
Financial Monte Carlo Simulation on Architecturally
Diverse Systems

Naveen Singla
Michael Hall
Berkley Shands

Roger D. Chamberlain

Naveen Singla, Michael Hall, Berkley Shands, and Roger D. Chamberlain,
“Financial Monte Carlo Simulation on Architecturally Diverse Systems,” in
Proc. of Workshop on High Performance Computational Finance,
November 2008 (associated with Supercomputing’08).

Exegy, Inc.

and

Dept. of Computer Science and Engineering
Washington University in St. Louis

Financial Monte Carlo Simulation on Architecturally Diverse Systems

Naveen Singla*, Michael Hall†, Berkley Shands†, and Roger D. Chamberlain*†
*Exegy, Inc., St. Louis, Missouri

†Dept. of Computer Science and Engineering, Washington University in St. Louis
nsingla@exegy.com, {mhall24,berkley,roger}@wustl.edu

Abstract

Computational finance relies heavily on the use
of Monte Carlo simulation techniques. However,
Monte Carlo simulation is computationally very
demanding. We demonstrate the use of architectural-
ly diverse systems to accelerate the performance of
these simulations, exploiting both graphics
processing units and field-programmable gate arrays.
Performance results include a speedup of 74×
relative to an 8 core multiprocessor system (180×
relative to a single processor core).

1. Introduction

Monte Carlo simulation finds frequent applica-
tion in computational finance, most notably for
options pricing and risk assessment [1]. Generally,
Monte Carlo simulation is used to solve problems
that are not well suited for direct solution, e.g.,
integration over very high-dimensional spaces.
While the Monte Carlo simulation approach is widely
applicable to many problems, it has the drawback that
it is computationally very demanding, with a
relatively slow convergence rate. As a result,
acceleration of Monte Carlo simulation has received
a significant amount of attention.

Since individual trials of a Monte Carlo simula-
tion are independent of one another, one approach to
acceleration is via parallel execution of the simula-
tion model on multiple processors. We use a parallel
implementation executing on 8 processor cores (four
dual-core AMD Opterons) as our baseline system for
performance comparison purposes.

A complementary approach for accelerating the
Monte Carlo simulation is the use of architecturally
diverse computers. Architecturally diverse comput-
ers integrate more than one type of computing
resource into the system, such as field-programmable
gate arrays (FPGAs) and/or graphics processing units
(GPUs). The non-traditional computing resources are
often referred to as co-processors, since they

frequently cooperate with the traditional processor
cores (CPUs) in the solution of the complete problem.

In this paper, we will explore the use of both
GPUs and FPGAs as co-processors in an architectu-
rally diverse system [2]. The problem addressed is
the computation of value at risk for a portfolio of
financial instruments. To our knowledge, this is the
first reporting of the use of both GPUs and FPGAs in
the acceleration of an individual application.

2. Financial Monte Carlo Simulation

The application that we focus on is the calcula-
tion of the value at risk (VAR). The VAR is an
indicator of the risk associated with a portfolio of
financial instruments. It is defined as the maximum
loss that is not exceeded with a given probability over
a specified period of time. The probability is
specified as a confidence level. The two confidence
levels frequently used in practice are 95% and 99%.
For example, a VAR of $10,000 at 95% confidence
level indicates that the probability that the losses will
exceed $10,000 is less than 0.05.

The VAR is calculated by estimating the value of
the portfolio at the end of the specified time period.
Since the underlying models for pricing financial
instruments are driven by stochastic processes, at the
end of the time period we obtain a distribution for the
value of the portfolio. Given the desired confidence
level the VAR can be calculated by inverting the
cumulative distribution function of this distribution.
We use the standard Black-Scholes model for the
dynamics of the price of the financial instruments,
namely stocks [1]. The Black-Scholes model
assumes that the price of a stock is driven by a
Brownian motion. Under this assumption the
distribution of the stock price at a particular time in
the future can be specified by knowledge of the
current stock price, the volatility of the stock, any
dividends on the stock, and a drift rate. It is well-
known that under the Black-Scholes model the stock
price follows a log-normal distribution therefore the
VAR for a portfolio consisting of a single stock can

kryu
Text Box
978-1-4244-3311-7/08/$25.00 ©2008 IEEE

be computed in closed form (utilizing the Gaussian
cumulative distribution function). However, when
the portfolio consists of multiple stocks that are
correlated the closed form expression is very difficult
to obtain. This problem is exacerbated by consider-
ing instruments for which the payoff is a nonlinear
function of the price (e.g. options and futures). For a
portfolio consisting of K securities, a direct computa-
tion of the VAR would involve calculating a K-
dimensional integral. Using conventional numerical
methods the convergence rate in the error of the
computation is O(n-2/K), where n is the number of
samples, which can be prohibitively slow when K is
large. For Monte Carlo methods the error converges
as O(n-1/2) regardless of the dimensionality of the
problem making it an attractive approach for the
computation of the VAR.

The Monte Carlo approach to VAR calculation
involves simulation of the value of the portfolio at the
end of the time period. The differences between the
value of the current portfolio and the simulated future
portfolios provide estimates of the profit and loss
(P&L) over the time period. The VAR then is simply
the appropriate value of the sorted P&L estimates.
For example, assuming that the portfolio is simulated
n times, the VAR for a 95% confidence level is the
value in the sorted P&L estimates array indexed by
the greatest integer smaller than or equal to 0.05n.
To simulate the values of the components of a
portfolio under the Black-Scholes model we need to
generate correlated Gaussian random numbers and
propagate them forward under the model. The VAR
can then be calculated as described earlier. Figure 1
shows the functional pipeline for this simulation.

Figure 1. Computation pipeline for financial
Monte Carlo simulation.

The pipeline stages are as follows:

• Stage 1: Uniform pseudo-random number
generation – the Mersenne Twister [3] is used to
generate random numbers that are uniformly
distributed between 0 and MAXINT (232 – 1).

• Stage 2: The uniformly distributed random
numbers are transformed into a Gaussian (nor-
mal) distribution with μ = 0 and σ2 = 1.

• Stage 3: The vector of independent normally
distributed random numbers is transformed into a
vector of correlated random numbers. This is
accomplished by multiplying the vector by a
lower triangular matrix. This lower triangular

matrix is obtained by the Cholesky factorization
of the specified correlation matrix.

• Stage 4: The correlated Gaussian random
numbers are used to generate random walks ac-
cording to the Black-Scholes model. The values
of the portfolio and the P&L values are also cal-
culated in this stage.

• Stage 5: The P&L values are aggregated and
sorted to obtain the VAR.

3. Accelerating the Simulation

In the previous section, the financial Monte Car-
lo simulation application is described as a functional
pipeline. Here, we describe a collection of approach-
es to accelerate the performance of the pipeline
relative to a serial implementation on a single
processor. First, individual pipeline stages can be
executed concurrently on different computational
resources. For example, if stage 1 is executed on an
FPGA, stages 2 to 4 on a GPU, and stage 5 on a CPU,
the throughput can be greater than if all 5 stages are
executed on the CPU.

With the exception of stage 5, each of the pipe-
line stages can be executed in parallel by straightfor-
ward replication. As an example, consider Figure 2,
which illustrates parallel copies of stages 2 through 4.
This can be implemented on the GPU through its
standard threading mechanisms. Alternatively,
multiple copies of stages 1 to 4 can be executed both
on the GPU and the CPU.

Figure 2. Monte Carlo simulation with
parallel instances of stages 2 through 4.

Finally, parallelism can be exploited within the
internals of a pipeline stage. Section 4.2 below
describes FPGA implementations of stages 1 and 2
that exploit this type of parallelism. In general, the
form of parallelization that is appropriate depends
upon the computational platform that will be
executing the stage. In what follows, we will
describe and measure the performance implications
of several such decisions.

4. Design Description

For the performance results presented below, we
deployed each of the stages on a number of different
computing platforms. We will describe the resulting
set of systems in a bottom up fashion, first describing
the individual stage designs followed by the integra-
tion into a complete system.

4.1. Stages 1 to 4 Deployed on a GPU

NVIDIA’s compute unified device architecture
(CUDA) abstracts out the minute details of the
GPU’s architecture and allows users to define kernels
that execute on parallel threads [4]. The computation
is divided into a grid of thread blocks where the grid
and blocks can have up to three dimensions. The
number of threads that can be launched simultaneous-
ly is limited by the architecture of the GPU. All the
threads have access to a global memory on the GPU.
In addition, the threads within a block are assigned a
shared memory, and each thread is also assigned a
local memory. The stages of the Monte Carlo
simulation are implemented in this framework and,
wherever necessary, are molded to fully exploit the
available resources.

Stage 1, the generation of uniformly distributed
random numbers, is implemented using the Mersenne
Twister (MT). The iterative nature of the MT
algorithm limits its parallelizability. The simplest
alternative is to parallelize by replication: implement
multiple instantiations of the same MT executing in
parallel. In this case care must be taken to seed the
MTs appropriately to prevent generating correlated
random sequences. In contrast, Matsumoto and
Nishimura proposed a scheme [5] that creates
independent MTs for each parallel instantiation
according to user-specified parameters. Primary
among these parameters is an identifier that is unique
to each parallel process (such as an identifier of the
thread on the GPU) that is encoded in the characteris-
tic polynomial of the MT. This ensures that the
pseudorandom sequences generated by the MTs will
be (fairly) uncorrelated.

NVIDIA’s CUDA package provides an imple-
mentation of parallel MTs based on Matsumoto and
Nishimura’s dynamic creation algorithm. We used
this implementation for generating 32-bit uniformly
distributed random numbers. The state of a MT is
described by a length N vector of words. The k-th
word in the state vector is updated by using the k, k+1,
and k+M elements of the state vector and a twist
matrix. The twist matrix is what allows the MT to
achieve its equidistribution property in high dimen-
sions. The uniform random numbers are generated

by a series of bit-shift and bit-masking operations on
the state vector. It turns out that under these
conditions the period of the random number genera-
tor is a Mersenne prime specified by the parameters
of the MT. The most commonly employed example
is MT19937 which uses a length 624 vector of 32-bit
words to generate uniform random numbers between
0 and MAXINT with a period of 219937 – 1. Further
details of the MT can be found in [3].

For the GPU implementation we choose MTs
with smaller state vectors (N = 19) to reduce the
computational load per thread. For a portfolio of K
instruments we use K parallel MTs, as long as K is
not too large. All the parameters for the K MTs are
identical except the twist matrix and the bitmasks.
The MTs still generate 32-bit words. The period of
the MTs so obtained is 2607 - 1. The uniform random
numbers generated by the parallel MTs are trans-
formed to the unit interval and stored in the global
memory. Also, each MT generates blocks of B
random numbers where B is chosen to maintain a
balance between computation time of the down-
stream stages and the memory required to store the
random numbers.

The transformation of uniform random numbers
to numbers with the standard Gaussian distribution is
implemented using the inverse cumulative distribu-
tion function (CDF) method: given a uniform random
number u in the unit interval and a CDF F(x), the
numbers F-1(u) are distributed according to F(x).
Since the inverse CDF for the Gaussian distribution
has no known analytical form, approximations to the
inverse CDF are used in practice. We used Acklam’s
approximation to the inverse CDF of the standard
Gaussian [6]. This approximation uses a ratio of
polynomials to approximate the lower and upper tails
of the Gaussian CDF and another ratio of polyno-
mials to approximate the region in between.
Generally, inverse CDF methods are not as fast as
acceptance/rejection methods: however, they allow
us to balance the computational pipeline. We launch
the maximum allowable threads on the GPU with
each thread transforming one uniform random
number to a Gaussian random number. Recall that
stage 1 outputs K·B uniformly distributed random
numbers to stage 2.

As mentioned earlier, transforming a vector (or
in this case B vectors) of uncorrelated Gaussian
random numbers into correlated ones involves
multiplication by a lower triangular matrix. Given
that we know the correlation matrix, this lower
triangular matrix can be computed offline. In the
implementation of this multiplication we did not
exploit the lower triangular structure of the matrix.
We used the BLAS (Basic Linear-Algebra Subrou-

tines) implementation in CUDA to implement this
matrix-matrix multiplication. For our implementa-
tion the correlation matrix is a K×K matrix and the
Gaussian random numbers are arranged in a matrix
with K rows and B columns.

Stage 4 involves generation of the random walks
using the Black-Scholes model. This computation is
as follows:

() ;)2/(exp)0()(2 zTTrSTS σσ +−= (1)

where S(t) is the price of the stock at time t; T is the
time period over which we are calculating the VAR; r
is term incorporating the risk-free interest rate and
any dividends on the stock; σ is the volatility of the
stock; and z is a correlated Gaussian random number
generated by stages 1 through 3. The risk-free
interest rate is the rate of return on a riskless asset
(such as a government issued bond). This computa-
tion is implemented on the maximum possible
independent threads on the GPU each thread using
the result of one of the threads from stage 3. This
computation gives K·B prices that are then summed
up to obtain B portfolio values followed by the P&L
values.

Stage 4 outputs the B P&L values to stage 5 and
this process is repeated until the desired number n of
simulations are completed.

4.2. Stages 1 and 2 Deployed on an FPGA

When deploying a computational task onto an
FPGA, the application developer’s job is not simply
to code an algorithm, but he/she is required to design
hardware. Here, we describe the hardware design for
the Mersenne Twister pseudo-random number
generator used to implement stage 1 of the Monte
Carlo simulation application. It is based in signifi-
cant part on the hardware framework presented by
Dalal and Stefan [7]. This is followed by the
description of the hardware design for the ziggurat

algorithm [8] used to implement stage 2, based on the
framework presented by Zhang et al. [9].

As described above, there are several variants of
the Mersenne Twister (MT). The variant we
implemented on the FPGA was the MT19937, which
requires 624 words of internal state and has a period
of 219937 – 1. In our hardware design, the MT is
parallelized by grouping the 624 words into N-word
vectors which can be accessed in parallel across
multiple memory banks. The design was simplified
by restricting the value of N to a factor of 624 so that
there are an integer number of N-word vectors. The
N-word vectors are shown in Figure 3.

The FPGA has dual-ported block RAMs that can
do simultaneous read and writes. As mentioned in
the previous section, the algorithm for the Mersenne
Twister requires the k, k+1, and k+M elements of the
state vector where k is the variable used to iterate
over the state vector and M is a constant offset.
These elements are used to compute the next state.
For the near recurrence elements k and k+1, buffering
can be used so that only one read is required for both
elements. Another read will be necessary to get the
k+M element. Once the next state has been computed,
one write will be required to update the state vector.
These three operations will therefore take two clock
cycles.

Figure 3. N-word vectors across multiple

memory banks.

Figure 4 shows the architecture of the Mersenne
Twister. In this design, reading and writing to block
RAM is timed using a D flip-flop and the addresses
supplied are given by the two counters. The block

Figure 4. Architecture of Mersenne Twister uniform pseudo-random number generator.

RAM consists of N-word vectors where N is the
amount of parallelism in the MT. The read address
alternates between the current N-word vector, k', and
an offset of the vector, k'+M/N. The write address is
simply a delayed value of the read address. The data
from the block RAM is then loaded into the shift
registers one at a time. Once both shift registers have
been loaded, the next state is computed and written
back into block RAM. The resulting next state is also
used to compute the output set of generated random
numbers which are serialized in the last step before
leaving the MT. The serialization step loads the
output random numbers into a shift register every two
clock cycles and writes out half of the random
numbers at every clock cycle.

In the design described above, parallelism is
present in a number of places. First, the execution of
the two counters, the memory accesses, the Next
State Logic block, the Output Logic block, and the
Serialize block are all concurrent with one another.
Second, the functions performed by the various logic
blocks are significantly more complex than that
supported by individual instructions on a traditional
processor. As a result, an individual execution of a
logic block is often comparable to a sequence of
processor instructions.

Stage 2, the transformation of the above generat-
ed, uniformly distributed random numbers into
Gaussian (normal) distributed random numbers, is
accomplished in the FPGA through the use of the
ziggurat algorithm.

The ziggurat algorithm works by partitioning the
positive half of the normal PDF into horizontal
rectangular regions of equal area as illustrated in
Figure 5. Most of the area of an individual rectangle
exists entirely under the normal curve. The part
which does not is called the wedge region. In the
special case of the bottommost rectangle, it is called
the tail region since it contains the tail of the normal
distribution and is not finitely bounded. To generate
a random number output, one of the rectangular
regions is selected uniformly at random, the input
uniform random number is then scaled by the
dimensions of the rectangle and tested to determine
whether or not it falls within the wedge region. If it
falls outside the wedge region, it can be immediately
accepted. If it is in the wedge region, accept or reject
decisions are made based on the area of the curve
defining the boundary of the wedge. If it is in the tail
region, then an alternative (curve fitting) calculation
is performed to generate a random number in the tail
of the distribution.

Figure 5. Ziggurat partitioning of the

Gaussian (normal) PDF.

The architecture of the Gaussian transformation
is illustrated in Figure 6. In the first step, a uniform
random number is consumed at the input and a subset
of the number is used as the index to a lookup table
stored in read-only memory (ROM). The read-only
memory returns two values: a scaling factor, xi and a
constant, ki. The scaling factor will be used to
compute the next Gaussian random number x by
multiplying the uniform random number (from 0 to
1) by the scaling factor, xi such that 0 ≤ x < xi. The
constant will be used to test whether or not the
uniform random number falls within a wedge or tail
region. If it is in one of these regions, then the index,
i, and value x are written to FIFO2 for further
processing. Otherwise, x is written to FIFO1 and is
accepted immediately as a Gaussian random number.

Figure 6. Architecture of the Gaussian

transformation.

The operation unit consists of basic hardware
components which are controlled by a finite state
machine. The bulk of these computations are Taylor
series expansions of the necessary functions. Since
events that occur within the wedge and tail regions
are rare, these calculations can take place over many
clock cycles using simple hardware. The use of a
FIFO before the operation unit allows several
requests to queue up while the operation unit is active.
This allows a nearly continuous stream of Gaussian
random numbers to be concurrently produced by the
main pipeline in Figure 6.

4.3. Integration into Complete Application

In this paper, we explore the performance
achieved with several distinct mappings. The first is
a baseline mapping, in which all 5 stages are
executed on a single CPU. The uniformly distributed
random numbers are generated using the MT19937
algorithm. Acklam’s approximation to the inverse of
the Gaussian CDF is used to convert these uniformly
distributed random numbers into Gaussian distributed
random numbers. The BLAS library is used to
implement the matrix-vector multiplication. This is
followed by the random walks and the aggregation
and sorting steps.

We also implemented the pipeline on multi-core
processors, with stages 1 to 4 being replicated 8 times
(one copy per processor core). This mapping is
typical of multiprocessor implementations. Standard
shared-memory threading (via pthreads) is used to
coordinate between the replicated copies of stages 1
to 4 and the single copy of stage 5. In this multipro-
cessor implementation the matrix-vector multiplica-
tion is not implemented in BLAS but using a hand-
coded loop (which outperformed the BLAS routines
on 8 processors).

The third mapping is a typical use of the GPU as
an acceleration engine. Here, stages 1 to 4 are
mapped to the GPU and stage 5 is mapped to one of
the processor cores (as described in Section 4.1).
NVIDIA’s CUDA library is used to manage the data
flow from the individual copies of stages 1 to 4 into
the processor’s memory for stage 5. As mentioned in
Section 4.1, the GPU outputs the P&L values to the
processor. The processor aggregates the values into a
single array and sorts it to obtain the VAR.

The fourth mapping attempts to exploit both the
GPU and the FPGA as accelerators. Here, stage 1 is
mapped to the FPGA, stages 2 to 4 are mapped to the
GPU, and stage 5 is mapped to a processor core. The
FPGA implementation of stage 1 was built within the
Auto-Pipe infrastructure [10], which utilizes Exegy’s
DMA engine [11]. Large buffers (~8 MB) in the

processors’ main memory subsystem are used to
receive the data stream from the FPGA. These
buffers are passed to the CUDA library for delivery
to the GPU. In effect, data moving from FPGA to
GPU is buffered temporarily in the main system
memory.

The fifth mapping exploits the fact that stages 1
through 4 can all be executed in parallel, executing
stages 1 and 2 on both the GPU and the FPGA and
executing stages 3 and 4 on the CPUs and the GPU.

The 5 mappings are summarized in Table 1,
which indicates the computational resource utilized
in each stage for each mapping.

Table 1. Mapping summary. C is the CPU, nC
is n CPUs, F is the FPGA, and G is the GPU.
Map Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

1 C C C C C
2 8C 8C 8C 8C C
3 G G G G C
4 F F G G C
5 F,G F,G 7C,G 7C,G C

5. Performance Results

We consider a portfolio of 1024 stocks and no-
minal values for the parameters in the Black-Scholes
model. These parameters are uniquely available from
the data stream provided by an Exegy XTP ticker
plant. 1024 random walks, one for each stock, are
needed to obtain a single value of the portfolio at the
end of the time period. This then constitutes a “trial”
for the Monte Carlo simulation. We simulate the
portfolio 220 times resulting in 230 random walks.

We used NVIDIA’s GeForce GTX 260 as the
GPU, attached via a 16-lane PCIe interconnect. This
GPU has double-precision computation capability but
we used single-precision representation for all our
experiments. The GTX 260 has 24 multiprocessors
with a theoretical maximum of 1024 threads per
multiprocessor. The actual number of threads that
can be launched is limited by the number of registers
available on the multiprocessors. To keep the GPU
busy we simulated 1024 trials simultaneously (B, in
section 4.1) resulting in 220 random walks. The
FPGA is a Virtex-4 LX80 from Xilinx, connected to
the motherboard via PCI-X. The processors are all
2.2 GHz AMD Opterons.

We report performance in random walks per
second (walks/s). Recall that the overall experiment
contains 230 (≈109) such random walks. Table 2
presents the quantitative performance results.
Relative to mapping 1, the overall speedup is 180×.
Relative to mapping 2, the overall speedup is 74×.

Table 2. Performance results for Monte Carlo
simulation of VAR.

Mapping Performance
1 0.45 Mwalks/s
2 1.1 Mwalks/s
3 80 Mwalks/s
4 60 Mwalks/s
5 81 Mwalks/s

Clearly, the greatest performance improvement

comes in the mappings where the GPU is utilized.
Since the majority of the time in the sequential
algorithm is spent in stage 3 (a matrix-vector
multiply), and the GPU excels at that class of
computation, this result is reasonable to expect.

The performance of mapping 4 relative to map-
ping 3 is somewhat of a surprise. When migrating
stages 1 and 2 off of the GPU and onto the FPGA, we
would expect the performance to improve. Instead,
we observe a performance degradation. A detailed
investigation concluded that the performance
decrease is due to the fact that in our implementation
the GPU is not performing I/O and computation
concurrently. Instead, it is waiting for the random
numbers to be input from the FPGA prior to initiating
the stage 3 and 4 computations. (The bandwidth
achieved on this link is 1.2 GB/s.) Since the GPU
can create the random number stream (which it can
do at 2.8 GB/s) faster than it can ingest the random
number stream, mapping 4’s performance suffers as a
result.

Overall, the best performance is observed with
mapping 5. Here, the FPGA is feeding its random
number stream into the CPUs and the GPU is
internally creating its own random number stream.
Since stage 3 is such a computational bottleneck,
further gains in performance could be achieved by
moving stage 3 onto the FPGA, for example using
the approach described by Thomas and Luk [12].

6. Conclusions

This paper has described the acceleration of an
important problem in computational finance, the risk
assessment of a portfolio via Monte Carlo simulation
techniques. Two classes of co-processor accelerator
are employed, a GPU and an FPGA.

The performance results show a speedup of 74×
relative to an 8 processor implementation, with the
bulk of the performance gain due to the GPU. The
overall performance can be improved further by
enabling concurrent computation and I/O on the GPU
and by exploiting the FPGA to do a larger fraction of
the overall load.

Acknowledgements

This work was supported in part by NSF grants
CCF-0427794, CNS-0720667, and CNS-0751212.
R.D. Chamberlain is a principal in Exegy, Inc. The
authors would also like to thank NVIDIA for their
support.

References

[1] Paul Glasserman, Monte Carlo Methods in Financial

Engineering, Springer, 2004.
[2] Roger D. Chamberlain, Joseph M. Lancaster, and Ron

K. Cytron, “Visions for Application Development on
Hybrid Computing Systems,” Parallel Computing,
34(4-5):201-216, May 2008.

[3] Makoto Matsumoto and Takuji Nishimura, “Mersenne
twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator,” ACM Trans. on
Modeling and Computer Simulation, 8(1):3-30, Janu-
ary 1998.

[4] NVIDIA CUDA Compute Unified Device Architecture.
Programming Guide. Available online at http://www.
nvidia.com/cuda.

[5] Makoto Matsumoto and Takuji Nishimura, “Dynamic
creation of pseudorandom number generators,” Monte
Carlo and Quasi-Monte Carlo Methods, pp. 56-69,
Springer, 2000.

[6] Peter Acklam, “An algorithm for computing the
inverse normal cumulative distribution function.”
Available online at http://home.online.no/
~pjacklam/notes/invnorm.

[7] Ishaan L. Dalal and Deian Stefan, “A Hardware
Framework for the Fast Generation of Multiple Long-
period Random Number Streams,” in Proc. of 16th
Int’l ACM/SIGDA Symp. on Field Programmable
Gate Arrays, pp. 245-254, February 2008.

[8] George Marsaglia and Wai Wan Tsang, “The Ziggurat
Method for Generating Random Variables,” Journal
of Statistical Software, 5(8), Oct. 2000.

[9] Guanglie Zhang, Philip H.W. Leong, Dong-U Lee,
John D. Villasenor, Ray C.C. Cheung, and Wayne Luk,
“Ziggurat-based hardware Gaussian random number
generator,” Proc. of Int’l Conference on Field Pro-
grammable Logic and Applications, pp. 275-280, 2005.

[10] Mark A. Franklin, Eric J. Tyson, James Buckley,
Patrick Crowley, and John Maschmeyer, “Auto-Pipe
and the X Language: A Pipeline Design Tool and
Description Language,” in Proc. of Int’l Parallel and
Distributed Processing Symp., April 2006.

[11] Roger D. Chamberlain and Berkley Shands, “Stream-
ing Data from Disk Store to Application,” in Proc. of
3rd Int’l Workshop on Storage Network Architecture
and Parallel I/Os, pp. 17-23, September 2005.

[12] David B. Thomas and Wayne Luk, “Sampling from
the Multivariate Gaussian Distribution using Reconfi-
gurable Hardware,” in Proc. of Int’l Symp. on Field-
Programmable Custom Computing Machines, pp. 3-
12, April 2007.

