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Abstract 

Computational finance relies heavily on the use 
of Monte Carlo simulation techniques.  However, 
Monte Carlo simulation is computationally very 
demanding.  We demonstrate the use of architectural-
ly diverse systems to accelerate the performance of 
these simulations, exploiting both graphics 
processing units and field-programmable gate arrays.  
Performance results include a speedup of 74× 
relative to an 8 core multiprocessor system (180× 
relative to a single processor core). 

 

1. Introduction 

Monte Carlo simulation finds frequent applica-
tion in computational finance, most notably for 
options pricing and risk assessment [1].  Generally, 
Monte Carlo simulation is used to solve problems 
that are not well suited for direct solution, e.g., 
integration over very high-dimensional spaces.  
While the Monte Carlo simulation approach is widely 
applicable to many problems, it has the drawback that 
it is computationally very demanding, with a 
relatively slow convergence rate.  As a result, 
acceleration of Monte Carlo simulation has received 
a significant amount of attention. 

Since individual trials of a Monte Carlo simula-
tion are independent of one another, one approach to 
acceleration is via parallel execution of the simula-
tion model on multiple processors.  We use a parallel 
implementation executing on 8 processor cores (four 
dual-core AMD Opterons) as our baseline system for 
performance comparison purposes. 

A complementary approach for accelerating the 
Monte Carlo simulation is the use of architecturally 
diverse computers.  Architecturally diverse comput-
ers integrate more than one type of computing 
resource into the system, such as field-programmable 
gate arrays (FPGAs) and/or graphics processing units 
(GPUs).  The non-traditional computing resources are 
often referred to as co-processors, since they 

frequently cooperate with the traditional processor 
cores (CPUs) in the solution of the complete problem. 

In this paper, we will explore the use of both 
GPUs and FPGAs as co-processors in an architectu-
rally diverse system [2].  The problem addressed is 
the computation of value at risk for a portfolio of 
financial instruments.  To our knowledge, this is the 
first reporting of the use of both GPUs and FPGAs in 
the acceleration of an individual application. 

2. Financial Monte Carlo Simulation 

The application that we focus on is the calcula-
tion of the value at risk (VAR).  The VAR is an 
indicator of the risk associated with a portfolio of 
financial instruments.  It is defined as the maximum 
loss that is not exceeded with a given probability over 
a specified period of time.  The probability is 
specified as a confidence level.  The two confidence 
levels frequently used in practice are 95% and 99%.  
For example, a VAR of $10,000 at 95% confidence 
level indicates that the probability that the losses will 
exceed $10,000 is less than 0.05. 

The VAR is calculated by estimating the value of 
the portfolio at the end of the specified time period.  
Since the underlying models for pricing financial 
instruments are driven by stochastic processes, at the 
end of the time period we obtain a distribution for the 
value of the portfolio.  Given the desired confidence 
level the VAR can be calculated by inverting the 
cumulative distribution function of this distribution.  
We use the standard Black-Scholes model for the 
dynamics of the price of the financial instruments, 
namely stocks [1].  The Black-Scholes model 
assumes that the price of a stock is driven by a 
Brownian motion.  Under this assumption the 
distribution of the stock price at a particular time in 
the future can be specified by knowledge of the 
current stock price, the volatility of the stock, any 
dividends on the stock, and a drift rate.  It is well-
known that under the Black-Scholes model the stock 
price follows a log-normal distribution therefore the 
VAR for a portfolio consisting of a single stock can 
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be computed in closed form (utilizing the Gaussian 
cumulative distribution function).  However, when 
the portfolio consists of multiple stocks that are 
correlated the closed form expression is very difficult 
to obtain.  This problem is exacerbated by consider-
ing instruments for which the payoff is a nonlinear 
function of the price (e.g. options and futures).  For a 
portfolio consisting of K securities, a direct computa-
tion of the VAR would involve calculating a K-
dimensional integral.  Using conventional numerical 
methods the convergence rate in the error of the 
computation is O(n-2/K), where n is the number of 
samples, which can be prohibitively slow when K is 
large.  For Monte Carlo methods the error converges 
as O(n-1/2) regardless of the dimensionality of the 
problem making it an attractive approach for the 
computation of the VAR. 

The Monte Carlo approach to VAR calculation 
involves simulation of the value of the portfolio at the 
end of the time period.  The differences between the 
value of the current portfolio and the simulated future 
portfolios provide estimates of the profit and loss 
(P&L) over the time period.  The VAR then is simply 
the appropriate value of the sorted P&L estimates.  
For example, assuming that the portfolio is simulated 
n times, the VAR for a 95% confidence level is the 
value in the sorted P&L estimates array indexed by 
the greatest integer smaller than or equal to 0.05n.  
To simulate the values of the components of a 
portfolio under the Black-Scholes model we need to 
generate correlated Gaussian random numbers and 
propagate them forward under the model.  The VAR 
can then be calculated as described earlier.  Figure 1 
shows the functional pipeline for this simulation. 

Figure 1. Computation pipeline for financial 
Monte Carlo simulation. 

The pipeline stages are as follows: 

• Stage 1:  Uniform pseudo-random number 
generation – the Mersenne Twister [3] is used to 
generate random numbers that are uniformly 
distributed between 0 and MAXINT (232 – 1). 

• Stage 2:  The uniformly distributed random 
numbers are transformed into a Gaussian (nor-
mal) distribution with μ = 0 and σ2 = 1. 

• Stage 3:  The vector of independent normally 
distributed random numbers is transformed into a 
vector of correlated random numbers.  This is 
accomplished by multiplying the vector by a 
lower triangular matrix.  This lower triangular 

matrix is obtained by the Cholesky factorization 
of the specified correlation matrix.   

• Stage 4:  The correlated Gaussian random 
numbers are used to generate random walks ac-
cording to the Black-Scholes model.  The values 
of the portfolio and the P&L values are also cal-
culated in this stage. 

• Stage 5:  The P&L values are aggregated and 
sorted to obtain the VAR. 

3. Accelerating the Simulation 

In the previous section, the financial Monte Car-
lo simulation application is described as a functional 
pipeline.  Here, we describe a collection of approach-
es to accelerate the performance of the pipeline 
relative to a serial implementation on a single 
processor.  First, individual pipeline stages can be 
executed concurrently on different computational 
resources.  For example, if stage 1 is executed on an 
FPGA, stages 2 to 4 on a GPU, and stage 5 on a CPU, 
the throughput can be greater than if all 5 stages are 
executed on the CPU. 

With the exception of stage 5, each of the pipe-
line stages can be executed in parallel by straightfor-
ward replication.  As an example, consider Figure 2, 
which illustrates parallel copies of stages 2 through 4.  
This can be implemented on the GPU through its 
standard threading mechanisms.  Alternatively, 
multiple copies of stages 1 to 4 can be executed both 
on the GPU and the CPU. 

Figure 2.  Monte Carlo simulation with 
parallel instances of stages 2 through 4. 

Finally, parallelism can be exploited within the 
internals of a pipeline stage.  Section 4.2 below 
describes FPGA implementations of stages 1 and 2 
that exploit this type of parallelism.  In general, the 
form of parallelization that is appropriate depends 
upon the computational platform that will be 
executing the stage.  In what follows, we will 
describe and measure the performance implications 
of several such decisions. 



 
 

4. Design Description 

For the performance results presented below, we 
deployed each of the stages on a number of different 
computing platforms.  We will describe the resulting 
set of systems in a bottom up fashion, first describing 
the individual stage designs followed by the integra-
tion into a complete system. 

4.1. Stages 1 to 4 Deployed on a GPU 

NVIDIA’s compute unified device architecture 
(CUDA) abstracts out the minute details of the 
GPU’s architecture and allows users to define kernels 
that execute on parallel threads [4].  The computation 
is divided into a grid of thread blocks where the grid 
and blocks can have up to three dimensions.  The 
number of threads that can be launched simultaneous-
ly is limited by the architecture of the GPU.  All the 
threads have access to a global memory on the GPU.  
In addition, the threads within a block are assigned a 
shared memory, and each thread is also assigned a 
local memory.  The stages of the Monte Carlo 
simulation are implemented in this framework and, 
wherever necessary, are molded to fully exploit the 
available resources. 

Stage 1, the generation of uniformly distributed 
random numbers, is implemented using the Mersenne 
Twister (MT).  The iterative nature of the MT 
algorithm limits its parallelizability.  The simplest 
alternative is to parallelize by replication: implement 
multiple instantiations of the same MT executing in 
parallel.  In this case care must be taken to seed the 
MTs appropriately to prevent generating correlated 
random sequences.  In contrast, Matsumoto and 
Nishimura proposed a scheme [ 5 ] that creates 
independent MTs for each parallel instantiation 
according to user-specified parameters.  Primary 
among these parameters is an identifier that is unique 
to each parallel process (such as an identifier of the 
thread on the GPU) that is encoded in the characteris-
tic polynomial of the MT.  This ensures that the 
pseudorandom sequences generated by the MTs will 
be (fairly) uncorrelated.  

NVIDIA’s CUDA package provides an imple-
mentation of parallel MTs based on Matsumoto and 
Nishimura’s dynamic creation algorithm.  We used 
this implementation for generating 32-bit uniformly 
distributed random numbers.  The state of a MT is 
described by a length N vector of words.  The k-th 
word in the state vector is updated by using the k, k+1, 
and k+M elements of the state vector and a twist 
matrix.  The twist matrix is what allows the MT to 
achieve its equidistribution property in high dimen-
sions.  The uniform random numbers are generated 

by a series of bit-shift and bit-masking operations on 
the state vector.  It turns out that under these 
conditions the period of the random number genera-
tor is a Mersenne prime specified by the parameters 
of the MT.  The most commonly employed example 
is MT19937 which uses a length 624 vector of 32-bit 
words to generate uniform random numbers between 
0 and MAXINT with a period of 219937 – 1.  Further 
details of the MT can be found in [3]. 

For the GPU implementation we choose MTs 
with smaller state vectors (N = 19) to reduce the 
computational load per thread.  For a portfolio of K 
instruments we use K parallel MTs, as long as K is 
not too large.  All the parameters for the K MTs are 
identical except the twist matrix and the bitmasks.  
The MTs still generate 32-bit words.  The period of 
the MTs so obtained is 2607 - 1.  The uniform random 
numbers generated by the parallel MTs are trans-
formed to the unit interval and stored in the global 
memory.  Also, each MT generates blocks of B 
random numbers where B is chosen to maintain a 
balance between computation time of the down-
stream stages and the memory required to store the 
random numbers.  

The transformation of uniform random numbers 
to numbers with the standard Gaussian distribution is 
implemented using the inverse cumulative distribu-
tion function (CDF) method: given a uniform random 
number u in the unit interval and a CDF F(x), the 
numbers F-1(u) are distributed according to F(x).  
Since the inverse CDF for the Gaussian distribution 
has no known analytical form, approximations to the 
inverse CDF are used in practice.  We used Acklam’s 
approximation to the inverse CDF of the standard 
Gaussian [6].  This approximation uses a ratio of 
polynomials to approximate the lower and upper tails 
of the Gaussian CDF and another ratio of polyno-
mials to approximate the region in between.  
Generally, inverse CDF methods are not as fast as 
acceptance/rejection methods: however, they allow 
us to balance the computational pipeline.  We launch 
the maximum allowable threads on the GPU with 
each thread transforming one uniform random 
number to a Gaussian random number.  Recall that 
stage 1 outputs K·B uniformly distributed random 
numbers to stage 2. 

As mentioned earlier, transforming a vector (or 
in this case B vectors) of uncorrelated Gaussian 
random numbers into correlated ones involves 
multiplication by a lower triangular matrix.  Given 
that we know the correlation matrix, this lower 
triangular matrix can be computed offline.  In the 
implementation of this multiplication we did not 
exploit the lower triangular structure of the matrix.  
We used the BLAS (Basic Linear-Algebra Subrou-



 
 

tines) implementation in CUDA to implement this 
matrix-matrix multiplication.  For our implementa-
tion the correlation matrix is a K×K matrix and the 
Gaussian random numbers are arranged in a matrix 
with K rows and B columns. 

Stage 4 involves generation of the random walks 
using the Black-Scholes model.  This computation is 
as follows: 

( ) ;)2/(exp)0()( 2 zTTrSTS σσ +−=   (1) 

where S(t) is the price of the stock at time t; T is the 
time period over which we are calculating the VAR; r 
is term incorporating the risk-free interest rate and 
any dividends on the stock; σ is the volatility of the 
stock; and z is a correlated Gaussian random number 
generated by stages 1 through 3.  The risk-free 
interest rate is the rate of return on a riskless asset 
(such as a government issued bond).  This computa-
tion is implemented on the maximum possible 
independent threads on the GPU each thread using 
the result of one of the threads from stage 3.  This 
computation gives K·B prices that are then summed 
up to obtain B portfolio values followed by the P&L 
values.  

Stage 4 outputs the B P&L values to stage 5 and 
this process is repeated until the desired number n of 
simulations are completed.   

4.2. Stages 1 and 2 Deployed on an FPGA 

When deploying a computational task onto an 
FPGA, the application developer’s job is not simply 
to code an algorithm, but he/she is required to design 
hardware.  Here, we describe the hardware design for 
the Mersenne Twister pseudo-random number 
generator used to implement stage 1 of the Monte 
Carlo simulation application.  It is based in signifi-
cant part on the hardware framework presented by 
Dalal and Stefan [ 7 ].  This is followed by the 
description of the hardware design for the ziggurat 

algorithm [8] used to implement stage 2, based on the 
framework presented by Zhang et al. [9]. 

As described above, there are several variants of 
the Mersenne Twister (MT).  The variant we 
implemented on the FPGA was the MT19937, which 
requires 624 words of internal state and has a period 
of 219937 – 1.  In our hardware design, the MT is 
parallelized by grouping the 624 words into N-word 
vectors which can be accessed in parallel across 
multiple memory banks.  The design was simplified 
by restricting the value of N to a factor of 624 so that 
there are an integer number of N-word vectors.  The 
N-word vectors are shown in Figure 3. 

The FPGA has dual-ported block RAMs that can 
do simultaneous read and writes.  As mentioned in 
the previous section, the algorithm for the Mersenne 
Twister requires the k, k+1, and k+M elements of the 
state vector where k is the variable used to iterate 
over the state vector and M is a constant offset.  
These elements are used to compute the next state.  
For the near recurrence elements k and k+1, buffering 
can be used so that only one read is required for both 
elements.  Another read will be necessary to get the 
k+M element.  Once the next state has been computed, 
one write will be required to update the state vector.  
These three operations will therefore take two clock 
cycles. 

 
Figure 3.  N-word vectors across multiple 

memory banks. 

Figure 4 shows the architecture of the Mersenne 
Twister.  In this design, reading and writing to block 
RAM is timed using a D flip-flop and the addresses 
supplied are given by the two counters.  The block 

Figure 4. Architecture of Mersenne Twister uniform pseudo-random number generator.



 
 

RAM consists of N-word vectors where N is the 
amount of parallelism in the MT.  The read address 
alternates between the current N-word vector, k', and 
an offset of the vector, k'+M/N.  The write address is 
simply a delayed value of the read address.  The data 
from the block RAM is then loaded into the shift 
registers one at a time.  Once both shift registers have 
been loaded, the next state is computed and written 
back into block RAM.  The resulting next state is also 
used to compute the output set of generated random 
numbers which are serialized in the last step before 
leaving the MT.  The serialization step loads the 
output random numbers into a shift register every two 
clock cycles and writes out half of the random 
numbers at every clock cycle. 

In the design described above, parallelism is 
present in a number of places.  First, the execution of 
the two counters, the memory accesses, the Next 
State Logic block, the Output Logic block, and the 
Serialize block are all concurrent with one another.  
Second, the functions performed by the various logic 
blocks are significantly more complex than that 
supported by individual instructions on a traditional 
processor.  As a result, an individual execution of a 
logic block is often comparable to a sequence of 
processor instructions. 

Stage 2, the transformation of the above generat-
ed, uniformly distributed random numbers into 
Gaussian (normal) distributed random numbers, is 
accomplished in the FPGA through the use of the 
ziggurat algorithm. 

The ziggurat algorithm works by partitioning the 
positive half of the normal PDF into horizontal 
rectangular regions of equal area as illustrated in 
Figure 5.  Most of the area of an individual rectangle 
exists entirely under the normal curve.  The part 
which does not is called the wedge region.  In the 
special case of the bottommost rectangle, it is called 
the tail region since it contains the tail of the normal 
distribution and is not finitely bounded.  To generate 
a random number output, one of the rectangular 
regions is selected uniformly at random, the input 
uniform random number is then scaled by the 
dimensions of the rectangle and tested to determine 
whether or not it falls within the wedge region.  If it 
falls outside the wedge region, it can be immediately 
accepted.  If it is in the wedge region, accept or reject 
decisions are made based on the area of the curve 
defining the boundary of the wedge.  If it is in the tail 
region, then an alternative (curve fitting) calculation 
is performed to generate a random number in the tail 
of the distribution. 

 
Figure 5. Ziggurat partitioning of the 

Gaussian (normal) PDF. 

The architecture of the Gaussian transformation 
is illustrated in Figure 6.  In the first step, a uniform 
random number is consumed at the input and a subset 
of the number is used as the index to a lookup table 
stored in read-only memory (ROM).  The read-only 
memory returns two values:  a scaling factor, xi and a 
constant, ki.  The scaling factor will be used to 
compute the next Gaussian random number x by 
multiplying the uniform random number (from 0 to 
1) by the scaling factor, xi such that 0 ≤ x < xi.  The 
constant will be used to test whether or not the 
uniform random number falls within a wedge or tail 
region.  If it is in one of these regions, then the index, 
i, and value x are written to FIFO2 for further 
processing.  Otherwise, x is written to FIFO1 and is 
accepted immediately as a Gaussian random number. 

 
Figure 6. Architecture of the Gaussian 

transformation. 



 
 

The operation unit consists of basic hardware 
components which are controlled by a finite state 
machine.  The bulk of these computations are Taylor 
series expansions of the necessary functions.  Since 
events that occur within the wedge and tail regions 
are rare, these calculations can take place over many 
clock cycles using simple hardware.  The use of a 
FIFO before the operation unit allows several 
requests to queue up while the operation unit is active.  
This allows a nearly continuous stream of Gaussian 
random numbers to be concurrently produced by the 
main pipeline in Figure 6. 

4.3. Integration into Complete Application 

In this paper, we explore the performance 
achieved with several distinct mappings.  The first is 
a baseline mapping, in which all 5 stages are 
executed on a single CPU.  The uniformly distributed 
random numbers are generated using the MT19937 
algorithm.  Acklam’s approximation to the inverse of 
the Gaussian CDF is used to convert these uniformly 
distributed random numbers into Gaussian distributed 
random numbers.  The BLAS library is used to 
implement the matrix-vector multiplication.  This is 
followed by the random walks and the aggregation 
and sorting steps. 

We also implemented the pipeline on multi-core 
processors, with stages 1 to 4 being replicated 8 times 
(one copy per processor core).  This mapping is 
typical of multiprocessor implementations.  Standard 
shared-memory threading (via pthreads) is used to 
coordinate between the replicated copies of stages 1 
to 4 and the single copy of stage 5.  In this multipro-
cessor implementation the matrix-vector multiplica-
tion is not implemented in BLAS but using a hand-
coded loop (which outperformed the BLAS routines 
on 8 processors). 

The third mapping is a typical use of the GPU as 
an acceleration engine.  Here, stages 1 to 4 are 
mapped to the GPU and stage 5 is mapped to one of 
the processor cores (as described in Section 4.1).  
NVIDIA’s CUDA library is used to manage the data 
flow from the individual copies of stages 1 to 4 into 
the processor’s memory for stage 5.  As mentioned in 
Section 4.1, the GPU outputs the P&L values to the 
processor.  The processor aggregates the values into a 
single array and sorts it to obtain the VAR. 

The fourth mapping attempts to exploit both the 
GPU and the FPGA as accelerators.  Here, stage 1 is 
mapped to the FPGA, stages 2 to 4 are mapped to the 
GPU, and stage 5 is mapped to a processor core.  The 
FPGA implementation of stage 1 was built within the 
Auto-Pipe infrastructure [10], which utilizes Exegy’s 
DMA engine [11].  Large buffers (~8 MB) in the 

processors’ main memory subsystem are used to 
receive the data stream from the FPGA.  These 
buffers are passed to the CUDA library for delivery 
to the GPU.  In effect, data moving from FPGA to 
GPU is buffered temporarily in the main system 
memory. 

The fifth mapping exploits the fact that stages 1 
through 4 can all be executed in parallel, executing 
stages 1 and 2 on both the GPU and the FPGA and 
executing stages 3 and 4 on the CPUs and the GPU. 

The 5 mappings are summarized in Table 1, 
which indicates the computational resource utilized 
in each stage for each mapping. 

Table 1.  Mapping summary. C is the CPU, nC 
is n CPUs, F is the FPGA, and G is the GPU. 
Map Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

1 C C C C C 
2 8C 8C 8C 8C C 
3 G G G G C 
4 F F G G C 
5 F,G F,G 7C,G 7C,G C 

5. Performance Results 

We consider a portfolio of 1024 stocks and no-
minal values for the parameters in the Black-Scholes 
model.  These parameters are uniquely available from 
the data stream provided by an Exegy XTP ticker 
plant.  1024 random walks, one for each stock, are 
needed to obtain a single value of the portfolio at the 
end of the time period.  This then constitutes a “trial” 
for the Monte Carlo simulation.  We simulate the 
portfolio 220 times resulting in 230 random walks. 

We used NVIDIA’s GeForce GTX 260 as the 
GPU, attached via a 16-lane PCIe interconnect.  This 
GPU has double-precision computation capability but 
we used single-precision representation for all our 
experiments.  The GTX 260 has 24 multiprocessors 
with a theoretical maximum of 1024 threads per 
multiprocessor.  The actual number of threads that 
can be launched is limited by the number of registers 
available on the multiprocessors.  To keep the GPU 
busy we simulated 1024 trials simultaneously (B, in 
section 4.1) resulting in 220 random walks.  The 
FPGA is a Virtex-4 LX80 from Xilinx, connected to 
the motherboard via PCI-X.  The processors are all 
2.2 GHz AMD Opterons. 

We report performance in random walks per 
second (walks/s).  Recall that the overall experiment 
contains 230 (≈109) such random walks.  Table 2 
presents the quantitative performance results.  
Relative to mapping 1, the overall speedup is 180×.  
Relative to mapping 2, the overall speedup is 74×. 



 
 

Table 2. Performance results for Monte Carlo 
simulation of VAR. 

Mapping Performance 
1 0.45 Mwalks/s 
2 1.1 Mwalks/s 
3 80 Mwalks/s 
4 60 Mwalks/s 
5 81 Mwalks/s 

 
Clearly, the greatest performance improvement 

comes in the mappings where the GPU is utilized.  
Since the majority of the time in the sequential 
algorithm is spent in stage 3 (a matrix-vector 
multiply), and the GPU excels at that class of 
computation, this result is reasonable to expect. 

The performance of mapping 4 relative to map-
ping 3 is somewhat of a surprise.  When migrating 
stages 1 and 2 off of the GPU and onto the FPGA, we 
would expect the performance to improve.  Instead, 
we observe a performance degradation.  A detailed 
investigation concluded that the performance 
decrease is due to the fact that in our implementation 
the GPU is not performing I/O and computation 
concurrently.  Instead, it is waiting for the random 
numbers to be input from the FPGA prior to initiating 
the stage 3 and 4 computations.  (The bandwidth 
achieved on this link is 1.2 GB/s.)  Since the GPU 
can create the random number stream (which it can 
do at 2.8 GB/s) faster than it can ingest the random 
number stream, mapping 4’s performance suffers as a 
result. 

Overall, the best performance is observed with 
mapping 5.  Here, the FPGA is feeding its random 
number stream into the CPUs and the GPU is 
internally creating its own random number stream.  
Since stage 3 is such a computational bottleneck, 
further gains in performance could be achieved by 
moving stage 3 onto the FPGA, for example using 
the approach described by Thomas and Luk [12]. 

6. Conclusions 

This paper has described the acceleration of an 
important problem in computational finance, the risk 
assessment of a portfolio via Monte Carlo simulation 
techniques.  Two classes of co-processor accelerator 
are employed, a GPU and an FPGA. 

The performance results show a speedup of 74× 
relative to an 8 processor implementation, with the 
bulk of the performance gain due to the GPU.  The 
overall performance can be improved further by 
enabling concurrent computation and I/O on the GPU 
and by exploiting the FPGA to do a larger fraction of 
the overall load. 
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