically swaps memory contents between SRAM in both
worlds and the external ash memory temporarily, providing
additional SRAM space for the upcoming task execution.



The memory reallocation is guided by an optimal strategy to
minimize the latency of DL model execution.

C. Flash Memory Allocation Optimization

Assume the tasks in the normal world need IN KiB
(IN ≤ b · I) internal ash memory. Then, there is I − IN
KiB internal ash memory left for TinyML task t0 in the
secure world. In certain scenarios, the TinyML model may
be designed with a size that exceeds I − IN KiB. Thus, the
parameters of some layers need to be stored in the external
ash memory. To optimize internal ash memory usage to
reduce memory swapping, STML formulates an optimization
problem and employs a dynamic programming solution for
determining a layer parameter storage strategy. Specically,
STML selects layers lin for storing in the internal memory by

l∗in = argmax
lin



l∈lin

Γl, s.t.


l∈lin

Γl + IC ≤ I − IN , (1)

where Γl is the ash memory usage of the parameters of layer
l, IC is memory size of the code in the secure world. STML
solves this optimization problem using dynamic programming.
Subsequently, the selected layers are stored in the internal ash
memory, while the remaining layers are placed in the external
ash memory after encryption and decrypted prior to use.

D. Runtime Latency Optimization

The optimization goal is to minimize the TinyML task
runtime latency, including model inference, TrustZone world
switch, and encryption/decryption delays. STML focuses on
predictable workload on MCU. Thus, we assumes that there
are w times of world switch during a TinyML inference
procedure. An array C = {C1, C2, ..., Cw} (Ci ≥ (1− a) · I)
is used to represent the SRAM size allocated to the secure
world during each world switch. The SRAM occupied by the
executed tasks in either the secure world or normal world
prior to the i-th world switch is represented by Ni, which
forms the array N = {N0, N1, ..., Nw}. The allocation of
SRAM signicantly affects the latency of model inference,
world switch, and encryption/decryption. Thus, STML aims to
minimize the latency D by nding the optimal C with

C∗ = argmin
C

D(C) s.t. D(C) = W(C) + F(C) + E(C) + P, (2)

where W represents the total world switch latency, F rep-
resents the total model inference latency, and E is the to-
tal encryption/decryption latency. Additionally, P represents
latencies that are not optimized, including I/O latency and
decryption latency for layers stored in the external ash
memory. Note that the allocated SRAM size is always greater
than or equal to the occupied SRAM of the running task
during world switch in the both secure and normal world. For
example, in the i-th world switch from the secure world to the
normal world, it holds that Ni ≤ Ci−1.

World Switch. Suppose in the i-th world switch, the secure
world will be switched to the normal world. Also, after that
world switch, there will be p tasks running in the normal
world, which requires E = {E1, E2, . . . , Ep} of SRAM to run

the tasks. Therefore, when allocating SRAM for the normal
world, the SRAM size should meet the requirement as

R− Ci ≥ max(E). (3)

During execution, the swapped memory size from the SRAM
in the secure world to the external ash memory is max(Ni−
Ci, 0) and from the external ash memory to the SRAM in
the normal world is max(Ni−1 + Ci−1 − R, 0). Similarly, if
the normal world is switched to the secure world in the i-the
world switch, the swapped memory size from the SRAM in
the normal world to the external ash memory is max(Ni +
Ci−R, 0) while from the external ash memory to the SRAM
in the secure world is max(Ni−1 − Ci−1, 0).
The switching between the normal world and secure world

happens alternatively, without losing generality, the total size
of the swapped memory µ from the SRAM to the external
ash memory can be represented as

µ(C) =
w

i=1

Zi ·max(Ni−Ci, 0)+(1−Zi) ·max(Ni+Ci−R, 0), (4)

where Zi denotes the i-th world switch from the secure world
to the normal world (value is 1) or from the normal world to
the secure world (value is 0). The total size of the swapped
memory δ from the external ash memory to the SRAM is

δ(C) =
w

i=1

Zi·max(Ni−1+Ci−1−R, 0)+(1−Zi)·max(Ni−1−Ci−1, 0).

(5)
With the size of the swapped memory, the world switch latency
can be represented as

W(C) = P · µ(C) + P ′ · δ(C) +Q, (6)

where P and P ′ are the read and write speeds of the external
ash memory, and Q is a constant number representing all
other latency during the world switch.
Encryption/Decryption Operations. To prevent attackers
from stealing model details from external ash, the memory
data in the secure world is encrypted or decrypted when it
is saved into or restored from external ash during memory
swapping. Therefore, for the data swapped from the SRAM in
the secure world to the external ash memory, the encryption
latency and the data size are linearly positively correlated. The
total encryption latency, Ee, and decryption latency, Ed, for the
swapped data in the secure world are

Ee(C) =
w

i=1 G · Zi ·max(Ni − Ci, 0) + V,
Ed(C) =

w
i=1 G

′ · Zi ·max(Ni−1 − Ci−1, 0) + V ′, (7)

where G and G′ are coefcients related to the complexity of
encryption and decryption algorithms, V and V ′ are constant
numbers representing other latency during encryption and
decryption. Thus, the total encryption/decryption latency is

E(C) = Ee(C) + Ed(C). (8)

Model Inference. STML utilizes algorithm-level model op-
timization techniques [21] to minimize the model inference
latency. Meanwhile, suppose S = {S2, S4, · · · , S⌊w2⌋} is the
SRAM requirement for model execution every time switching



to the secure world, the SRAM usage of the model execution
needs to satisfy for any i, Si ≤ Ci. For model optimization,
depthwise separable convolution is employed to replace the
standard convolution of those layers whose SRAM usage
exceeds the limit by depthwise convolution and pointwise
convolution. The computation of the two convolutions can be
separated and a reduction in the computation can be achieved.

Furthermore, the width multiplier and resolution multiplier
can be applied to decrease the total amount of computations.
Specically, for the width multiplier, a parameter α ∈ (0, 1]
is applied to scale the original input and output channel
dimension, respectively. For the resolution multiplier, a pa-
rameter β ∈ (0, 1] is utilized to scale the resolution of
input representation. Since both scaling operations will have
negative impacts on the model accuracy, the parameters need
to be searched to meet both the SRAM requirement and the
accuracy requirement. Formally, the optimization objective is

F∗(C) = min
α,β

F(M(α, β)) s.t. A ≥ η;∀i, Si ≤ Ci. (9)

where M represents the model, A represents the performance
metric, and η is the requirement of the model accuracy. By
applying a grid search strategy, STML can nd a combination
of α and β to minimize the model inference latency under the
constraints of C and η. Also, the performance metric A under
different pairs of α and β can be evaluated after re-training.
Note that while model optimization may alter the model ash
memory requirement, the original model size is used in ash
memory allocation optimization (Section IV-C) to limit the
search space for the whole system.

Optimization Solution. By combining Eq. 6, Eq. 9, and Eq. 8
with Eq. 2, we can get an explicit expression between the
latency D and SRAM allocation strategy C. Since it is a high-
dimensional continuous search problem, a genetic algorithm
is adopted to search the optimal SRAM allocation schemes
and the latency D. Genetic algorithms have been demonstrated
effective for searching the optimized parameters in many areas
such as resource scheduling [22]. Specically, a population of
candidate arrays C are evolved to maximize the tness score
−D. In each iteration, candidates with the highest score are
selected while the rest are dropped. The selected candidates
undergo crossover, where new candidates are generated by
sampling values from a pair of parent candidates, with the
sampling probability proportional to their tness values. Mu-
tation is performed on the new candidates by adding Gaussian
distributed vectors with a certain mutation probability. The
detailed algorithm is provided in Algorithm 1.

Computation and I/O Parallelism. The layer parameter load-
ing from the external ash memory and the layer computation
can be executed in parallel once direct memory access (DMA)
is enabled, such that the idle time of CPU and I/O can be
further reduced. Specically, consider executing two layers
sequentially, where the parameters of the latter layer are stored
in external ash memory. After proling the SRAM usage
of the rst layer, if there is sufcient free SRAM in the
secure world to load the parameters of the second layer, the

Algorithm 1: Genetic-based Optimization Algorithm
1 Input: The total number of population Kn, selected population Ks, mutation

probability pm, and the maximum number of iterations cmax.
2 Output: Secure world SRAM array C.
3 C ← {C0,C1, ,CKs}, P ← D(C)
4 for c = 0 to cmax do
5 for i = 1 to Kn do
6 Ci1,Ci2 ← Sample(C,P)
7 Ci ← Crossover(Ci1,Ci2)
8 Ci ← Mutate(Ci, pm)
9 C ← C ∪ {Ci}

10 end
11 P ← D(C)
12 C,P ← Sort(C,P)[: Ks]
13 end
14 return C(0)

decryption and computation of the rst layer and the parameter
loading of the second layer will be performed in parallel. This
approach allows the execution of the second layer to start
immediately after nishing the rst layer, as the second layer’s
parameters have already been loaded in advance. As a result,
the idle time for both CPU and I/O is shortened, leading to a
further reduction in the TinyML task execution latency D.

V. EVALUATION

A. Experimental Settings

Implementation Details. The STML prototype1 has been
developed and evaluated using STM32L562E-DK, an MCU
kit featuring a Cortex-M33 CPU with TrustZone, 512 KiB of
ash memory, 256 KiB of SRAM, and a 32 GiB SD card. We
implemented the layer-by-layer model execution and per-layer
parameter loading from the SD card based on TensorFlow
Lite Micro [23], a TinyML framework designed for MCUs.
The reconguration of memory security attributes and memory
content swapping were implemented in the context switch
routine of the real-time operating system (RTOS) scheduler.
The Security Attribution Unit (SAU) was modied to change
the memory security state. Additionally, a hardware-assisted
cryptographic library was employed to speed up cryptographic
operations during parameter loading or saving and memory
content swapping. Ofine optimization was executed on a PC.

Key Performance Questions. We evaluated STML under
different scenarios to answer the following three questions:
Q1. How much runtime overhead is introduced by memory
swapping (i.e., enabling large model execution) and security
mechanism (i.e., protecting DL model IP) for TinyML? (§V-B)
Q2. Can STML signicantly reduce the runtime overhead of
TinyML tasks while ensuring the security of the tasks? (§V-B)
Q3. How do system-level optimizations and algorithm-level
optimizations affect model execution latency? (§V-C)

TinyML Benchmark Tasks and Models. To evaluate the
performance of STML on a range of TinyML tasks using vari-
ous trained models, we evaluated it with models from MLPerf
Tiny Benchmark [24] and MicroNets [25]. The benchmark
TinyML tasks include keyword spotting (KWS), anomaly

1Source code is available at https://github.com/WUSTL-CSPL/TinyML.



(a) W/O Security (1 NW Task) (b) Security W/O Opt. (1 NW Task) (c) STML (1 NW Task)

(d) W/O Security (2 NW Tasks) (e) Security W/O Opt. (2 NW Tasks) (f) STML (2 NW Tasks)

(g) W/O Security (3 NW Tasks) (h) Security W/O Opt. (3 NW Tasks) (i) STML (3 NW Tasks)

Fig. 2. TinyML Task Execution Latency.

(a) W vs W/O Flash Optimization

(b) W vs W/O Algo. Optimization

(c) W vs W/O Parallel Optimization

Fig. 3. Optimization Effectiveness.

TABLE I
METADATA OF TINYML BENCHMARK MODELS

Tasks Model Flash(KB) RAM(KB) Latency(ms) Metric

KWS (1)DS-CNN [15] 144.80 31.25 81.29 90% (Top-1)(2)MicroNet-KWS(S) [24] 192.55 70.14 233.05

AD (1)Deep AutoEncoder [15] 328.96 10.57 7.64 0.85 (AUC)(2)MicroNet-AD(S) [24] 327.64 120.14 445.66

VWW (1)MobileNetV1 0.25x [15] 420.07 108.82 256.68 80% (Top-1)(2)MicroNet-VWW(S) [24] 363.60 77.71 146.01
IC (1)ResNet-8 [15] 187.04 62.32 373.33 85% (Top-1)

detection (AD), visual wake words detection (VWW), and
image classication (IC). Table I shows measurement data of
the used models when all system resources are available on
the MCU. We ensured our algorithm-level model optimization
adhered to the performance requirements and quality targets
specied by MLPerf Tiny Benchmark.

Tasks in the System. A TinyML task runs in the secure
world, while other tasks including LED Toggling, Logging,
and AudioSampling, are executed in the normal world. The
metadata of these tasks is illustrated in Table II. Note that
the ash size of AudioSample includes both the code size
in the internal ash memory the data size in the SD card.
Similar to tasks in widely-used cyber-physical systems like
ArduPilot [26], these normal world tasks have higher execution
priorities, as they are responsible for critical operations.

B. Optimization Results

Performance Overhead Proling. To fully comprehend the
impact of security mechanisms on performance, we measured
the DL execution latency in three different system settings: a
system without TEE protection (W/O Security), a system that
protects model IP using xed memory allocation (half for each
world) between the secure world and normal world (Security
W/O Opt.), and a system that optimizes the protection of
model IP by dynamically changing memory allocation at

TABLE II
METADATA OF TASKS IN THE NORMAL WORLD

Tasks Flash (KB) SRAM (KB) Frequency (Hz) Priority
LED Toggle 56.90 25.14 50 2
Logging 89.70 41.34 20 3
AudioSample 170.94 114.35 10 1

runtime (STML). We assessed execution delay across various
system workloads within each system setting, where one, two,
and three high-priority tasks concurrently run (in the normal
world if the model IP is protected) with the TinyML task.
Fig. 2 shows that deploying an IP protection security

mechanism under the same workload leads to an increased DL
execution delay due to memory isolation and cryptographic
operations. The scarcity of memory resources is compounded
by memory isolation, necessitating more frequent memory-
swapping and fewer concurrently executed model layers. As
the number of tasks increases within the same system congu-
ration, the model execution delay also increases because model
execution is more frequently preempted. Each time model exe-
cution is preempted, STML expends additional time switching
task contexts, adding to the increased model execution delay.

Answer to Q1. If the entire model ts in the TEE, deploying
TinyML there incurs minimal overhead (0.0026% on average).
However, when the model size exceeds the allocated memory
of TEE secure world, using a security mechanism with the
default allocation leads to a 15% average runtime overhead,
mainly due to memory swapping and cryptographic operations.

Effectiveness of STML. The runtime latency of STML, using
optimal memory allocation and optimized TinyML models,
is shown in Fig. 2(c),(f),(i) under varying workloads. This
conguration exhibits reduced overhead from world switches,
cryptography, and model inference compared to the unopti-
mized security mechanism. Model optimization signicantly
reduces memory usage (ash and SRAM) and inference la-



tency. The decreased SRAM requirement reduces swapped
memory size, leading to lower latency for world switches and
cryptographic operations. On average, the optimized security
mechanism offers a 40% overhead reduction compared to its
non-optimized counterpart, achieved through 42%, 35%, and
22% reductions in model inference, memory swapping, and
cryptographic operation overheads, respectively.
Answer to Q2. With the proposed optimization, latency for
world switches, cryptographic operations, and model inference
within a security mechanism is signicantly reduced.

C. Ablation Study

Ablation Study Setup. The optimization scheme consists
of three key strategies: optimizing ash memory allocation,
rening the model algorithm, and computation and I/O par-
allelism. To evaluate the impact of each strategy on model
execution latency, we conduct an ablation study by removing
one strategy at a time and measuring the resulting latency.
This evaluation takes place under a workload setting with three
normal world tasks, and the results are shown in Fig. 3.

Results. Without the ash memory allocation optimization,
model inference latency increases 9.4%. While the most
signicant inference latency increase is seen in MicroNet AD
model, the inference latency of MLPerf KWS, MLPerf IC, and
MicroNet KWS remain the same since they are small enough
to t into the internal ash memory. From Fig. 3(b), after em-
ploying model algorithm optimization, a 30% average decrease
in model inference latency can be achieved. In particular, for
those models that contain more standard convolutional layers
such as MLPerf IC and MicroNet VWW, the optimization
effect is more obvious since more convolution calculations can
be replaced by depthwise separable convolution operations.
Additionally, computational and I/O parallel optimization have
the most signicant impact on model inference latency. When
disabling optimizations, latency increases to 1.5 times the
optimal value. Similar to the ash memory allocation opti-
mization, it also has no effects on the smaller models yet a
signicant effects on the larger models including MLPerf AD,
MLPerf VWW, and MicroNet VWW.
Answer to Q3. Each optimization strategy notably reduces
model execution latency. Computation and I/O parallelism
have the largest impact, while model algorithm optimization
applies to more TinyML tasks, given the prevalence of con-
volutional calculations in TinyML models.

VI. CONCLUSION AND DISCUSSION

In this paper, we introduce STML, a TinyML model IP
protection system for MCUs utilizing ARM TrustZone. We
propose a memory swapping scheme to address the limited
memory issue and minimize I/O and inference latency through
system and algorithm level optimization. Our approach effec-
tively balances memory usage, latency, security, and accuracy,
resulting in a 40% reduction in runtime overhead compared
to non-optimized solutions. Although initially designed for
systems with predictable workloads, STML can be adapted to

other systems by adjusting the DL execution latency modeling
to accommodate their specic characteristics.
In addition to minimizing DL execution delay, future work

may investigate other key performance metrics, such as en-
ergy efciency, to address the wide-ranging needs of various
TinyML application scenarios. Although STML can protect
TinyML IP against attackers targeting direct software memory
access, defense against other attack vectors, such as side-
channel attacks and cold boot attacks, still requires additional
investigation. Given the growing importance of AI, developing
security protection for its deployment on edge devices is an
vital future research direction.

ACKNOWLEDGMENT

This work was partially supported by the US NSF
(CNS-1916926, CNS-2229427, CNS-2238635), ARO
(W911NF2010141) and DOE (DE-EE0009338).

REFERENCES

[1] Y. LeCun et al., “Deep learning,” Nature, 2015.
[2] P. Warden et al., TinyML. O’Reilly Media, 2019.
[3] L. Batina et al., “CSI NN: Reverse engineering of neural network ar-

chitectures through electromagnetic side channel,” in Security, USENIX,
2019.

[4] M. Jagielski et al., “High accuracy and high delity extraction of neural
networks,” in Security, USENIX, 2020.

[5] H. Liu et al., “When evil calls: Targeted adversarial voice over ip
network,” in CCS, ACM, 2022.

[6] Z. Yu et al., “Smack: Semantically meaningful adversarial audio attack,”
in Security, USENIX, 2023.

[7] H. Liu et al., “Slowlidar: Increasing the latency of lidar-based detection
using adversarial examples,” in CVPR, IEEE, 2023.

[8] Oliynyk et al., “I know what you trained last summer: A survey on
stealing machine learning models and defences,” arXiv, 2022.

[9] F. Mo et al., “DarkneTZ: towards model privacy at the edge using trusted
execution environments,” in MobiSys, ACM, 2020.

[10] A. Gangal et al., “HybridTEE: Secure mobile DNN execution using
hybrid trusted execution environment,” in AsianHOST, IEEE, 2020.

[11] S. P. Bayerl et al., “Ofine model guard: Secure and private ML on
mobile devices,” in DATE, IEEE, 2020.

[12] Z. Sun et al., “Shadownet: A secure and efcient on-device model
inference system for convolutional neural networks,” in S&P, IEEE,
2023.

[13] L. Hanzlik et al., “MLCapsule: Guarded ofine deployment of machine
learning as a service,” in CVPR Workshop, IEEE, 2021.

[14] J. Lin et al., “Mcunet: Tiny deep learning on iot devices,” in NeurIPS,
PMLR, 2020.

[15] C. R. Banbury et al., “Benchmarking TinyML systems: Challenges and
direction,” arXiv, 2020.

[16] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” ICLR, 2015.

[17] H. Miao et al., “Towards out-of-core neural networks on microcon-
trollers,” in SEC, IEEE, 2022.

[18] J. Wang et al., “Rt-tee: Real-time system availability for cyber-physical
systems using arm trustzone,” in S&P, IEEE, 2022.

[19] J. Wang et al., “ARI: Attestation of Real-time Mission Execution
Integrity,” in Security, USENIX, 2023.

[20] ARM, “TrustZone security,” 2009.
[21] A. G. Howard et al., “Mobilenets: Efcient convolutional neural net-

works for mobile vision applications,” arXiv, 2017.
[22] Z. Zhou et al., “An improved genetic algorithm using greedy strategy

toward task scheduling optimization in cloud environments,” Neural
Comput. Appl., 2020.

[23] R. David et al., “Tensorow lite micro: Embedded machine learning for
tinyml systems,” MLSys, 2021.

[24] C. Banbury et al., “MLPerf tiny benchmark,” arXiv, 2021.
[25] C. Banbury et al., “Micronets: Neural network architectures for deploy-

ing tinyml applications on commodity microcontrollers,” MLSys, 2021.
[26] “Ardupilot.” https://ardupilot.org/.


