Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Interruptible Nodes: Reducing Queueing Costs in
Irregular Streaming Dataflow Applications on Wide-
SIMD Architectures

Stephen Timcheck (& stimcheck@wustl.edu)
Washington University in St. Louis

Jeremy Buhler
Washington University in St. Louis

Research Article

Keywords: Irregular, Dataflow, Streaming, Queueing, Interrupt, SIMD
Posted Date: September 20th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2049897/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2049897/v1
mailto:stimcheck@wustl.edu
https://doi.org/10.21203/rs.3.rs-2049897/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 BTEX template

Interruptible Nodes: Reducing Queueing
Costs in Irregular Streaming Dataflow
Applications on Wide-SIMD Architectures

Stephen Timcheck'" and Jeremy Buhler!

" Computer Science Department, Washington University in St.
Louis, One Brookings Drive, St. Louis, 63105, Missouri, United
States of America.

*Corresponding author(s). E-mail(s): stimcheck@wustl.edu;
Contributing authors: jbuhler@wustl.edu;

Abstract

Streaming dataflow applications are an attractive target to parallelize
on wide-SIMD processors such as GPUs. These applications can be
expressed as a pipeline of compute nodes connected by edges, which feed
outputs from one node to the next. Streaming applications often exhibit
irregular dataflow, where the amount of output produced for one input
is unknown a priori. Inserting finite queues between pipeline nodes can
ameliorate the impact of irregularity and improve SIMD lane occupancy.
The sizing of these queues is driven by both performance and safety con-
siderations — relative queue sizes should be chosen to reduce runtime over-
head and maximize throughput, but each node’s output queue must be
large enough to accommodate the maximum number of outputs produced
by one SIMD vector of inputs to the node. When safety and performance
considerations conflict, the application may incur excessive memory
usage and runtime overhead. In this work, we identify properties of appli-
cations that lead to such undesirable behaviors, with examples from
applications implemented in our MERCATOR framework for irregular
streaming on GPUs. To address these issues, we propose extensions to
support interruptible nodes that can be suspended mid-execution if their
output queues fill. We illustrate the impacts of adding interruptible nodes
to the MERCATOR framework on representative irregular streaming
applications from the domains of branching search and bioinformatics.

Keywords: Irregular, Dataflow, Streaming, Queueing, Interrupt, SIMD

Springer Nature 2021 B TEX template

2 Interruptible Nodes: Reducing Queueing Costs

1 Introduction

Streaming computations arise in numerous domains, including bioinformat-
ics [1], astrophysics [2], data integration [3], network packet inspection [4],
branch-and-bound search [5], and decision cascades in machine learning [6].
Applications of this type process a long stream of independent data items,
which makes them amenable to running on wide-SIMD devices such as GPUs.
Streaming applications can be expressed as a pipeline of compute nodes con-
nected by edges, where incoming data is processed by a node and then sent
to the next node via a connecting edge. High-level programming support for
streaming is important to manage node execution and data storage on edges
transparently to the application designer; in this work, such support is provided
by MERCATOR [7, 8], a framework we previously constructed to support
streaming applications on GPUs.

Many streaming applications of interest — including those mentioned
above — exhibit irregular dataflow. In an irregular application, the number of
output data items produced per input to a node is not fixed a priori but rather
varies dynamically and unpredictably for each data item. Irregular dataflow
means that data must be queued on edges between nodes, both for parallelism
(i.e., accumulating a full SIMD vector of inputs to the next node) and for
safety if a node generates more output than the next node can consume at
once. The sizes of inter-node queues should be carefully chosen based on con-
siderations of average and worst-case node behavior [8], and scheduling of an
application’s nodes must then be cognizant of inter-node queue occupancy to
ensure safe and efficient execution [9].

A basic property of streaming pipelines in MERCATOR is that execution
of a compute node is uninterruptible: once the node begins to consume a SIMD
vector of inputs, it must finish before another node can be scheduled to execute.
This behavior arises because existing GPU runtimes do not support preemptive
scheduling of compute kernels or of functions within one kernel. As a result,
for each node, there is a minimum safe size for its output queue, namely the
space needed to hold the most output that could be generated by one vector
of input. This safety constraint must override queue-sizing decisions driven
by average-case performance considerations, which can result in applications
that allocate much more queue space than they typically use and that may be
inefficiently scheduled.

In this work, we first identify performance and memory usage problems
that appear in irregular streaming applications due to safety constraints arising
from uninterruptible nodes. We then describe modifications to our MERCA-
TOR framework that enable application programmers to cooperatively support
suspension and resumption of a node, which requires saving and restoring its
execution state. Finally, we benchmark some representative applications to
evaluate the impact of interruptibility on application performance and memory
usage.

The rest of the paper is divided as follows. Section 2 examines related
work, while Section 3 describes our application model. Section 4 looks at

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 3

examples of irregular streaming applications and the impact minimum queue
size restrictions have on their performance and memory usage. Section 5
describes MERCATOR’s new interruptible node facility and the challenges of
implementing interruptible nodes. Section 6 empirically evaluates interruptible
nodes on two applications, NQueens and BLAST. Finally, Section 7 concludes
and considers future work.

2 Related Work

Our own prior work on MERCATOR includes the design of its node sched-
uler [9] and techniques for reducing overhead caused by switching from one
pipeline node to another during execution [8]. This work focuses on a mecha-
nism to allow a node to suspend and later resume execution and shows how,
in the context of a wide-SIMD execution model for streaming pipelines, such a
mechanism can have important benefits for throughput and for memory usage.

Prior work in scheduling multiple tasks on the GPU includes work on coop-
erative CPU-GPU scheduling. Hyoseung et al. [10] considered a single GPU
shared between multiple non-preemptive tasks that must be scheduled sequen-
tially. The CPU determines which GPU task to run at any given time. Kato et
al.’s TimeGraph system [11] similarly includes a CPU-side scheduling mech-
anism for GPU tasks, each of which may have multiple components, and can
make scheduling decisions based on task priority. MERCATOR also manages
multiple non-preemptively executing tasks, in the form of different compute
nodes in a pipeline, but the nodes along with their scheduler are all functions
within one GPU kernel. Hence, we cannot use the facilities that might be used
by CPU-side schedulers, such as multithreading or timer interrupts. Moreover,
nodes communicate through the pipeline edges between them, which raises a
different set of scheduling considerations than for independent tasks.

Other work has investigated preemptive scheduling of multiple kernels on
a shared GPU, which would be desirable for, e.g., GPU virtualization and
would also help ameliorate the problems we identify with non-preemptive node
execution in MERCATOR. One such system, Chimera [12], assumes the exis-
tence of hardware support for kernel preemption (which was simulated using
GPGPU-Sim) and focuses on how to lower the throughput and latency impacts
of context switching between kernels. While MERCATOR does not consider
applications with strong latency constraints, our prior work also focuses on
reducing throughput impacts, specifically the frequency of required inter-node
switches (which, unlike in the case of independent tasks, are unavoidable
for nodes in a streaming pipeline with finite queues). The present work fur-
thers the goal of switching reduction by using node interruptibility to enable
optimizations that further reduce switches and so improve throughput.

Much like Chimera, FLEP [13] seeks to enable kernel preemption on the
GPU, with a focus on speeding up high-priority kernels as well as fairly
distributing time between kernels. The authors design preemption both for
the entire GPU and for specific processors on the GPU. Unlike Chimera,

Springer Nature 2021 B TEX template

4 Interruptible Nodes: Reducing Queueing Costs

S0 S1 S2
9o, o g1, a1 g2, a2

Fig. 1: A simple pipeline application topology. Node ng feeds into ny, and ng
feeds into nge. Node n; has service time s;, average gain g;, and maximum gain
a;.

FLEP’s preemption does not assume hardware support but rather is achieved
partly via compiler-side transformations on kernel code, wrapping the ker-
nel’s interior with conditions to exit on setting a variable available to the
CPU. FLEP further uses timing information gathered from applications to
estimate preemption overhead and guide decisions on when to preempt a
kernel. While MERCATOR’s scheduling decisions are not motivated by prior-
ities, the present work must also contend with code transformations to enable
nodes to suspend at certain strategic points so that another node can run.
We presently offer only low-level facilities that enable application developers
to write preemptible code manually, but future work will consider the fea-
sibility of automated, higher-level program transformations to support node
suspension and resumption.

3 Application Model

In this section, we more formally describe streaming dataflow applications and
how we map them onto a wide-SIMD execution platform. Our target for MER-
CATOR applications is an NVIDIA GPU running applications written in the
CUDA language; however, this platform’s properties and limitations are typi-
cal of other wide-SIMD targets such as AMD GPUs running OpenCL. Details
of MERCATOR’s usage and application mapping beyond those described here
may be found in [8].

3.1 Application Mapping

An application is represented as a pipeline of compute nodes ng,nq, ... with
successive nodes connected by dataflow edges as shown in Figure 1. Each
compute node n; consumes a vector of up to v inputs at a time and produces a
variable number of outputs per input for the downstream node n; 1 to process
later. The number of outputs produced per input to a node, which we call its
gain, may vary dynamically in a data-dependent fashion up to some known
maximum.

An edge between two nodes has a finite queue in which data produced
by the upstream node is stored until it can be consumed by the downstream
node. We assume that queue sizes are fixed for the duration of an application’s
execution, or at least for the time needed to process a large number of inputs,
due to the high cost of dynamic memory allocation on our target platform.

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 5

When a node n; begins to consume input from its upstream queue, it does so in
SIMD vectors of up to v items at a time until either its upstream queue empties
or it cannot consume another vector of inputs without potentially overflowing
the remaining output space in its downstream queue. At that point, n; must
yield control to a global node scheduler, which selects other nodes to execute
until n; again has both available input data and available output space.

A GPU platform typically contains multiple processors, each of which may
support multiple, asynchronous, non-communicating execution contexts (GPU
blocks in CUDA). MERCATOR runs an independent replica of the applica-
tion’s pipeline within each context, with all contexts pulling data competitively
from a single shared input stream, running asynchronously in parallel, and
writing to a single shared output stream. Each context’s pipeline replica has its
own set of queues and its own scheduler instance that runs nodes sequentially
within that context. In what follows, we focus on the behavior and memory
usage of one pipeline replica, which processes SIMD vectors but whose nodes
are sequentially scheduled, with the understanding that a GPU executing an
application may run (and allocate queue memory for) hundreds of pipeline
replicas concurrently.

Finally, we emphasize that node scheduling is non-preemptive: once a node
starts to consume a vector of inputs, it cannot yield to the scheduler until
those inputs have been completely processed and any outputs from them emit-
ted downstream. This lack of preemption is a limitation of our target platform
— CUDA does not support preemptive scheduling of different GPU kernels or
of different functions within a single GPU kernel. Consequently, a node can-
not safely consume a vector of inputs unless it has space for the most output
it could possibly generate from these inputs in its downstream queue; other-
wise, it might either overrun that queue or deadlock the application because
it cannot finish execution.

3.2 Application Performance and Queue Optimizations

A node n;’s behavior is characterized by its service time s;, average gain g;,
and mazximum gain a;. The service time s; is the average time n; takes to
process a vector containing between 1 and v inputs, which is assumed to be
constant due to the SIMD target architecture. The gain of a node defines how
many data items are output (on average for g;, or in the worst case for a;) for
each item input to n;. The average number of outputs from n; per input to
the first node ng in the pipeline is n;’s average cumulative gain, computed as
Gi = [Th—o 9

Our performance metric of interest for streaming dataflow applications is
throughput. Throughput depends on the node scheduler, which should sched-
ule nodes so as to ensure that they have full vectors of input ready to
consume whenever possible. Moreover, because switching execution between
nodes incurs runtime overhead, scheduling should ideally ensure that a node
can run for as long as possible before an empty input queue or full out-
put queue requires switching to another node. Irregular dataflow forbids

Springer Nature 2021 B TEX template

6 Interruptible Nodes: Reducing Queueing Costs

a priori computation of a static optimal schedule as in regular streaming
dataflow models [14, 15], but MERCATOR uses a scheduling policy, Active-
Full/Inactive-Empty (AFIE) [9], that ensures that nodes run with full input
vectors and limits inter-node switches to within a small constant factor of the
fewest possible even under a clairvoyant schedule which knows in advance how
many outputs will be produced by each input to each node.

Even with AFIE scheduling, application throughput is sensitive to the rel-
ative sizes of inter-node queues. For example, a node with high average gain
benefits from a larger output queue because it can write more outputs before
filling the queue and forcing a return to the scheduler. Given a fixed total bud-
get of queue memory for one pipeline replica and the average cumulative gains
G, of each node, one may formulate the problem of how to allocate the bud-
geted memory among the queues in the pipeline so as to minimize the expected
number of times the application must return to the scheduler. By solving this
problem analytically, we may perform queue space distribution [8] to minimize
scheduling overhead.

Finally, it may be that the overhead of queueing and dequeueing data
between two adjacent pipeline nodes n;, n;1; exceeds the benefit to SIMD
occupancy obtained by having the queue in the first place. In such cases, it
may be better to merge the two nodes into one that performs their combined
computations for each vector of inputs to n;. Merging analysis [8] relies on
knowledge of both the average gain g; and of the service time s; for each node.

4 Impact of Minimum Safe Queue Sizes

The need to enforce minimum safe sizes to accommodate uninterruptible nodes
has consequences for application performance and resource utilization. In this
section, we identify these consequences and illustrate them through two rep-
resentative irregular streaming applications from the domains of branching
search and bioinformatics. A key feature in these applications is a large gap
between a node’s average gain, which is most relevant for performance analy-
sis, and its maximum gain, which determines the minimum queue size needed
for safety.

4.1 Example Applications

In this section and Section 6, we study two irregular streaming applications
whose pipelines exhibit the impacts of minimum safe queue sizes: NQueens
and BLAST.

NQueens.

The NQueens application enumerates all possible ways of placing N queens on
an N xX N chess board such that no queen can attack another. The problem
can be solved using a branching search tree, in which a node at level i of
the tree determines all the feasible ways to place a queen on row i of the
board given fixed placements of queens on rows 1...i — 1. Similar branching

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 7

structures appear in branch-and-bound combinatorial optimization and other
tree traversal applications.

To make NQueens a streaming application, we create a pipeline of N nodes,
where node n; enumerates feasible ways to place the ¢ + 1st queen. An initially
empty board is passed to the first node, which outputs IV partial boards, each
with a possible placement of a queen on the first row. For each such board, the
second node places a queen in all feasible ways on the second row and passes
the resulting partial boards to the third node, and so on until all complete
feasible boards are enumerated. Node n; can produce up to a; = N —i outputs
per input, though some of these possibilities are infeasible and so are discarded.

Our benchmark computation enumerates all feasible solutions for N = 18.
To ensure adequate parallelism to occupy all GPU blocks, we precompute
feasible placements of the first four queens on the CPU and pass these partial
boards as the input stream to a GPU pipeline of 14 nodes.

We may quantify the irregularity of NQueens as follows. Let v; be the total
gain observed from one full vector of inputs to node n;; our implementation
uses vectors of size 128. The quantity ~; is a random variable, for which we
may compute the average and standard deviation over many input vectors,
and thence its coefficient of variation C(v;). Larger values of this coefficient
indicate greater irregularity from one vector to the next.

We found empirically that C'(v;) ranged from 0.086 for the first node n;
to 0.279 for the last node ni4. In other words, the typical variation in total
gain from one vector to another is 10-30% of the average gain. Some vectors,
and some inputs within a vector, may be expected to exhibit a much larger
range of irregularity; in particular, we found that a vector of 128 inputs almost
always has at least one input that produces the maximum possible gain, even
though the average gain is much less than this maximum. Overall, NQueens
instances exhibit substantial irregularity in their branching behavior.

BLAST.

The Basic Local Alignment Search Tool for nucleotide sequence [1] performs
pattern matching in a large DNA database. A small DNA query sequence is
compared to the database to identify substrings that match it to within a small
edit distance. The application extracts successive substrings of length k = 8
from the database and compares them to a hash table of all k-mers in the query;
when a k-mer matches, the locations of all matching k-mers in the query are
enumerated, and each such match is further verified using a series of increas-
ingly complex filters to retain the small fraction of matches that are biologically
significant. BLAST is representative of a large class of decision filter cascades
that can be implemented as irregular streaming applications; other examples
include Viola-Jones face recognition [6] and Snort packet inspection [4].

The four nodes of the BLAST pipeline check the hash table, enumerate the
positions of matches in the query, and implement successive filters. Of particu-
lar interest to our work is node n1, which is responsible for enumerating k-mer

Springer Nature 2021 B TEX template

8 Interruptible Nodes: Reducing Queueing Costs

matches and can list up to 16 matching query positions for each database posi-
tion. We test BLAST on a query of length 30 Kbases from a bacterial genome
against a database containing two copies of the human genome, equalling 6.4
Gbases.

4.2 Memory Bloat

For a node n; that processes up to v inputs at once and emits at most a; outputs
per input, the minimum safe size for its output queue is a;v + v — 1 slots [9].
Clearly, a;v slots are needed to accommodate the node’s maximum outputs
from one input vector; the remaining v — 1 slots are needed to accommodate
a residue from prior runs of less than one full vector-width of items whose
consumption may have been deferred in hopes of obtaining a full vector later.
In short, the minimum safe queue size scales linearly with a node’s maximum
gain.

In contrast, the ideal queue size for a node is one that minimizes the over-
head incurred by the node scheduler, which is proportional to the frequency
with which the scheduler must be called to switch between nodes. In [8], we
showed that given a fixed total amount of memory devoted to queues, the
fraction of that memory that should be allocated to a node’s output queue
to minimize switching scales roughly as the square root of a node’s average
cumulative gain.

When the minimum safe size for a queue exceeds its ideal size for a given
memory budget, we say that the queue is bloated. The larger the gap between
a queue’s average cumulative gain and its (individual) maximum gain, the
greater the bloat of its output queue.

As an example, Table 1 illustrates the ideal and safe queue sizes for all 14
nodes of the NQueens application when using SIMD vectors of size 128. Nodes
early in the pipeline have large maximum gains and hence large minimum
queue sizes, since the branching search for feasible boards at early stages has
few constraints. In contrast, the average cumulative gain is smallest for nodes
early in the pipeline, growing rapidly with greater tree depth except at the
highly constrained final stages. Moreover, all nodes individually have average
gains less than (and mostly less than half) their maximum gains.

In the table, we consider a total queue memory allocation of 600 MB across
368 pipeline replicas, which was determined to be on the low end of a reasonable
total queue memory allocation based on how much memory NQueens uses for
input and output streams and how much memory was available on our GPU.
The output queues for nodes early in the pipeline have smaller ideal sizes than
their minimum safe sizes and hence are bloated. The queues for nodes 0 and
1 are bloated by more than a factor of ten. The application designer must
therefore either increase its memory allocation to accommodate the required
bloat or take away memory from later nodes’ queues, incurring more scheduling
overhead as a result.

The problem of bloat may be exacerbated by optimizations that attempt
to merge adjacent nodes. In the case of NQueens, analysis of service times and

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 9

Table 1: Gains and implied queue sizes of NQueens application with 128-wide
SIMD vectors and a target allocation of 600 MB for all queues.

Node Max Gain Avg. (Cumulative) Gain Safe Queue Size (Items) Ideal Size (Items)

0 14 8.87 (8.87) 1919 44

1 13 7.46 (66.13) 1791 120
2 12 6.18 (408.62) 1663 298
3 11 5.12 (2094.02) 1535 674
4 10 4.20 (8792.57) 1407 1381
5 9 3.40 (29853.91) 1279 2545
6 8 2.71 (80990.22) 1151 4191
7 7 2.14 (173673.81) 1023 6138
8 6 1.66 (288936.00) 895 7917
9 5 1.27 (366991.64) 767 8922
10 4 0.94 (344898 36) 639 8649
11 3 0.66 (227664.25) 511 7027
12 2 0.41 (94298.90) 383 4523
13 1 0.19 (18367.82) 255 3992

SIMD occupancy according to [8] suggests that merging nodes 0 and 1 and
eliminating the queues between them could be beneficial for throughput. How-
ever, merging two nodes with maximum gains a and o’ results in a combined
node with maximum gain a-a’. For this example, the minimum safe size for the
merger of nodes 0 and 1 is 14-13-128 + 127 = 23423 entries — nearly 200 times
the ideal queue size of 120. Adding this space to the ideal allocation shown
would increase the application’s overall queue memory usage by roughly 40%.

In short, when an application’s nodes have a large maximum gain but a
small average cumulative gain, the resulting constraint on queue sizes can lead
to substantial bloat that increases memory requirements and forces deviation
from the throughput-ideal pattern of queue sizing.

4.3 Pessimistic Scheduling Behavior

Even when bloat is not a substantial concern, the disparity between a node’s
average and maximum gain can incur additional costs to execution. To illus-
trate the issue, consider the queue allocations for the BLAST application
shown in Table 2. The total memory allocation is much smaller than for
NQueens (only 32 KB per pipeline, for 368 pipelines) because of the need to
reserve as much GPU memory as possible for BLAST’s sequence database.
Given the application’s overall memory budget and SIMD width, the mini-
mum queue sizes do not incur substantial bloat except at the last node; overall,
bloat accounts for only a small fraction of the application’s overall queue space
usage (either ideal or minimum safe).

However, we observe that node ni, the enumeration node, exhibits a large
disparity between its maximum gain (16) and its individual average gain
(roughly 2). This node cannot consume a vector of input unless it has at least
16 - 128 = 2048 slots free in its output queue; otherwise, the vector’s output
might overrun the queue in the worst case. However, the node’s actual gain
averages 246 outputs from one input vector. Hence, after consuming one input

Springer Nature 2021 B TEX template

10 Interruptible Nodes: Reducing Queueing Costs

Table 2: Gains and implied queue sizes of BLAST application with 128-wide
SIMD vectors and a target allocation of 11.5 MB for all queues.

Node Max Gain Avg. (Cumulative) Gain Safe Queue Size (Items) Ideal Size (Items)

0 1 0.38 (0.38) 255 1552
1 16 1.92 (0.73) 2175 2151
2 1 0.03 (0.02) 255 392
3 1 0.000009 (0.0000002) 255 1

vector, the node typically must yield to the scheduler and cannot be run again
until its output queue is emptied. Yet the node’s queue is large enough to hold
more than 8 input vectors’ worth of “typical” output!

Hence, even disregarding bloat, a node whose maximum gain greatly
exceeds its average gain typically leaves most of its output queue unused. If that
space could safely be used without fear of overrun, the node would encounter
a full output queue (and hence would need to return the scheduler) much less
often.

Both bloat and pessimistic scheduling behavior are driven by nodes with
maximum gains that far exceed their average individual or cumulative gains.
This disparity is traceable to a basic limitation of our model: because nodes
must process their inputs without interruption, they need enough space to
write the maximum possible amount of output each time they run. In the next
section, we describe a method to remove this limitation.

5 Interruptible Nodes

To overcome performance and resource issues caused by large minimum queue
sizes, we extend the MERCATOR framework with support for interruptible
nodes. We first describe the basic idea of interruptible nodes and why they
address the problems identified in the previous section, then describe how we
implement them given the limitations of our target platform.

5.1 Semantics of Interruptible Nodes

The key observation underlying interruptible nodes is that, while a node may
produce > 1 output per item in its input vector, it cannot actually enqueue
more than v items (the width of one SIMD vector) at a time. More specifically,
a node in a MERCATOR application emits items to its downstream queue by
calling a function push(), which takes a vector of items and a per-SIMD-lane
flag indicating whether each item is valid (and so should be emitted). Because
push () cannot emit more than v items at once, a node that may emit multiple
outputs from a single input must call push() multiple times in one run.

As an example, Figure 2 illustrates CUDA code for a MERCATOR appli-
cation node MyNode. Each SIMD lane of MyNode takes an integer input = and
produces up to M outputs. The ith potential output for a SIMD lane is com-
puted from the input by a function £ (), and the result is pushed downstream

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 11

__device__ void
MyNode:: run(int x) {
i = 0;
while (1 <M) {
int v = f(x, i);
push (v, v > 0);
++i
}
}

Fig. 2: A MERCATOR node function that iterates over its input to produce
up to M outputs per input item. Although the code appears sequential, it runs
concurrently on an entire SIMD vector of inputs, each of which maps to the
variable x in a different CUDA thread.

iff it is a positive value. This node’s maximum gain is M, but its average gain
depends on the inputs and the properties of the function f ().

A single call to push () is safe so long as the downstream queue has at least
v slots available to receive outputs. This is true no matter how large the node’s
maximum gain is. Hence, in a node that may call push () several times, we wish
to make each such call a yield point — if the push would fail due to insufficient
queue space, the node should be suspended, and control should return to the
scheduler. Once sufficient space is available, the node may resume execution
from the point of suspension.

Making a node interruptible addresses the performance and resource con-
cerns raised in the previous section. Critically, it is no longer necessary to
bloat a node’s output queue to accommodate its maximum gain a;, because
the node can be suspended if it would otherwise overrun the queue. The only
size constraint on the output queue is that it hold at least 2v — 1 entries —
the minimum needed by the AFTE scheduler for safety given pushes of size up
to v items. Moreover, if (as in our BLAST example) a node’s output queue
size significantly exceeds its vector width times its average gain, the node will
likely be able to consume multiple vectors of input without filling the queue
and returning to the scheduler. Should the node exhaust its queue space while
processing a vector, it can now be suspended and resumed later.

5.2 Implementation Challenges for Interruptibility

A MERCATOR application is specified using a high-level pipeline description
that produces a CUDA skeleton, with stub functions for each node that are
filled in by the application developer. These functions are compiled together
with MERCATOR’s node scheduler and other runtime support code to form
a single GPU kernel that consumes a stream of inputs stored in GPU global
memory. Adding interruptible node semantics to this model is challenging due
to the limitations of CUDA and so requires cooperation from the application
developer.

Springer Nature 2021 B TEX template

12 Interruptible Nodes: Reducing Queueing Costs

Ideally, CUDA device code would support a facility for saving execution
state in a way that can be resumed later, analogous to setjmp/longjmp in C
or continuations in functional languages. In the absence of such a facility, we
chose to provide a minimal set of extensions to let an application recognize
when node suspension is required and communicate a decision to suspend to
the MERCATOR runtime. The application developer then implements state
saving and restoring as part of the node’s code.

We extended MERCATOR’s runtime in two ways. First, the push() func-
tion now returns a boolean value to indicate if the next call to push() might
fail due to insufficient (i.e., < v items) downstream queue space. Second, a
node now returns a boolean value to the MERCATOR, runtime to indicate
whether it finished processing its input vector (and so can immediately be run
again with another vector if one is available) or had to suspend in the middle of
processing a vector. In the latter case, when a node resumes after interruption,
the runtime will invoke it with the same input vector that it was processing
when it suspended execution. MERCATOR guarantees that a suspended node
will not be called again until it can successfully complete at least one push
operation of up to v items and so make progress.

The application developer’s code for a node is responsible for detecting that
the next call to push() may fail, saving its state in order to suspend itself,
and later restoring this state and resuming execution when it is called after a
suspension. This code may take advantage of MERCATOR’s per-node state
facility, which lets the developer declare state variables that can be initialized
at application load time and then read and written from within a node. Figure 3
illustrates a modification of the node in Figure 2 to support suspension and
resumption.

Even this simple example illustrates the challenges of user-directed suspen-
sion and resumption. The state variable is shared by all CUDA threads, so
writes to it must be protected by block-wide synchronization calls to ensure
that all threads see a consistent value. Real applications may need to store
multiple pieces of state in order to resume execution. The more complex the
control structure of the node (e.g., a push() inside nested loops), the more
challenging it is to transform the code to behave correctly in the presence of
suspension and resumption. Future work should investigate whether a CUDA
language compiler can be extended to perform the transformations needed for
node interruptibility or to implement an efficient setjmp-like facility.

Finally, we note that the code transformations needed to support inter-
ruptibility themselves introduce overhead, in the form of additional state reads
and writes and additional synchronization. The cost of this overhead must be
weighed against the savings from fewer invocations of the node scheduler when
evaluating the performance impact of interruptible nodes.

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 13

__device__ void
MyNode:: init () {
if (threadldx.x = 0)
getState()—>1 = 0;
__syncthreads ();

}

__device__ bool
MyNode:: run(int x) {
int i = getState()—>1;
bool canContinue = true;
while (i < M & & canContinue) {
int v = f(x, i);
canContinue = push(v, v > 0);
++i;
}

__syncthreads ();
if (threadldx.x = 0)
getState()—>i = (i =M 7?7 0 : i);
__syncthreads ();
return (i = M);

}

Fig. 3: Modification of a node to support suspension and resumption. The
current iteration ¢, which is the only state variable that must be stored on
suspension, is initialized to 0 at application start and is then read from stored
state each time the node is run. When a push indicates that the downstream
queue is full, the loop is interrupted and its current state stored. If fewer
than M iterations have completed, the node returns false to the MERCATOR
runtime to indicate that it should be suspended.

6 Empirical Evaluation

To evaluate the quantitative impacts of interruptible nodes on application
performance and storage in MERCATOR, we implemented interruptible node
support as described in the previous section, then modified the code of our
example applications (BLAST and NQueens) to support saving and restoring
of node state. We then investigated the behavior of these applications on an
NVIDIA RTX 2080 GPU using CUDA 11.2. Applications were run using inputs
as described in Section 4.1 with a SIMD vector width of 128 and used 368
pipeline replicas (the maximum number of CUDA blocks permitted on our
GPU given the applications’ register usage) to fully occupy all processors of
the GPU. All reported running times represent the average over 50 trials.

Springer Nature 2021 B TEX template

14 Interruptible Nodes: Reducing Queueing Costs

6.1 Reduction of Scheduling Overhead

We first compared the NQueens application without interruptible node support
(“Nolnterrupt”) to a version in which all 14 nodes of the pipeline were made
interruptible (“AllNodelnterrupt”). We did this comparison for a range of
target allocations for total queue memory, from 600 to 1400 MB summed
over all queues in all replicas. For the Nolnterrupt implementation, any queue
bloat required for safety was allocated over and above this target value. For
the AllNodelnterrupt implementation, we allocated the same total amount of
memory as for the corresponding Nolnterrupt version but redistributed the
excess previously used for bloat across all the application’s queues so as to
minimize switching overhead, according to the analysis of [§].

Figure 4 shows that the net impact of interruptibility on performance was
negative — the additional cost and complexity of saving and restoring node state
far outweighed any savings from overhead reduction. This result was consistent
over a range of possible targets for total memory allocated to queues.

B Nolnterrupt Bl AllNodelnterrupt
104 E= 4Nodelnterrupt

NG g
~ =N

Overall Execution Time (ms)
[N}
o

C © & & © L ©F & ©
@Q@ *\QQ&\ %QQ@X %Q@\ @Q@ x\°®& @QQ& @QQ@ X@Q@

Target Queue Space for all Pipelines

Fig. 4: Total execution time for NQueens for different target allocations for
total queue memory. Measured times are the average of 50 trials and have a
95% confidence interval of +150 ms.

Recall from Table 1 that only the first few nodes of the NQueens pipeline
exhibited output queue bloat. To reduce the cost of interruptibility, we modi-
fied the AllNodelnterrupt implementation so that only the first four nodes of
the pipeline were interruptible; the remaining nodes were left uninterruptible.

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 15

This modified implementation (“4Nodelnterrupt”) exhibited a statistically sig-
nificant performance improvement over the uninterruptible version for target
allocations up to 1100 MB.

As shown in Figure 5, redistribution of space previously needed for bloat
in the first four nodes of NQueens had a salutary effect on scheduler overhead.
Nodes near the middle of the the pipeline, which have the largest average
cumulative gain (i.e., process the most data) benefit the most from larger out-
put queues through reduction in scheduler calls, which we believe to be the
primary source of performance improvement. This benefit diminishes as the
total memory allocated to queues grows, since bloat (and hence the memory
redistributed to other queues) is the excess of a queue’s minimum safe size,
which is fixed, over its optimal target size, which grows with the overall mem-
ory allocation. Moreover, larger queues reduce the absolute number of times
the scheduler is called, which further reduces the benefit of the redistribu-
tion optimization. Hence, we see that the difference in running time between
Nolnterrupt and 4Nodelnterrupt decreases with increasing target allocation.

106 mm Nolnterrupt B 4Nodelnterrupt

Number of Scheduler Calls

Q\(L%B&?}"O(\%Q\S\/\\}\‘bx&’
Node Index
Fig. 5: Number of scheduler calls from each node for NQueens given 600MB
total queue space for all pipelines.

We then investigated whether the same strategy of targeted interruptibility
was effective for the BLAST application. Recall from Table 2 that BLAST was
not significantly bloated even at a relatively small target allocation of queue
space; however, we identified node 1, which has a max gain of 16 but an average
gain of only 2, as having a queue that was significantly underutilized. We
therefore made only this node interruptible and compared the performance of

Springer Nature 2021 B TEX template

16 Interruptible Nodes: Reducing Queueing Costs

the modified application (“Interrupt”) to that of the original, uninterruptible
version (“Nolnterrupt”).

Figure 6 shows that at the smallest target allocation (11.5 MB across all
queues), targeted interruptibility had a large beneficial effect on running time.
As Figure 7 shows, making node 1 interruptible greatly reduced the number
of times it was forced to yield to the scheduler, as would be expected given
that the node can now safely consume multiple vectors of input before filling
its output queue. Allowing this queue to fill also reduced the frequency with
which the following node, node 2, had to yield to the scheduler due to an
empty input queue.

B Nolnterrupt B Interrupt

800 |
g
§ 600 1
=
g
E 400 |
2
=
E 200 |
=
o
S N NSNS AN
\\/b\:\fﬁa %‘5%%(0 ‘bb:’-)b&ffa bfo%\:fa %(\?)65‘}% @Q)(\b;\% %Q?a%ﬁc)ja 2

Target Queue Space for all Pipelines

Fig. 6: Total execution time for BLAST for different target allocations of
queue memory. Measured times are the average of 50 trials and have a 95%
confidence interval of £50 ms.

Once again, the benefits of interruptibility were highest at small target
allocations, as larger allocations (e.g., 92 MB, as shown in the figure) are
naturally large enough to permit node 1 to write multiple input vectors’ worth
of worst-case output to its output queue before yielding. Overall, we observed
no statistically significant difference in performance in the interruptible vs.
uninterruptible implementations for target allocations larger than 11.5 MB.

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 17

B 11.5MBNolnterrupt @ 11.5MBlInterrupt
.106 = 92MBNolnterrupt I 92MBlInterrupt

Number of Scheduler Calls

Q N A % N .
Node Index

Fig. 7: Number of scheduler calls from each node for BLAST at two different
target queue space allocations.

6.2 Combining Interruptibility with Node Merging

As discussed in Section 3, node merging to eliminate queue overhead is a
potentially useful pipeline transformation. However, for nodes with large max-
imum gains, merging can result in excessive queue bloat for the merged node’s
output queue — bloat that can be ameliorated by making the merged node
interruptible.

We investigated the impact of merging nodes 0 and 1 of the NQueens
application, which our analysis in [8] suggested was potentially beneficial to
performance. Without interruptibility, merging these two nodes increased the
application’s actual queue memory usage by 16-30% beyond the target, as
shown in Figure 8. Making the merged node interruptible eliminated this excess
memory usage. The resulting implementation exhibited running time similar
to that of the unmerged version.

7 Conclusion and Future Work

Irregular streaming dataflow applications have great potential for wide-SIMD
parallelization, but this potential can be realized only by inserting queues in
the application pipeline. The “right” sizes for these queues are determined by
potentially conflicting design considerations: performance, which favors certain
relative queue sizes to reduce scheduling overhead, and safety, which imposes
often severe minimum queue size requirements when a node can produce many
outputs per input in the worst case. We have shown that the pressure of safety

Springer Nature 2021 B TEX template

18 Interruptible Nodes: Reducing Queueing Costs

m Nolnterrupt B8 (01)Nolnterrupt
B (01)Interrupt

1,600 |
1,400 |
1,200 |
1,000 |

800 |

600 |
P © P L &
@@ «@@\ %Q@\ QQ@\ X@Qﬂ\ X\Q@ @Q@ C,Q@\ \@@

Target Queue Space for all Pipelines

Total Memory Used After Bloat (MB)

Fig. 8: Total actual memory used for each target allocation in NQueens before
and after merging nodes 0 and 1.

on queue size can be ameliorated by selectively making nodes interruptible,
and that doing so can be a net positive for throughput and/or queue memory
usage.

Interruptibilty works best when targeted to nodes with large maximum
gains but much smaller individual or cumulative average gains. The space
saved from such node’s output queues can be removed from the application,
decreasing its memory usage, or redistributed to other nodes in the pipeline,
potentially increasing throughput. Even when queue sizes do not change much
after interruptibility, a node whose average gain is far below its maximum gain
can benefit from reduced scheduler overhead when it is made interruptible.
These benefits are most readily seen when the overall target allocation of queue
space to the application is smaller, since changing queue sizes and allowing
greater queue occupancy have the largest impact when the total available
queue space is small.

In the future, we hope to obtain more accurate measurements of the over-
head of interruptibility, in particular the cost of saving and restoring state.
Timing these operations, which take place inside a function called within the
CUDA kernel, is challenging, particularly because they may involve opera-
tions by multiple GPU threads that run asynchronously. We also plan to
better model potential increases in node switching overhead when the bloat
is removed from a node’s output queue. Accounting for these effects would
allow us to better predict whether making a node interruptible is likely to

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 19

be beneficial to throughput overall and to direct the effort of optimization
accordingly.

Another avenue for investigation is whether the burden of interruptibility
on the application developer — in particular, the need to extensively rewrite
code to support interruptions — can be reduced. Ideally, the CUDA runtime
would provide support to implement suspension and resumption of nodes with
appropriate saving of state in between. Because of GPUs’ very large register
files, naively saving all register state for a block when suspending might have
a prohibitive cost in time and memory; hence, it may be preferable to leverage
compiler analysis or user-provided variable tagging to identify and save only
live data at the point of suspension. For example, [16] uses static metaprogram-
ming to seamlessly implement asynchronous programming calls. Suspension
and resumption of code is directly supported by the code transformations
done before compilation. Alternatively, GPU support for hardware preemption
would greatly aid interruptibility and might change the preferred realization
of streaming applications on the GPU entirely. For now, the impacts of hard-
ware preemption for irregular streaming could be investigated on multicore
CPUs, which have robust preemptive multithreading as well as increasingly
large SIMD vector widths.

Acknowledgments. This work was supported by National Science Founda-
tion award CNS-1763503.

Statements and Declarations

The authors declare that they have no conflict of interest.

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.-W., Lipman, D.J.: Basic
local alignment search tool. Journal of Molecular Biology 215(3), 403—410
(1990)

[2] Tyson, E., Buckley, J., Franklin, M., Chamberlain, R.: Acceleration of
atmospheric Cherenkov telescope signal processing to real-time speed
with the Auto-Pipe design system. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 595, 474-479 (2008)

[3] Cabrera, A.M., Faber, C.J., Cepeda, K., Derber, R., Epstein, C., Zheng,
J., Cytron, R.K., Chamberlain, R.D.: DIBS: A data integration bench-
mark suite. In: Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering. ICPE 18, pp. 25-28. Association for
Computing Machinery, New York, NY, USA (2018)

20

[4]

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs

Roesch, M.: Snort - lightweight intrusion detection for networks. In: Pro-
ceedings of the 13th USENIX Conference on System Administration.
LISA ’99, pp. 229-238. USENIX Association, USA (1999)

Kolesar, P.J.: A branch and bound algorithm for the knapsack problem.
Management science 13(9), 723-735 (1967)

Viola, P., Jones, M.: Robust real-time object detection. In: International
Journal of Computer Vision (2001)

Cole, S.V., Buhler, J.: MERCATOR: A GPGPU framework for irreg-
ular streaming applications. In: 2017 International Conference on High
Performance Computing Simulation (HPCS), pp. 727-736 (2017)

Timcheck, S., Buhler, J.: Reducing queuing impact in streaming applica-
tions with irregular dataflow. Parallel Computing 109, 102863 (2022)

Plano, T., Buhler, J.: Scheduling irregular dataflow pipelines on SIMD
architectures. In: Proceedings of the 2020 Sixth Workshop on Pro-
gramming Models for SIMD/Vector Processing. WPMVP’20, pp. 1-9.
Association for Computing Machinery, New York, NY, USA (2020)

Kim, H., Patel, P., Wang, S., Rajkumar, R.R.: A server-based approach for
predictable GPU access control. In: 2017 IEEE 23rd International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp. 1-10 (2017). IEEE

Kato, S., Lakshmanan, K., Rajkumar, R., Ishikawa, Y., et al.: Time-
Graph: GPU scheduling for real-time multi-tasking environments. In: 2011
USENIX Annual Technical Conference (USENIX ATC 11) (2011)

Park, J.J.K., Park, Y., Mahlke, S.: Chimera: Collaborative preemption for
multitasking on a shared GPU. ACM SIGARCH Computer Architecture
News 43(1), 593-606 (2015)

Wu, B., Liu, X., Zhou, X., Jiang, C.: FLEP: Enabling flexible and efficient
preemption on GPUs. ACM SIGPLAN Notices 52(4), 483-496 (2017)

Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the
IEEE 75, 1235-1245 (1987)

Thies, W., Karczmarek, M., Amarasinghe, S.: StreamlIt: A language for
streaming applications. In: Horspool, R.N. (ed.) Compiler Construction,
pp. 179-196. Springer, Berlin, Heidelberg (2002)

Prokopec, A., Liu, F.: Theory and practice of coroutines with snap-
shots. In: 32nd European Conference on Object-Oriented Programming

Springer Nature 2021 B TEX template

Interruptible Nodes: Reducing Queueing Costs 21

(ECOOP 2018) (2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik

	Introduction
	Related Work
	Application Model
	Application Mapping
	Application Performance and Queue Optimizations

	Impact of Minimum Safe Queue Sizes
	Example Applications
	Memory Bloat
	Pessimistic Scheduling Behavior

	Interruptible Nodes
	Semantics of Interruptible Nodes
	Implementation Challenges for Interruptibility

	Empirical Evaluation
	Reduction of Scheduling Overhead
	Combining Interruptibility with Node Merging

	Conclusion and Future Work
	Acknowledgments

