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Abstract—Buttazzo et al.’s elastic scheduling model provides
a framework in which task utilizations may be “compressed”
to guarantee schedulability despite limited resources. Each task
is assigned a range of acceptable utilizations and an “elastic
constant” representing the relative adaptability of its utilization.
Other prior work has extended the model to federated scheduling
of computationally elastic parallel tasks, in which each high
utilization task is assigned dedicated cores in sufficient number
to guarantee schedulability. If the demand for cores exceeds
the supply, task execution times are reduced until the system
becomes schedulable. This model assumes that each task’s span
is a constant value; it does not consider that adjusting execution
times may change the critical path of the computation. In this
work, we present an extension of the model in which each subtask
is assigned a range of workloads and an elastic constant. By
adjusting subtask workloads, both the total execution time and
the span of each task may change. We formulate the problem as
a mixed-integer quadratic program, and perform a preliminary
evaluation of SCIP, a non-commercial off-the-shelf solver, for
solving the problem.

Index Terms—real-time systems, elastic scheduling, parallel
DAG tasks, mixed integer quadratic programs

I. INTRODUCTION

Elastic real-time scheduling models provide a framework
in which task utilizations may be reduced to guarantee
schedulability despite limited resources. The original model
of Buttazzo et al. [1], [2] considers uniprocessor scheduling
of implicit-deadline task systems. Each task is assigned a
range of allowed utilizations, as well as an additional elasticity
parameter that “specifies the flexibility of the task to vary its
utilization” [1]. Ideally, each task is allowed to execute at its
maximum utilization. However, if this would cause the system
to become overloaded, each task’s utilization is “compressed”
proportionally to its elastic constant until the total utilization
no longer exceeds the schedulable bound of the system, or until
the task reaches its minimum serviceable utilization. Under
this model, compression is realized by increasing task periods:
a task with workload Ci and newly-assigned utilization Ui

would have its period set as Ti = Ci/Ui.
Chantem et al. [3], [4] formulated a quadratic optimization

problem that assigns utilizations according to Buttazzo’s pro-
portional compression. The problem is constrained according
to the minimum serviceable and maximum desired utilizations
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of each task, and by the utilization bound of the system.
This allowed extensions of the elastic framework to other
task models with schedulability tests that do not rely strictly
on a utilization bound, including to federated scheduling of
parallel real-time tasks [5] for which periods [6] are adjusted
in response to reduced utilization assignments. In [7], the
model was extended to allow parallel workloads to be adjusted
instead over a continuous range: a task with period Ti would
have its workload assigned as Ci = Ti · Ui. This may be
realized, for example, by reducing the quantity of input data
to process or by forcing an iterative anytime algorithm to
terminate early [8].

Under federated scheduling, each high utilization parallel
task τi is assigned mi dedicated processor cores according to:

mi =

⌈
Ci − Li

Ti − Li

⌉
(1)

where Ci, Li, and Ti are respectively the workload, span, and
period of the task. This was proven in [5] to be sufficient to
guarantee schedulability. Under the elastic model in [7], if the
total number of assigned cores exceeds the number available
in the system, task utilizations are compressed by reducing
workloads Ci until the total core assignment becomes feasible.

This model is fundamentally limited, however, because it
only considers the aggregate implication of reducing a parallel
task’s overall workload, and not the individual implications
of reducing the workloads of each subtask. Changing the
computational workload of each subtask may fundamentally
affect quality of outcome (e.g., control performance, prediction
accuracy, etc.) in different ways [9], [10]. Furthermore, the
model holds the values Li constant. Because Li represents
the parallel task’s critical path of computation, decreasing
workload Ci may also decrease span, which further reduces
the necessary allocation of processor cores to the task. For this
effect to be captured, an elastic model must be cognizant of the
DAG structure induced by the precedence constraints among
the subtasks composing each parallel task. To these ends, we
propose a new model of subtask-level elasticity for federated
scheduling of parallel tasks in which each subtask is assigned
a range of acceptable workloads and its own elastic constant.
The elastic scheduling model is thus applied to the complete
collection of subtasks in the system to guarantee schedulability
according to the resulting task execution times and spans.



In this work, we formulate assignment of workloads to
each subtask as a constrained optimization problem. The
inverse-elasticity-weighted sum of squared deviations of each
subtask’s compressed utilization from its nominal value is min-
imized subject to the constraint that the total joint assignment
of processor cores to tasks according to Eqn. 1 does not exceed
the number available. We outline how to represent the problem
as a mixed-integer quadratic program (MIQP); empirically
demonstrate how the number of constraints grows with task
complexity; then implement the problem using SCIP [11],
a non-commercial, off-the-shelf solver. We demonstrate that
even for systems of up to 10 tasks, each with 10 subtasks, the
MIQP can often be solved in under a minute using a single-
threaded run of the solver.

II. BACKGROUND AND SYSTEM MODEL

In this work, we consider a system Γ of n independent,
sporadic, parallel, implicit-deadline tasks. Each task τi repre-
sents a sequence of jobs and is characterized by a workload
Ci, representing the worst-case execution time of each of its
jobs; and by a period Ti, representing the minimum inter-
arrival time between consecutive jobs. Each task’s deadline
Di implicitly equals its period, i.e., Di = Ti. The focus of this
paper is federated scheduling: each task is assigned a dedicated
set of cores on which it alone executes (this paradigm has
been successfully used in applications such as real-time hybrid
simulations for structural engineering [12]).

Each task τi consists of a set of subtasks τi,j with a
precedence relation ≺ over them. Each individual subtask τi,j
is characterized by a workload ci,j , representing its worst-
case execution time. Subtasks may run in parallel, except as
constrained by the precedence relation: if τi,a ≺ τi,b, then τi,a
must fully complete its execution before τi,b is scheduled. The
partial-ordering of precedence over subtask execution that de-
scribes task execution gives rise to a standard directed acyclic
graph (DAG) representation with a collection of vertices vi,j
corresponding to subtasks τi,j . A directed edge from vertex
vi,a to vi,b exists if and only if τi,a ≺ τi,b and there is no τi,c
for which τi,a ≺ τi,c ≺ τi,b, i.e., τi,b directly succeeds τi,a.
The span Li for the corresponding task τi is the length of the
critical-path of the DAG, i.e., the longest path, weighted by
execution time, among any two vertices in the graph.

The model presented by Orr et al. in [7] additionally assigns
each parallel task τi an elastic constant Ei, representing “the
flexibility of the task to vary its utilization” [1]. If the demand
for processor cores exceeds the number available, each task’s
utilization is compressed by decreasing its workload Ci within
a continuous range of acceptable values [Cmin

i , Cmax
i ]. From

these, a corresponding range of utilizations Umin
i = Cmin

i /Ti

and Umax
i = Cmax

i /Ti are derived. On a system with m
available processor cores, workloads are assigned to each
task according to the quadratic objective function for elastic
scheduling proposed by Chantem et al. [3], [4], with the

original schedulability condition replaced by Eqn. 1:

min
Ui

n∑
i=1

1

Ei
(Umax

i − Ui)
2 (2a)

s.t.
n∑

i=1

⌈
Ci − Li

Ti − Li

⌉
≤ m (2b)

∀i, Umin
i ≤ Ui ≤ Umax

i (2c)

This model is limited, however, as it holds each task’s span
Li constant. Depending on how the new workload assignment
Ci is to be realized, i.e., which subtask workloads ci,j are
to be reduced, the value Li may also decrease, as Fig. 1
illustrates. Without accounting for this, the model in [7] may
be pessimistic in resource allocation and overcompress task
workloads. Consider, for example, a task with parameters
Cmax

i = 10, Li = 4, and Di = 6 to be scheduled on only 2
processor cores. If Li is held constant, the task’s workload
would have to be decreased to Ci = 8 to satisfy Eqn. 1. But
the workload needs only to be reduced by 1 unit along its
critical path (Ci = 10 and Li = 3) to be schedulable.

Furthermore, the workload assigned to each individual sub-
task may uniquely impact result quality. This was argued in
the context of control performance under sequential end-to-
end task execution in autonomous vehicles [9], and extends to
parallel tasks such as real-time gamma-ray burst localization
aboard space-based instruments [10].

To address these limitations, this paper modifies the model
in [7] by assigning to each subtask τi,j a continuous range of
execution times [cmin

i,j , cmax
i,j ] and an elasticity Ei,j . Subtask

workloads ci,j are then selected to minimize a modified
version of objective (2a) that considers the deviations of
individual subtask utilizations from their desired values:

min
ci,j

∑
τi,j

1

Ei,jT 2
i

(cmax
i,j − ci,j)

2 (3a)

s.t.
n∑

i=1

⌈
Ci − Li({ci,j})
Ti − Li({ci,j})

⌉
≤ m (3b)

∀i,j , cmin
i,j ≤ ci,j ≤ cmax

i,j (3c)

where the span Li is expressed here as a function of the
workloads assigned to each subtask in τi.

III. SOLUTION APPROACH

We propose that the optimization problem (3) expressed in
the previous section may be formulated as a mixed-integer
quadratic program (MIQP) and solved using one of many off-
the-shelf solvers. We demonstrate an approach to constructing
the problem for SCIP [11], a non-commercial, open-source
solver. SCIP supports both integer and continuous variables,
and both linear and quadratic constraints may be defined.
However, as of version 8.0 [13], it does not support quadratic
objectives. As such, the MIQP is formulated as follows:
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(c) Span compressed with workload.

Fig. 1: An elastic DAG task. The span and critical path may change depending on which subtask workloads are compressed.

1) For each subtask τi,j , define continuous variables ci,j ,
representing the workload assigned to the subtask, and
constrained as in (3c):

cmin
i,j ≤ ci,j ≤ cmax

i,j (4)

2) Define a non-negative continuous variable O representing
objective (3a):

minimize O (5)

3) To enforce this intended interpretation on the variable O,
we add a constraint of the form:

O ≥
∑
τi,j

1

Ei,jT 2
i

(cmax
i,j − ci,j)

2

where Ei,j , cmax
i,j , and Ti are constant values for all i, j. As

O is to be minimized, it will take a value equal to the RHS
of the inequality. Separating linear, quadratic, and constant
terms yields the constraint:

O +
∑
τi,j

2cmax
i,j

Ei,jT 2
i

ci,j −
∑
τi,j

1

Ei,jT 2
i

c2i,j ≥
∑
τi,j

(cmax
i,j )2

Ei,jT 2
i

(6)

4) For each task τi, define a non-negative continuous variable
Li representing its span, which can be expressed as:

Li = max
pi,k

 ∑
vi,j∈pi,k

ci,j


over the set of paths {pi,k} between pairs of vertices in the
task’s representative DAG. To simplify this, we consider
tasks τi for which the DAG has a single source vertex s
and sink vertex t. (Any task DAG τi, even those that are not
weakly-connected, can be represented as such: Add a vertex
vi,s with execution time ci,s = 0 and connect it with edges
to all vertices in the DAG that do not already have incoming
edges. Similarly, add a 0-weight vertex vi,t, connected with
edges from all vertices that do not already have outgoing
edges.) Because of the restriction that vi,a is connected by
an edge to vi,b only if τi,b directly succeeds τi,a, every path
from s to t might form the critical path, depending on the
assignment of subtask execution times. Therefore, for each
path pi,k from s to t, we add constraints of the form:

Li −
∑

vi,j∈pi,k

ci,j ≥ 0 (7)

5) It is also a requirement that Li does not exceed Ti for
τi to be schedulable, as Di = Ti. To enforce this, we add
constraints of the form:

Li ≤ Ti (8)

6) For each task τi define a non-negative integer variable mi

representing the number of cores allocated to the task. This
should be in sufficient number to guarantee schedulability
according to Eqn. 1. To enforce this intended interpretation,
we add constraints of the form:

mi ≥
∑

j ci,j − Li

Ti − Li

Since mi is specified to be an integer variable, it will respect
the ceiling operator that appears in Eqn. 1. Rearranging, this
yields quadratic constraints of the form:

−miLi + Timi + Li −
∑
j

ci,j ≥ 0 (9)

7) The total allocation of cores must not exceed m, the number
available. To enforce this, we add the additional constraint:∑

i

mi ≤ m (10)

where m is a constant integer value.

Constraints (7) and (8) jointly constrain the span Li of each
task τi to the range: ∑

vi,j∈pi,k

ci,j ≤ Li ≤ Ti (11)

Li will remain strictly less than Ti, as constraint (9) will
cause mi → ∞ as Li → T−

i . We note that, for low-utilization
tasks, if Li = Ci then Eqn. 1 assigns m = 0. This approach
is therefore unsuitable for sequential tasks. A formal proof of
correctness is outside the scope of this paper.

IV. ANALYSIS OF CONSTRAINTS

The MIQP, as formulated above, has a single variable O
for the objective, variables mi and Li for each task τi, and
variables ci,j for each subtask τi,j . Equations 6 and10 both
represent a single constraint, though with numbers of terms
linear in the total number of subtasks and tasks, respectively.
Equations 8 and 9 both represent a constraint per task, with
each constraint in Eqn. 9 having a number of terms linear
in the number of subtasks of the corresponding task. Eqn. 4
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Fig. 2: Remove edges forming redundant paths.

represents a constraint for each subtask. Eqn. 7, however,
represents a constraint for every path from each task DAG’s
source vertex to its sink.

We defer to future work a derivation of a generally tight
upper bound on the number of such paths. In this paper, we
empirically measure the mean and maximum number of such
paths over a large number of synthetically generated DAG
tasks. We generate DAGs according to a modified version of
the Erdős-Rényi method [14]:

1) Select a number of vertices k for the DAG G (we iterate
over values of k from 5 to 30 in steps of 1).

2) For each pair of vertices in {v2, . . . , vk−1}, an edge con-
necting them is added with some probability p (we iterate
over values of p from 0.05 to 0.95 in steps of 0.05). The
edge is always directed from smaller to larger vertex index
to guarantee that the graph remains acyclic.

3) Vertex v1 is the source vertex: direct an edge from it to all
remaining vertices (except vk) with no incoming vertices.
Similarly, vertex vk is the sink: direct an edge to it from all
vertices with no outgoing vertices. This guarantees that the
DAG is weakly connected.

4) For every edge E connecting vertex va to vb, if there exists
a path from va to vb in G\E, then remove E, as illustrated
in Fig. 2. This guarantees that no path from source to
sink is a subset of another path, so every path might form
the critical path, depending on its vertex weights (i.e., the
corresponding subtask execution times).

For each value of k and p, we randomly generate 100 000
graphs according to this procedure. For each DAG, we count
the number of paths from the source to the sink vertex, then
calculate the mean and maximum count for each pair (k, p).
Results are plotted in Fig. 3.

We observe that an edge probability of 0.5 is expected to
produce the largest number of critical path candidates. For
tasks with 30 subtasks and an edge probability of 0.5, almost
1200 constraints of the form in Eqn. 7 will be added, with a
maximum observed of over 10 000.

In fact, for k vertices, there exists a DAG with 3⌊(k−2)/3⌉

paths that might form a critical path. Consider the pathological
case, illustrated in Fig. 4, of a DAG consisting of a source S
and sink T with all other vertices arranged in a sequence of
groups of 3. An edge connects each vertex in one group to all
vertices in the subsequent group. We do not claim this to be a
tight upper bound, but it illustrates that the problem size may
grow exponentially in the number of subtasks.

V. PRELIMINARY EVALUATION WITH SCIP
We perform a preliminary evaluation of the feasibility of

using an off-the-shelf MIQP solver to assign execution times

(a) Mean count.

(b) Maximum count.

Fig. 3: Number of paths from source to sink.

to subtasks according to the optimization problem listed in
Eqn. 3. We randomly generate task sets of size n from 2 to
10 in steps of 2. Every task in a task set is assigned the same
number k of subtasks; for each value n, we consider values
of k from 5 to 10 in steps of 1. For each pair (n, k), we
generate 20 task sets, for a total of 600. Each task DAG has
edges assigned according to the modified Erdős-Rényi method
outlined in Section IV with an edge probability p = 0.5.

Each subtask τi,j has its elasticity Ei,j randomly selected
as an integer from the range [1,100]. To assign a range of
acceptable execution times to each subtask, we randomly
select two integer values in the range [1,100]. The smaller
value is assigned to cmin

i,j and the larger to cmax
i,j . So that the task

S T. . .

Fig. 4: A DAG with 3(k−2)/3 candidate critical paths.



(a) Number of solutions (out of 20) found within a minute.

(b) Number of solutions (out of 20) found within an hour.

Fig. 5: SCIP solver results.

remains high in utilization even if all subtasks are assigned
their minimum execution times, we randomly select Ti as an
integer from the range [Lmax

i + 1, Cmin
i − 1] (if D ≤ Li, the

core assignment in Eqn. 1 becomes invalid). If for some task
τi, Lmax

i + 1 > Cmin
i − 1, values of ci,j are regenerated.

The values Cmin
i , Lmin

i , Cmax
i , Lmax

i , and Ti thus generated
are used with Eqn. 1 to determine the minimum and maximum
number of cores to guarantee schedulability for each task
system; the integer value m of total cores available is generated
uniformly in this range. For each task set, we formulate an
MIQP according to the procedure in Section III. We use a
custom C++ wrapper into which we link version 8 of the SCIP
solver [13] to execute the MIQP. We evaluate the execution
times on a server with two Intel Xeon Gold 6130 (Skylake)
2.1 GHz processors and 32GB of memory.

As a preliminary evaluation, we count the task sets for
which a single-threaded run of SCIP is able to find an optimal
value in a minute or less, then in an hour or less. Results
are illustrated in Fig. 5. For smaller problem sizes, SCIP can
rapidly find a solution. But for task sets with at least 8 tasks,
each having at least 9 subtasks, SCIP was unable to find

a solution in this limited time frame. Of the 600 problems
considered, SCIP solved 268 (about 45%) within a minute,
and 344 (about 57%) within an hour.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a new model of subtask-level
elasticity for federated scheduling of parallel tasks. The model
considers the joint impact of compressing the workloads
of each subtask within the task system, including changes
to each task’s span, which also affects the assignment of
processor cores to each task. While still in preliminary stages
of evaluation, this work suggests that the problem can be
formulated as an MIQP and solved for small task systems
using SCIP, a non-commercial off-the-shelf solver. However,
as the problem size increases, the number of constraints grows
exponentially in the worst-case; the problem may therefore
become infeasible for complex sets of parallel tasks.

As future work, we plan to evaluate the problem using other
solvers. We will also consider a refinement to the problem
formulation, whereby the set of constraints imposed by every
possible critical path through the task DAG (Eqn. 7) can be
pruned. For any pair of paths pi,a, pi,b, if the maximum
weighted length of pi,a is less than the minimum weighted
length of pi,b (as defined by the range of execution times
assigned to each corresponding subtask), then the constraint
corresponding to pi,a can be removed. Finally, we will con-
sider alternative solution approaches, e.g., using iterative tech-
niques or an MIQP solver to find the amount of compression,
λ, that must be applied to the task system for it to become
schedulable, similarly to the approaches in [15].
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task graph generation methods for scheduling problems,” in Euro-
Par 2019: Parallel Processing, R. Yahyapour, Ed. Cham: Springer
International Publishing, 2019, pp. 61–73.

[15] M. Sudvarg, S. Baruah, and C. Gill, “Elastic scheduling for fixed-priority
constrained-deadline tasks,” in 2023 IEEE 26th International Symposium
on Real-Time Distributed Computing (ISORC), 2023, pp. 11–20.

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1145/2656045.2656067
http://www.optimization-online.org/DB_HTML/2021/12/8728.html

