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Abstract

The disparity in performance between processors and main mem-
ories has led computer architects to incorporate large cache hier-
archies in modern computers. Because these cache hierarchies are
designed to be general-purpose, they may not provide the best pos-
sible performance for a given application. In this paper, we deter-
mine a memory subsystem well suited for a given application and
main memory by discovering a memory subsystem comprised of
caches, scratchpads, and other components that are combined to
provide better performance. We draw motivation from the super-
optimization of instruction sequences, which successfully finds un-
usually clever instruction sequences for programs. Targeting both
ASIC and FPGA devices, we show that it is possible to discover un-
usual memory subsystems that provide performance improvements
over a typical memory subsystem.

Categories and Subject Descriptors C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems; B.1.4 [CONTROL STRUCTURES AND MICRO-
PROGRAMMING]: Optimization

Keywords  Superoptimization; Cache

1.

Memory accesses are the primary bottleneck for many applica-
tions [34]. In an effort to alleviate this bottleneck, modern com-
puters typically use large cache hierarchies between compute re-
sources, such as general-purpose processors or field-programmable
gate arrays (FPGAs), and main memory. These cache hierarchies
form a memory subsystem that connects the compute resources to
the main memory with the goal of improving the performance of an
application by exploiting common properties of memory accesses,
such as temporal and spatial localities.

Most memory subsystems built today are designed to be general-
purpose by providing good overall memory performance for a wide
variety of applications. This is exemplified by the fact that most
computers today have a fixed cache hierarchy. However, because
of this generality, such memory subsystems do not necessarily pro-
vide the best possible performance for a particular application and
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main memory. Further, a general-purpose cache may use more on-
chip resources than necessary for a particular application. With this
in mind, we set out to investigate whether it is possible to design
application-specific memory subsystems that provide better perfor-
mance than a general-purpose memory subsystem. Such memory
subsystems could take advantage of specific properties of both the
application and main memory to provide better performance than
might be possible with a general-purpose memory subsystem.

In addition to the improved performance, if it were possible
to discover a good memory subsystem automatically, the manual
and laborious process of optimizing an application for a particular
memory subsystem may not be necessary. Although both cache-
aware [28] and cache-oblivious [9] algorithms and data structures
exist, it remains a relatively difficult task to make an arbitrary
application perform well for a given memory subsystem and main
memory.

Rather than focus exclusively on selecting cache parameters
for a fixed cache hierarchy, we widen the search space to include
components other than caches, such as scratchpad memories and
address transformations, which are not typically found in memory
subsystems. In addition, we consider total access time rather than
relying solely on cache misses. This allows us to customize the
memory subsystem to take advantage of certain properties of the
main memory, such as burst behavior.

This work draws motivation from superoptimization [20],
which has been used successfully in GCC to find short instruction
sequences [13]. More recently, the concept of superoptimization
has been extended using stochastic search to explore larger code
segments [27]. The concept of superoptimization in those works
is to try many instruction sequences with the hope of discovering
a new sequence that is shorter or faster than other, functionally
equivalent, instruction sequences. However, rather than superopti-
mizing instruction sequences, we are interested in superoptimizing
memory subsystems.

Unfortunately, modern computer systems do not have config-
urable memory subsystems. Indeed, even in the embedded space,
there are often limitations on how much a memory subsystem
can be modified. However, it is conceivable that general-purpose
computers might introduce more memory subsystem flexibility
in the future, especially if such flexibility were able to provide
a significant performance advantage. Moreover, flexible memory
subsystems exist today for applications deployed on FPGAs and
application-specific integrated circuits (ASICs).

In this work, we target both an FPGA and an ASIC process.
The FPGA we target is a Xilinx Virtex-7 running at 250 MHz. An
FPGA is a type of reconfigurable hardware consisting of config-
urable logic gates (formed from look-up tables), registers, and a
routing matrix. In addition, modern FPGAs typically have addi-
tional resources, such as block RAMs and hardware multipliers.
Block RAMs are configurable memories, which make it possible to
implement diverse memories efficiently on an FPGA device. These



block RAMs are of particular interest to us since we can use them
in our memory subsystems.

Block RAMs are typically some fixed size in terms of storage
bits, but with a configurable aspect ratio. For example, on our target
device, block RAMs are 72 bits wide and 512 entries deep. Such
a block RAM can be used to implement other aspect ratios, such
as 36 bits by 1024 entries, 18 bits by 2048 entries, etc. By using
multiple block RAMs, one can create larger memories as well.

To demonstrate the generality of our approach, we target a
45 nm ASIC process in addition to the FPGA target. In both the
FPGA and ASIC cases, we assume a DDR3 main memory, how-
ever, we note that designing custom main memory models for our
superoptimizer is straightforward.

To superoptimize a memory subsystem for an application, we
use a memory address trace from a representative run of the ap-
plication. We then generate candidate memory subsystems from a
neighborhood of memory subsystems around the previous proposal
and simulate the address trace. Finally, we either accept or reject
the proposed memory subsystem based on its performance. This
process repeats until we give up searching.

Here we build upon earlier work on application-specific mem-
ory subsystems [33] by evaluating a wider variety of benchmark
applications, using a different approach to meta-heuristic optimiza-
tion, performing an explicit model validation, and including sup-
port for an ASIC target. In addition, we use a more realistic model
for the main memory. Finally, we show that it is possible to ex-
ploit information available in the memory traces to discover better
memory subsystems faster.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 describes how we perform the
optimization and as well as the experimental setup. Section 4 shows
our experimental results. Section 5 provides a discussion of the
results and what they mean. Finally, Section 6 concludes.

2. Related Work

Although there is much related work on design space explo-
ration [16, 19], the ability to change completely the memory sub-
system for a specific application and main memory subsystem dis-
tinguishes this work from most previous work.

Techniques for improving the performance of memory subsys-
tems at the software level include a profiling approach used to
guide the placement of variables in the virtual address space to
decrease cache conflicts and improve locality [3]. Compiler op-
timizations have been used to improve data locality across loop
iterations [4]. Reorganization and cache-conscious memory allo-
cation have been explored [7]. Finally, splitting and reordering of
structures have been explored in the interest of improving cache be-
havior [6]. These approaches do not consider altering the memory
subsystem at the hardware level.

At a higher level, there are approaches to application design
that focus on improving cache performance. In particular, cache-
aware algorithms [28] attempt to take advantage of a particular
cache structure. Likewise, the performance of cache-oblivious al-
gorithms [9] is asymptotically optimal on an ideal cache hierar-
chy. Unfortunately, ideal cache hierarchies do not exist and, further,
these techniques are specific to a very small set of algorithms.

Much related work exists with respect to tuning the parameters
of a fixed memory subsystem dynamically. Methods to change
the size and associativity of a cache hierarchy dynamically have
been explored [2, 29] and the ability to disable various levels of a
multi-level cache in the interest of reducing latency and reducing
power consumption has been considered [5]. Finally, adjusting the
size of cache lines dynamically to lower the cache miss rate has
been considered [31]. Unlike our method, these approaches are
dynamic, but limited in the amount of variation supported by the
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memory subsystem. Techniques such as these are complementary
to our work as they could be added to the set of memory subsystem
components that our optimizer has at its disposal.

There are also many approaches to tuning cache parameters
statically. A method for selecting cache parameters analytically has
been described for a single-level cache [10]. In addition, heuristic
methods for selecting the parameters of a two-level cache have been
presented [11, 12]. Unlike our approach, these approaches consider
a much smaller search space. However, we note that it may be
possible to use such techniques to speed up the superoptimization
process.

Non-traditional memory subsystems have been proposed. For
example, a victim cache [17] cache is a small, fully-associative
cache structure used to store recently evicted items from a larger
cache with low associativity. The use of such caches in embedded
applications has been explored [35]. The combination of a scratch-
pad and cache has been considered [23, 25]. Further, the combina-
tion of multiple caching techniques including split caches has been
considered [21]. Each of these works presents a particular mem-
ory subsystem. Our work, on the other hand, attempts to discover
memory subsystems with arbitrary structure. Therefore, it is pos-
sible that our superoptimizer would discover similar structures if
provided the necessary memory subsystem components.

Finally, there is complementary work in the area of hardware
synthesis. For example, LEAP scratchpads [1] provide multiple
logical memories to an FPGA backed by a single main memory.
In such a system, our work could be used to discover the best
use of the on-chip memory resources to improve performance.
Likewise, our system could be used to find more suitable memory
subsystems in high-level synthesis tools such as CHiMPS [24] and
ScalaPipe [32].

3. Method

Our goal is to discover a memory subsystem that offers the best
possible performance for a given application and main memory. To
do this, we propose and evaluate candidate memory subsystems.
We can then view the discovery of good memory subsystems as
a classical optimization problem with an objective function and
constraints. Here, we seek to minimize the total memory access
time constraining the on-chip memory used. It would be possible
to use other objective functions, however, such as minimization of
energy use or minimization of writes to main memory.

We consider both an FPGA device and an ASIC process for
deployment. When targeting an FPGA device, we constrain the
optimization by specifying the maximum number of block RAMs
(BRAMs) that can be used in the memory subsystem as well as the
minimum operating frequency. During the optimization process,
we synthesize each component individually and store the results
so that they can be reused. The optimization proceeds assuming
that, when combining memory components, the maximum clock
frequency does not change and that the number of block RAMs is
added together. Although the assumption about the number of re-
quired block RAMs is conservative, the assumption about the fre-
quency remaining the same is not conservative. Therefore, once the
optimization is complete, we validate that the discovered memory
subsystem will run at the target frequency and fit on the target de-
vice by synthesizing the complete memory subsystem.

When targeting an ASIC process, we constrain the optimization
by specifying the maximum chip area dedicated to the memory sub-
system and assume that the system runs at a fixed clock frequency.
We use the CACTI [30] program to determine the access time, cycle
time, and area required for each memory component. Full synthe-
sis, however, is not performed for the ASIC target.



Component [ Description

Parameters (n € Z4)

| Latency (cycles)

Line size (word_size x 2™)
Line count (2™)
Cache Parameterizable cache Associativity (1. .. line_count) 3
Replacement (LRU, MRU, FIFO, PLRU)
Write policy (write-back, write-through)
Offset Address offset Value (£n) 0
Prefetch Stride prefetcher Stride (£n X word_size) 0
Rotate Rotate address transform | Value (£n) 0
Scratchpad | Scratchpad memory Size (word_size x 2™) 2
Split Split memory Location (n x word_size) 0
XOR XOR address transform Value (n) 0

Table 1. Memory Subsystem Components

3.1 Address Traces

We use address traces to evaluate the performance of a particular
memory subsystem for an application. We consider two types of
traces: traces gathered from real applications and traces gathered
from custom kernels. To gather the address traces for the applica-
tion benchmarks, we use a modified version of the Valgrind [22]
lackey tool. This allows us to obtain concise address traces for ap-
plications that contain only data accesses (reads, writes, and mod-
ifies). We ignore instruction accesses since the instructions would
likely be stored in a separate memory.

For both the application benchmarks and kernel benchmarks,
we ignore the notion of processing time in the trace; our focus is
exclusively on memory performance. Because there is no notion
of processing time, however, certain memory subsystem compo-
nents, such as prefetchers, are unlikely to be useful. Introducing
processing time is possible, but to do so would require a specific
implementation of the application, which would make the results
less general.

All of the address traces contain virtual (instead of physical)
addresses and are gathered for 32-bit versions of the benchmark
applications. To evaluate a general-purpose memory subsystem,
the physical addresses are important since some levels of cache
use physical addresses to avoid problems when context switching.
However, we note that our memory subsystem is specific to the ap-
plication and, therefore, using virtual addresses is appropriate. We
leave the problem of sharing the same memory resources among
multiple applications or kernels as future work.

3.2 Simulation

Given an address trace for an application and a candidate memory
subsystem, we use a custom memory system simulator to determine
how many cycles are spent performing memory accesses. Our sim-
ulator is capable of simulating the memory subsystem components
shown in Table 1, which also shows the latency in cycles required
for the FPGA implementation.

For caches, the simulator supports four replacement policies.
The supported policies include least-recently used (LRU), most-
recently used (MRU), first-in first-out (FIFO), and pseudo-least-
recently used (PLRU). The PLRU policy approximates the LRU
policy by using a single age bit per cache way rather than lgn
age bits, where n is the associativity of the cache. With the PLRU
policy, the first way where the age bit is not set is selected for
replacement. Upon access, the age bit for the accessed way is set
and when all age bits are set for a set, all but the accessed age bit
are cleared.

The offset, rotate, and xor components in Table 1 are address
transformations. The offset component adds the specified value to
the address. The rotate component rotates the bits of the address
that select the word left by the specified amount (the bits that select
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Parameter | Description | Value
Frequency | The I/O frequency of the DRAM 400 MHz
CAS Cycles select a column 5
RCD Cycles from opening to read/write 5
RP Cycles required to precharge a row 5
Page size | Size of a page in bytes 1024
Page count | Number of pages per bank 65536
Width Channel width in bytes 8
Burst size | Number of columns per access 4
Page mode | Open or closed page mode open
DDR Double data rate true

Table 2. Main Memory Parameters

the byte within the word remain unchanged). Note that for a 32-bit
address with a 4-byte word, 32 — 1g4 = 30 bits are used to select
the word. Finally, the xor component inverts the selected bits of the
address.

Other supported components include prefetch and split. The
prefetch component performs an additional memory access after
every memory access to the prefetch. This additional access reads
the word with the specified distance from the original word that was
accessed. Finally, the split component divides memory accesses
between two memory subsystems based on address.

The communication between each of the memory components
as well as the communication between the application and main
memory is performed with 4-byte words. The bytes within the
word are selected using a 4-bit mask to allow byte-addressing. The
address bus is 30 bits, providing a 32-bit address space.

As presented here, the optimizer supports seven distinct subsys-
tem components. However, adding additional components is sim-
ply a matter of adding a synthesizable HDL model of the compo-
nent and a simulation model for the optimizer. Likewise, additional
parameters can be added to the existing components. Unfortunately,
adding additional components can make the optimization process
take longer since more steps will be required.

In addition to simulating memory subsystems, our memory
simulator is capable of simulating main memories with various
properties, shown in Table 2. As is the case with the memory
subsystems, it is possible to model main memories with other
properties if required. For our purposes, we consider a DDR3-800D
memory, whose properties are shown in Table 2.

3.3 Optimization

To guide the optimization process, we use a variant of threshold
acceptance [8] called old bachelor acceptance [15]. Old bachelor
acceptance is a Markov-chain Monte-Carlo (MCMC) stochastic
hill-climbing technique similar to simulated annealing [18].



Using stochastic hill-climbing, one typically selects an initial
state, s = So, and then generates a proposal state, s*, in the neigh-
borhood of the current state. The state is then either accepted, be-
coming s¢41, or rejected. With threshold acceptance, the difference
in cost between the current state, s, and the proposal state, s*,
is compared to a threshold, 73, to determine if the proposal state
should be accepted. Thus, we get the following expression for de-
termining the next state:

S*
St41 =
St

For our purposes, the state is a candidate memory subsystem
and the cost function, c(-), is the total access time in cycles that the
application will experience from memory accesses.

With threshold acceptance, the threshold is initialized to some
relatively high value, 73} = 7Tp. The threshold is then lowered
according a cooling schedule. The recommended schedule in [8]
is Ty41 = Ty — ATy where A € (0,1). Old bachelor acceptance
generalizes this, allowing the threshold to be lowered when a state
is accepted and raised when a state is not accepted. This allows the
algorithm to escape areas of local optimality more easily. For our
experiments, we used the following schedule:

T, — AT;
Tt+1—{t t

if c(s™) < c(se) + T
otherwise

ifc(s*) < c(se) + Ty

T, + AT; otherwise

Because the evaluation of a state involves simulating a memory
subsystem for an address trace, each state evaluation can take
several minutes or even longer depending on the size of the trace.
Further, to discover a good memory subsystem, the total number of
states visited can be large, which can make the optimization process
take a prohibitively long time.

To reduce the time required for superoptimization, we employ
two techniques to speed up the process. First, we memoize the
results of each state evaluation so that when revisiting a state
we do not need to simulate the memory trace again. The second
improvement is that we allow multiple superoptimization processes
to run simultaneously sharing results, thereby allowing us to exploit
multiple processor cores.

3.4 Neighborhood Generation

Our memory subsystem optimizer is capable of proposing candi-
date memory subsystems comprised of the structures shown in Ta-
ble 1. These components can be combined in arbitrary ways leading
to a huge search space limited only by the constraints. Recall that
for the FPGA target, the constraints include the minimum clock fre-
quency and the maximum number of BRAMs for the memory sub-
system. For the ASIC target, the constraint is the area as reported
from the CACTI tool.

Given a state, s, we compute a proposal state s* by performing
one of the following actions:

1. Insert a new memory component to a random position,
2. Remove a memory component from a random position, or

3. Change a parameter of the memory component at a random
position.

With MCMC algorithms such as simulated annealing and
threshold acceptance, it is necessary that the generated proposal
states be ergodic. Ergodicity means that it is possible to reach ev-
ery state from any given state in a finite number of steps. It is
easy to see that the above process is ergodic as actions 1 and 2 are
capable of canceling each other and action 3 can cancel itself.

To ensure that any discovered memory subsystem is valid, we
reject any memory subsystem that exceeds the constraints. How-

148

ever, there are other ways a memory subsystem may be invalid.
First, because we support splitting between memory components
by address, any address transformation occurring in a split must be
inverted before leaving the split. To handle this, we always insert
(or remove) both the transform and its inverse when inserting (or
removing) an address transformation.

Another situation that can lead to an invalid memory subsystem
is when a complex memory subsystem prevents the subsystem from
achieving the required clock frequency on the FPGA device. Note
that for an ASIC device we increase the number of cycles required
to access the memory component. Although we synthesize each
component for the FPGA target separately to prevent this, it is still
possible that a combination of components prevent the complete
memory subsystem from achieving the required clock frequency.

To prevent the optimizer from generating a memory subsystem
that is unable to run at the required clock frequency, the optimizer
keeps a rough estimate on the longest combinational path and
prevents the path from becoming too long. Nevertheless, it is still
possible that a particular superoptimized memory subsystem may
not achieve the required clock frequency. Therefore, for the FPGA
results, we synthesize the superoptimized memory subsystems to
validate them.

3.5 Offset Selection Heuristic

Because the search space is so large, arbitrarily selecting addresses
to segment the address space in a split component can be problem-
atic. Therefore, rather than proposing arbitrary addresses for split
offsets, we restrict the set of addresses to values that actually ex-
ist in the address trace. We do this by recording the address ranges
that are used during the first evaluation of the trace for the initial
state. To further improve these results, the addresses we generate
are weighted such that those addresses at the ends of address ranges
are more likely to be selected.

Given an address range of length n that starts at a, addresses
used for splits are selected according to the following algorithm:

a w.p.1/8
_Ja+n-1 w.p.1/8
Alan) =9 4(a, [n/2]) w.p. 3/8
Ala+n/2],[n/2]) wp.3/8

Here w.p. stands for “with probability”. Thus, there is a 12.5%
chance of selecting the first address in the range, a 12.5% chance of
selecting the last address, and a 75% chance of selecting an address
between these two extremes.

3.6 Model Validation

To validate the simulation model used during the optimization
process, our optimizer generates synthesizable VHDL that has the
characteristics shown in Table 1. By synthesizing the VHDL, we
can ensure that the discovered memory subsystem is able to run at
the required frequency and fit on our target device. The synthesis
targets a Xilinx Virtex-7 running at 250 MHz.

3.7 Benchmarks

We use a collection of six benchmarks from the MiBench bench-
mark suite [14] as well as four kernels for evaluation purposes. The
MiBench benchmark suite contains single-threaded benchmarks
for the embedded space that target a variety of application areas.
For some benchmarks, the MiBench suite contains large and small
versions. We chose the large version in the interest of obtaining
larger memory traces.

The locally developed kernels include a kernel that performs
random lookups in a hash table (hash), a kernel that performs
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matrix-matrix multiply (mm), a kernel that inserts and then re-
moves items from a binary heap (heap), and a kernel that sorts an
array of integers using the Quicksort algorithm (gsort). Rather than
implement an application to perform these operations and use Val-
grind to capture the address trace, the addresses traces for these
kernels are generated directly during a simulation run, which al-
lows us to avoid processing large trace files for the kernels.

Because we are optimizing the memory subsystem, the amount
of memory accessed by each benchmark is important. If a particu-
lar benchmark accesses less memory than is available to the on-chip
memory subsystem, then it should be possible to have all memory
accesses occur in on-chip memory, though such a design may re-
quire clever address transformations. A graph of the total working-
set size for each benchmark is shown in Figure 1.

In Figure 1, we see that there are two benchmarks, bitcount and
dijkstra, that are small enough that all memory accesses could be
mapped into 64 BRAMs, which is 2,359,296 bits, or 294,912 bytes.
All of the other benchmarks are too large to fit completely within
64 BRAMs, which is the constraint on BRAMs we consider for the
FPGA target.

For the 45nm ASIC process with an area constraint of 1mm?,
we can store a total of 379,392 bytes in a scratchpad according to
our CACTI model. This means that, as with the FPGA, both the
bitcount and dijkstra benchmarks are small enough to be mapped
into a scratchpad, but all of the remaining benchmarks require too
much memory.

4. Results

To evaluate the performance of our superoptimized memory sub-
systems, we compare the performance of the superoptimized mem-
ory subsystems against a baseline cache. For our baseline cache,
we selected a cache that closely resembles the data cache in a
Raspberry Pi [26]. This is a 64 KiB, 4-way set-associative write-
back cache with 32-byte lines and a PLRU replacement policy. The
FPGA implementation of this cache uses 16 BRAMs and meets our
250 MHz target frequency. According to CACTI, the 45nm ASIC
implementation is 0.18mm? with a 1-cycle access time and a 3-
cycle cycle time.

4.1 FPGA Results

For the first set of experiments, we target a Xilinx Virtex-7 with
a target frequency of 250 MHz and a constraint of 64 BRAMs
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maximum. The main memory is assumed to be the DDR3 device
whose properties are shown in Table 2.

The first question we attempt to answer is: how much better
might we make the memory subsystem than the baseline cache? To
determine this, we compare the performance of each benchmark to
a “best-case” access time. For the best-case access time, we assume
that all memory accesses hit in the fastest memory component
available for each of our targets. For the FPGA target, this means
that all accesses hit in a scratchpad and, therefore, take two cycles
to complete. This best-case speedup for our benchmarks running
on the FPGA target is shown in Figure 2.

The g-mean bar in Figure 2 represents the geometric mean. As-
suming that we could somehow arrange for all of the memory ac-
cesses to hit in the scratchpad we would get a 3.12% speedup over
the baseline cache for the FPGA target. Note that, in reality, such
a speedup is not possible since we do not have enough resources
available to make all of the accesses hit in a scratchpad.

Figure 3 shows the speedup that the superoptimized memory
subsystem provides over the baseline memory subsystem. Across
the set of benchmark applications, the performance gain varies
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from very little to over 9x with a geometric mean speedup of
1.71x%.

Although the results are not much better than the baseline mem-
ory subsystem, we note that for all of the benchmarks there was
some improvement, though less than 1% in a few cases. There are
a few benchmarks, however, that exhibit substantial performance
gain. The matrix-matrix multiply shows the best speedup of over
9x. Because the main memory is not much slower than the cache
structures running on a 250 MHz FPGA fabric, we do not antici-
pate substantial gains for all of the applications (see Figure 2). A
number of the discovered memory subsystems are, however, worth
considering in more detail.

The first interesting memory subsystem we consider is the su-
peroptimized memory subsystem for the hash benchmark, shown
in Figure 4a. The hash benchmark performs random probes into
a hash table containing 8,388,608 entries, each 4-bytes. This type
of access pattern causes problems for caches due to the lack of lo-
cality. In Figure 4a, memory accesses enter the top and accesses to
main memory come out the bottom. There are two address transfor-
mations and a 262,144-byte scratchpad. The first address transfor-
mation toggles a bit of the address. The transformed address then
enters the scratchpad. The second transformation reverses the first
transformation so that the addresses remain unchanged as they en-
ter the main memory (recall that address transformations are always
inserted and removed in pairs).

The reason that the address transformation is beneficial for the
hash benchmark is due to the random accesses to the hash table
being slightly unbalanced. Removing the address transformation
results in a very slight decrease in performance. If we remove
the scratchpad completely, there is again only a slight decrease in
performance. Here we note that the speedup is primarily due to the
removal of the cache, which serves only to cause overhead when
there is no locality. The scratchpad speeds up some of the accesses,
but only a small fraction.

Another interesting memory subsystem, which also provides
the greatest performance improvement, is discovered for mm: the
matrix-matrix multiply benchmark. This benchmark performs a
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matrix-matrix multiply using the naive O(n®) algorithm with 256-
by-256 matrices. Each element of the matrix is 4 bytes. The su-
peroptimized memory subsystem for this benchmark is shown in
Figure 4b. In the superoptimized memory subsystem for the mm
benchmark, memory accesses enter the top and are then split, with
accesses below address 274944 going directly to a 262,144-byte
cache at the bottom of Figure 4b and accesses to addresses above
and including 274944 going to a separate memory subsystem be-
fore going to the 262,144-byte cache. For accesses to addresses
above and including 274944, first the bits of the address that se-
lect the word are rotated left by 23 bits. The accesses then enter a
4,096-byte, direct-mapped cache, and finally, the address is rotated
right by 23 bits before entering the larger cache.

To understand why the memory subsystem for the mm bench-
mark provides such good performance, we consider the way the
memory is organized for the benchmark. There are 3 matrices: two
sources and a destination. The first source matrix, which is accessed
in row-major order, is stored in addresses O through 262140. The
second source matrix, which is accessed in column-major order, is
stored at addresses 262144 through 524284. Finally, the destination
matrix is stored at addresses 524288 through 786428.

With this memory organization in mind, we note that the ad-
dress split moves most accesses for the second source matrix as
well as the destination matrix into a separate memory subsys-
tem. Within this subsystem, the addresses are transformed and
then routed to a cache. Given that the second source matrix is
accessed in column-major order, for the first column, we access
0004000016,000404001¢, . . . 0007F'C0016 for the first column,
then 0004000416, 0004040416, . ..0007F'C0416 for the second
column, and so on. However, after the split and address transfor-
mation, the addresses from the perspective of the 1024 entry cache
look about like this: 0000000016, 0000000816, ... 00000F F'816
for the first column, 0100000016,0100000816, ...01000F F'81¢
for the second column, and so on. The result is that each column of
the matrix is cached and can be reused 256 times before the next
column is required.
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Figure 6. Best-case ASIC Speedup (Log Scale)

Note that due to the layout of the matrices, one would expect
that the ideal address for the split would be 262144 instead of
274944. Indeed, changing the split address results in a 0.46%
improvement in performance. Thus, running the superoptimizer
longer would likely result in an even better memory subsystem.
Further, this implies that there may be better ways to propose
offsets for splits.

A final observation about the memory subsystem for the mm
benchmark is the large cache after the split. This cache has 32-
byte cache lines, which allows it to prefetch values for the source
matrix. Also, the cache is write-through rather than write-back,
which prevents cache pollution due to writes to the destination
matrix.

The memory subsystem discovered for the bitcount benchmark
is shown in Figure 4c. This memory subsystem only provides a
small performance improvement over the baseline (a speedup of
less than 1%), but it also uses fewer block RAMs than the baseline
memory subsystem (9 instead of 16). This feat is accomplished by
splitting the address space between two caches. The first cache
handles accesses to heap allocations whereas the second cache
handles accesses to the stack. This type of split is common for the
benchmarks that have accesses to a separate stack and heap.

Finally, we consider the memory subsystem for the jpegd bench-
mark, shown in Figure 4d. For the jpegd benchmark, the super-
optimizer selected a split memory subsystem where only memory
accesses to addresses 134513324 and higher go to a cache. This
causes accesses to the program stack to be cached, but not accesses
to heap allocations.

Of the superoptimized memory subsystems for the FPGA target,
none contained only a single-level cache component. Five of the
memory subsystems contained splits (bitcount, fft, jpegd, mm, and
sha), five contained scratchpads (dijkstra, hash, heap, patricia, and
gsort), and five contained address transformations (dijkstra, hash,
mm, patricia, and gsort). Further, all of the superoptimized memory
subsystems performed better than the baseline memory subsystem,
even if only marginally better in some cases.

4.2 ASIC Results

The best-case speedup for the ASIC target is shown in Figure 6.
For the ASIC target, we assume that, in the best case, all memory
accesses hit a scratchpad with a 1-cycle access time and cycle time.
Here we see that the geometric-mean best-case speedup is 17x. As
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Figure 7. Realized ASIC Speedup (Log Scale)

in the FPGA case, it is not necessarily possible to achieve such a
speedup.

The superoptimizer is able to get more impressive speedups
for the ASIC than the FPGA for two reasons. First, the ASIC is
assumed to be running at a higher clock frequency than the FPGA
(1 GHz versus 250 MHz), making a miss in the memory subsystem
have a greater impact. Second, there are more trade-offs for the
ASIC memory components. In particular, when targeting an ASIC,
the optimizer uses the access time and cycle time results from
CACTI rather than using a fixed access time and cycle time as is
done for the FPGA. Figure 7 shows the speedup that the optimized
memory subsystem provides over the baseline memory subsystem.
The geometric mean speedup is 6.52x.

The greatest increase in performance is again seen for the mm
benchmark, whose memory subsystem is shown in Figure 5b. This
memory subsystem has two sets of address rotations. The rotation
by 27 bits causes every eighth entry of the first source matrix for
16384 entries to be stored in the first scratchpad, which has a cycle
time of 1 cycle. Another 65536 entries of the first source matrix
are stored in the second scratchpad, which has a cycle time of 3
cycles. Finally, the second set of rotations causes columns of the
second source matrix to be cached in a way similar to the memory
subsystem for the FPGA. Although the first address rotation may
seem unnecessary, by reducing conflict misses in the cache, it
actually improves the performance of the memory subsystem.

The memory subsystem for the hash benchmark targeting the
ASIC is shown in Figure 5a. As is the case with the mm bench-
mark, the subsystem for the hash benchmark is similar to the sub-
system for the FPGA. However, rather than an xor transform, this
subsystem uses a rotate. In addition, this subsystem incorporates
two scratchpads instead of one.

The memory subsystem discovered for the bitcount benchmark,
shown in Figure Sc, is similar to the memory subsystem discovered
for the bitcount for the FPGA target, shown in Figure 4c. Note that
the split offset is only slightly different. However, here we have a
cache before the split rather than on the left side of the split.

The last memory subsystem we consider in detail is the memory
subsystem for the jpegd benchmark, shown in Figure 5d. This
memory subsystem is one of the most complex memory subsystems
discovered. The split causes access to the memory in the stack
space to be mapped to a 4-level cache. Finally, accesses to both
the stack and heap are backed by a smaller cache. The four levels
of cache in the split each have slightly different properties and
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Figure 5. Superoptimized Memory Subsystems for the ASIC Target

removing any one of the caches causes a decrease in performance.
Having separate, smaller caches such as this can be beneficial since
smaller caches are faster than larger caches.

As is the case with the FPGA target, none of the superoptimized
memory subsystems for the ASIC target contained only a single-
level cache component. Four of the memory subsystems contained
splits (bitcount, jpegd, patricia, and sha), six contained scratchpads
(dijkstra, fft, hash, heap, mm, gsort) and six contained address
transformations (dijkstra, fft, hash, heap, mm, and gsort). Further,
like the FPGA target, all of the superoptimized memory subsystems
performed better than the baseline memory subsystem.

4.3 Memory Subsystem Specificity

Finally, we consider how specific each of the memory subsystems
is to the application for which the subsystem was superoptimized.
Figure 8 shows a heat map comparing the results of running each
of the 10 benchmarks with each of the 10 superoptimized mem-
ory subsystems for the FPGA target. The results are computed
by dividing the total access time of each benchmark running with
each memory subsystem by the total access time of the benchmark
running with the memory subsystem that was superoptimized for
that benchmark. In the figure, darker colors represent better perfor-
mance.

In Figure 8, we see that the mm and heap benchmarks appear to
run well only on the memory subsystems that are superoptimized
for them. For the mm benchmark, the performance improvement
from the rotate in the memory subsystem is significant enough to
prevent any of the other memory subsystems from approaching the
performance of the mm memory subsystem. The heap benchmark
contains only a scratchpad, which causes accesses to the start of the
heap, which are most frequent, to be fast. However, such a structure
is suboptimal for the other benchmarks, though the hash bench-
mark performs fairly well with the memory subsystem for the heap
benchmark. In all cases, the memory subsystem that was superop-
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timized for a particular benchmark provides the best performance
for that benchmark.

Figure 9 shows a heat map comparing the results of running
each of the 10 benchmarks with each of the 10 superoptimized
memory subsystems for the ASIC target. As is the case with the
FPGA results, the benchmarks all perform best with the superopti-
mized memory subsystem for the particular benchmark. In fact, the
results are more specific for the ASIC target than for the FPGA tar-
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get, which is likely due to the fact that the ASIC target runs faster
and has a more complex search space.

Given that the superoptimized memory subsystems are specific
to the benchmark for which they were superoptimized, we note that
the memory subsystem may further be specific to a particular run
of the benchmark. To investigate this, we used a different input data
set of the same size for each of the benchmarks for the ASIC target.
For example, for the jpegd benchmark, a different input image of
the same dimensions as the original was chosen. A comparison of
the speedups over the baseline memory subsystem for the original
data set and the new data set is shown in Figure 10.

In Figure 10, the lighter bars (on the left) show the speedup of
the superoptimized memory subsystem over the baseline memory
subsystem for the original data set and the darker bars (on the
right) show the speedup for the modified data set. For many of
the benchmarks there is little or no difference and in one case
(dijkstra), the speedup actually improved. Overall, the geometric
mean dropped from 6.43% to 6.27x. Although its impossible to
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draw anything conclusive from these results, it appears that the
effects of over-fitting are minimal.

5. Discussion

When there are enough resources available on the target device
(FPGA or ASIC) to contain the complete memory image of a
benchmark, one might expect that a scratchpad memory would
be the ideal choice. However, the addresses from these traces is
do not necessarily start at O nor are they contiguous due to the
memory layout of the application. Therefore, for such benchmarks,
we might expect to see address transformations to move the bulk of
the memory references into a scratchpad.

Unfortunately, the number of address transformations needed to
move all memory accesses into a scratchpad can make it unlikely
the optimizer will discover such a memory subsystem. In addition,
the overhead, either in terms of area or BRAMs, of having many
small scratchpads may prevent the optimizer from dividing up
the memory addresses perfectly. Thus, a cache structure is often
selected instead of a scratchpad. This is why, for example, the
discovered memory subsystem for the bitcount benchmark uses
caches for both the FPGA and ASIC targets despite the fact that the
memory image of the bitcount benchmark could fit easily within a
memory subsystem afforded by the constraints.

Despite the limitations of placing scratchpads, the optimizer
uses such a technique for several of the benchmarks, most notably,
the hash and heap benchmarks. By doing so, certain addresses that
occur frequently can be accessed faster. Further, accesses that hit in
a scratchpad that is before a cache avoid cache pollution.

An observation when comparing the superoptimized memory
subsystems for the ASIC target against those for the FPGA target
is that, for a particular benchmark, the overall structure is similar,
though the memory subsystems for the ASIC target are typically
more complex. We expect that the memory subsystems would have
similar properties since the benchmark and main memory are held
constant. Further, we expect that there would be some variation due
to the different properties of the memory subsystem components
when deployed on our target devices.

As a last point of discussion, we note that these memory sub-
systems are specific not only to an individual application, but also
a particular run of that application. Although Section 4.3 demon-
strates that this effect can be minimal, it is quite possible that some
superoptimized memory subsystems could be overly-specific. Ob-
viously, this can be bad in some cases. For example, when travers-
ing a graph, we likely do not want the memory subsystem to have
good performance only for a particular graph. On the other hand,
when the memory accesses are not data dependent or when we ex-
pect the data to be similar from run to run (biased accesses into a
hash table, for instance), it may be acceptable or even beneficial for
a memory subsystem to be highly optimized for a particular access
pattern.

6. Conclusion

‘We have shown that it is possible to superoptimize memory subsys-
tems for specific applications that out-perform a general-purpose
memory subsystem. Unlike previous work, the memory subsystems
that our superoptimizer discovers can be arbitrarily complex and
contain components other than simple caches. To superoptimize a
memory subsystem, we use a form of threshold acceptance. We are
then able to improve the discovery process by using information
from the address trace.

This work targets both an FPGA as well as an ASIC process.
For the FPGA target, we have validated the discovered memory
subsystems by generating VHDL for each of the subsystems. The
VHDL was then synthesized to ensure that the discovered memory



subsystems are realizable at the required frequency. For the ASIC
process, we used the CACTI [30] tool to get area and time estimates
for each of the memory components.

In the future, we would like to extend this work to speed up the
superoptimization process and support more memory subsystems.
We would also like to investigate ways to find a representative
trace signature for multiple runs of the same application to avoid
discovering memory subsystems that are specific to a particular run.
In addition, we would like to explore application-specific memory
subsystems for parallel applications.

7. Acknowledgments

We thank our colleagues and the EIT staff for the use of the
Engineering Cloud Cluster.

References

[1] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer.
LEAP scratchpads: automatic memory and cache management for
reconfigurable logic. In Proc. of 19th ACM/SIGDA Int’l Symp. on
Field Programmable Gate Arrays, pages 25-28, 2011.

[2] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. A dynamically tunable memory hierarchy. /[EEE Trans.
on Computers, 52(10):1243-1258, Oct. 2003.

[3] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data
placement. In Proc. of 8th Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 139-149, 1998.

[4] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations
for improving data locality. In Proc. of 6th Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, pages
252-262, 1994.

[5] J. Chang, P. Ranganathan, D. A. Roberts, M. A. Shah, and J. Sontag.
Data storage apparatus and methods, Mar. 2012. US Patent App.
2012/0131278.

[6] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious
structure definition. In Proc. of ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 13-24, 1999.

[7]1 T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure
layout. In Proc. of ACM Conf. on Programming Language Design and
Implementation, pages 1-12, 1999.

[8] G. Dueck and T. Scheuer. Threshold accepting: a general purpose
optimization algorithm appearing superior to simulated annealing.
Journal of Computational Physics, 90(1):161-175, 1990.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Proc. of 40th Symp. on Foundations of
Computer Science, pages 285-297, 1999.

[10] A.Ghosh and T. Givargis. Cache optimization for embedded processor
cores: An analytical approach. ACM Trans. on Design Automation of
Electronic Systems, 9(4):419-440, Oct. 2004.

[11] A. Gordon-Ross, F. Vahid, and N. Dutt. Automatic tuning of two-level
caches to embedded applications. In Proc. of the Conf. on Design,
Automation and Test in Europe, page 10208, 2004.

[12] A.Gordon-Ross, F. Vahid, and N. Dutt. Fast configurable-cache tuning
with a unified second-level cache. In Proc. of Int’l Symp. on Low
Power Electronics and Design, pages 323-326, 2005.

T. Granlund and R. Kenner. Eliminating branches using a superopti-
mizer and the GNU C compiler. In Proc. of ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 341-352,
1992.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative em-
bedded benchmark suite. In Proc. of 4th Int’l Workshop on Workload
Characterization, pages 3—14, 2001.

T. C. Hu, A. B. Kahng, and C.-W. A. Tsao. Old bachelor acceptance:
A new class of non-monotone threshold accepting methods. ORSA
Journal on Computing, 7(4):417-425, 1995.

[13]

[14]

[15]

154

[16] E. Ipek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz.
Efficiently exploring architectural design spaces via predictive model-
ing. In Proc. of 12th Int’l Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pages 195-206, 2006.

[17] N. P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
Proc. of 17th Int’l Symp. on Computer Architecture, pages 364-373,
1990.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simmulated annealing. Science, 220(4598):671-680, 1983.

[19] B. C. Lee and D. M. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power prediction.
In Proc. of 12th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 185—194, 2006.

[20] H. Massalin. Superoptimizer: a look at the smallest program. In
Proc. of 2nd Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 122—126, 1987.

[21] A. Naz. Split Array and Scalar Data Caches: A Comprehensive Study
of Data Cache Organization. PhD thesis, Univ. of North Texas, 2007.

[22] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proc. of ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 8§9-100,
2007.

P. Panda, N. Dutt, and A. Nicolau. Local memory exploration and
optimization in embedded systems. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 18(1):3-13, 1999.

A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles,
P. Sundararajan, and R. Wittig. Performance and power of cache-based
reconfigurable computing. ACM SIGARCH Computer Architecture
News, 37(3):395-405, 2009.

P. Ranjan Panda, N. D. Dutt, A. Nicolau, F. Catthoor, A. Vandecap-
pelle, E. Brockmeyer, C. Kulkarni, and E. De Greef. Data memory
organization and optimizations in application-specific systems. I[EEE
Design & Test of Computers, 18(3):56-68, 2001.

[26] Raspberry Pi. http://www.raspberrypi.org.

[23]

[24]

[25]

[27] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization.
In Proc. of 18th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 305-316, 2013.

[28] S. Sen, S. Chatterjee, and N. Dumir. Towards a theory of cache-
efficient algorithms. Journal of the ACM, 49(6):828-858, Nov. 2002.

[29] K. T. Sundararajan, T. M. Jones, and N. P. Topham. Smart cache: A
self adaptive cache architecture for energy efficiency. In Proc. of Int’l
Conf. on Embedded Computer Systems, pages 41-50, 2011.

[30] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI
5.1. HP Laboratories, 2, Apr. 2008.

[31] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapting
cache line size to application behavior. In Proc. of 13th Int’l Conf. on
Supercomputing, pages 145-154, 1999.

[32] J. G. Wingbermuehle, R. D. Chamberlain, and R. K. Cytron.
ScalaPipe: A streaming application generator. In Proc. of 2012 Symp.
on Application Accelerators in High-Performance Computing, pages
244-254, July 2012.

[33] J. G. Wingbermuehle, R. K. Cytron, and R. D. Chamberlain. Op-
timization of application-specific memories. Computer Architecture
Letters, Apr. 2013.

[34] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications
of the obvious. ACM SIGARCH Computer Architecture News, 23(1):
20-24, Mar. 1995.

[35] C.Zhang and F. Vahid. Using a victim buffer in an application-specific
memory hierarchy. In Proc. of Design, Automation and Test in Europe
Conference and Exhibition, pages 220-225, 2004.





