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ABSTRACT
In federated scheduling of parallel real-time tasks onmultiprocessor

systems, high-utilization tasks are allocated dedicated processors

on which they execute exclusively. Several methods exist for allo-

cating a sufficient number of processors to guarantee that each task

meets its deadline. In this paper, we propose two new strategies

for allocating unit-speed cores to tasks with integer workload and

deadline values. The first method can be performed in constant

time for each high-utilization task, given the task’s total workload,

critical-path length, and deadline. The second method exploits the

DAG structure of high-utilization tasks, providing a potentially bet-

ter schedule in pseudo-polynomial time. We analyze and evaluate

these new bounds in the context of existing techniques, and demon-

strate that, in practice, they often allocate fewer processor cores.

We also present a novel method for assigning an optimal number

of dedicated cores to heavy tasks, describe how this method can be

used in practice, and consider cases for which this is efficient.

KEYWORDS
parallel real-time systems, federated scheduling, integer-valued

tasks, scheduling heuristics
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1 INTRODUCTION
The increasing computational demand of many real-time applica-

tions motivates scheduling strategies for task sets with intra-task
parallelism. Systems hosting multiple tasks, where individual tasks

may require the utilization of more than one processor to meet

their deadlines, are becoming more common; such systems can be

increasingly found in autonomous vehicles [23], computer vision

systems [15], real-time hybrid testing environments [17], and even

satellite telescopes [35]. Deciding how to schedule such tasks, i.e.,

how and when to allocate computational resources such that all exe-

cution completes before its corresponding deadline, is an important

consideration on these systems.

Federated scheduling (which has been used in real-world appli-

cations such as real-time hybrid simulation [32]) proposes one
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approach to this problem [26]: high-utilization tasks (i.e., those

with utilizationU ≥ 1) are each assigned a dedicated set of cores on

which they alone execute; low-utilization tasks are then scheduled

on the remaining cores using amultiprocessor scheduling algorithm

for sequential tasks,
1
e.g., partitioned EDF [2], global EDF [1, 13, 25],

or partitioned RM [11]. Previous approaches to federated schedul-

ing have considered tasks for which workloads and deadlines are

expressed as real numbers, forming a general and mathematically-

sound basis for analysis. From a practical perspective, however,

task workloads and deadlines often can be characterized by integer

values; at a minimum CPU cycle counts provide a discrete base in

the natural numbers, albeit at very fine granularity. This allows task

execution to be decomposed into discrete unit time steps, which

in some cases allows improved strategies for the assignment of

dedicated processors.

In this paper, we consider the problem of efficiently assigning

processors to high-utilization parallel tasks for which deadlines and
workloads (including subtask workloads induced by each sequential

component of the parallel program) are expressed as integer values;

we refer to these as integer-valued tasks. This paper makes the

following contributions:

• It presents a new constant-time assignment of cores to an

integer-valued high-utilization task, which we prove to be

(1) sufficient, (2) never worse than the original assignment

presented in [26], and (3) well-defined for cases where the

original assignment produced undefined values.

• It also proposes a pseudo-polynomial time heuristic algo-

rithm for assigning cores to integer-valued high-utilization

tasks, and demonstrates that this often assigns the minimum

necessary number of cores to each task from a large set of

randomly-generated parallel tasks.

• Finally, it formulates the problem of optimally assigning

cores to high-utilization integer-valued tasks as an itera-

tive subgraph ismorphism problem, which can be solved

efficiently in many cases including those we tested.

The remainder of this paper is structured as follows: Section 2

provides background, and discusses related work; Section 3 intro-

duces our system model for integer-valued tasks; Section 4 presents

the new constant-time assignment of cores, and demonstrates its

improvement over the method proposed in [26]; Section 5 discusses

a pseudo-polynomial time application of list scheduling to integer-

valued tasks, and proposes a heuristic algorithm; Section 6 presents

the formulation of optimally assigning processors as a subgraph

isomorphism problem, and discusses how to solve it; Section 7

evaluates the presented methods, considering both efficiency of

assignment and efficiency of algorithmic execution time; and finally

Section 8 concludes the paper, and discusses future work.

1
A low-utilization parallel task can be scheduled as if it were a sequential task having

the same total workload.
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2 BACKGROUND AND RELATEDWORK
Size, Weight, Power, and Cost (SWaP-C) constraints in real-time

embedded systems drive the need to optimize the assignment of

resources (like processor cores) to tasks, especially under federated

scheduling [26] where those resources are fully partitioned among

high-utilization parallel real-time tasks: efficient allocation of pro-

cessors potentially allows more tasks to be admitted on systems

with fewer cores. The optimal allocation of processors to a real-time

parallel task is known to be NP-Complete for arbitrary tasks on

an arbitrary number of processors, including for tasks having only

unit-workload subtasks [37]. However, a method for assigning suf-
ficient processors to an implicit-deadline parallel task in constant

time — with only knowledge of its total workload, deadline, and

critical-path length (i.e., the makespan or span of its representative

DAG) — was shown in [26]; in Section 4, we present an improve-

ment of this method for integer-valued tasks. While the original

federated scheduling model abstracted away overheads due to e.g.,

context switches or communication between subtasks, subsequent

work has shown that in practice for a given platform and task set it

is straightforward to measure such overheads and integrate them

within system model parameters [27], even when widely varying

costs (e.g., for randomization and work stealing) are involved [28].

In [3], federated scheduling is extended to constrained-deadline

task systems. High-utilization tasks are assigned processors ac-

cording to Graham’s list scheduling algorithm [20]. This algorithm

guarantees that when a processor becomes idle, available subtasks

are selected for execution by each idle processor in an order de-

fined by some priority list. Subtask priorities may be assigned, for

example, according to the Critical Path rule (where a subtask’s pri-

ority is assigned according to its critical-path length) or the Largest

Number of Successors rule (where priority is assigned according

to the total workload of the subgraph rooted at the subtask). The

remaining low-utilization tasks are partitioned among remaining

processors according to the method described in [7], then tasks on

each processor are scheduled according to EDF. This was further

extended to arbitrary-deadline task systems in [4], which again uses

Graham’s list scheduling to assign processors to high-utilization

tasks, and partitions low-utilization tasks according to the methods

described in [8]. In [5], the conditional sporadic DAG tasks model is

considered for programs that contain conditional branching logic;

in this case, sufficient processors are assigned according to the

deadline, worst-case execution time, and critical-path length across

all conditional paths.

Under Graham’s list scheduling, subtasks are scheduled non-

preemptively: once a subtask is selected for execution on a pro-

cessor, it runs to completion on that same processor. In [14], an

alternative algorithm is proposed for assigning processors to high-

utilization tasks, which exploits each task’s DAG structure to con-

struct a schedule where subtasks may be preempted. Subtasks are

prioritized according to the Largest Number of Successors, but a

subtask is preempted if (1) after executing for some duration, the

remaining workload of its rooted subgraph is exceeded by that of

another available subtask; or (2) if an idle subtask becomes urgent,

i.e., its critical-path length equals the remaining time until deadline,

and therefore it must be scheduled immediately. The presented

algorithm has pseudo-polynomial time complexity and, when eval-

uated in comparison to previous federated scheduling approaches,

was shown often to produce less resource waste.

Both the Critical Path and Largest Number of Successors rules are

known to be optimal when a task’s DAG forms an in-tree or an out-

tree [21, 34]. Polynomial time algorithms are known for construct-

ing optimal schedules on two-processor systems [12, 18, 19, 31].

Further, interval-ordered parallel tasks
2
for which each subtask has

unit execution time are known to be optimally schedulable in linear

time [33]. Nonetheless, since optimally assigning dedicated cores

to high-utilization parallel tasks is NP-Complete in general, the

heuristics above define the state of the art. In Section 5, we present

a heuristic algorithm for assigning cores to integer-valued tasks

that, despite being polynomial in the task’s workload, nonetheless

often finds an optimal core assignment for the domain of task sets

evaluated in Section 7.

Other approaches relax the federated scheduling requirement of

assigning completely dedicated processors to each high-utilization

task. In [22], it is observed that the original assignment rule for

federated scheduling in [26] rounds up any fractional part of the

value; the authors propose semi-federated scheduling, which pro-

vides a framework for algorithms that instead schedule the frac-

tional parts from high-utilization tasks on shared processors with

low-utilization tasks. Under reservation-based federated schedul-

ing [36], tasks are assigned dedicated reservation servers (rather

than dedicated processors), and rules are provided for scheduling

these servers on shared processors. This technique is especially

useful for constrained-deadline tasks that leave processors idle be-

tween a task instance’s deadline and its next release, and the paper

extends analysis of the technique to arbitrary-deadline tasks. We

defer as future work the application of our proposed assignment

techniques to these approaches.

3 SYSTEM MODEL
In this paper, we consider a system Γ of n independent sporadic

integer-valued parallel real-time tasks {τ1,τ2, . . . ,τn }. Each task

τi represents a sequence of jobs and is characterized by a work-
load Ci ∈ N, representing the worst-case execution time of each

of its jobs; and by a period Ti ∈ N, representing the minimum

inter-arrival time between consecutive jobs. Tasks are also char-

acterized by relative deadlines Di ∈ N: a job of task τi arriving at
time t ∈ N0 must complete execution no later than the time t +Di ;

this describes the absolute deadline of that job. For this paper, we

consider constrained-deadline tasks: every job must complete by

the activation time of the next job of the same task, i.e. Di ≤ Ti . In
several places throughout this paper, where we limit our consider-

ation to implicit-deadline tasks, for which Di = Ti , we explicitly
state that we are considering implicit-deadline tasks; otherwise,

the reader can assume that the tasks have constrained deadlines.

We consider a task system to be schedulable onm identical cores if

there exists a preemptive scheduler that can assign task execution

to cores such that all jobs are guaranteed to complete before their

deadlines.

2
A parallel task is interval-ordered iff the incomparability graph of the partial-ordering

of precedence constraints over its subtasks is chordal.
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Each task τi consists of a set of subtasks τi, j with a precedence

relation ≺ over them. Each individual subtask τi, j is characterized
by a workload ci, j ∈ N, representing its worst-case execution

time. An individual subtask must execute sequentially, i.e. it is

characterized by a sequence of instructions that must be completed

in order, and take up to ci, j time to complete. We assume that

subtask execution is reentrent; execution may be preempted by

another subtask, and it need not resume executing on the same

core in the system. The precedence relation constrains subtask

execution such that if τi,a ≺ τi,b , then τi,a must fully complete its

execution before τi,b is scheduled. We say that a task τi, j becomes

available when all tasks τi,a for which τi,a ≺ τi, j have completed

execution. As in [26], we characterize tasks as either light or heavy:
heavy tasks are those for which Ci ≥ Di ; tasks for which Ci > Di
must have their potential parallelism exploited to be schedulable.

The focus of this paper is federated scheduling, for which each heavy
task is assigned a dedicated set of cores on which it alone executes.

We consider only tasks for which the deadline Di and the value of

each subtask workload ci, j are positive integers; we refer to these

as integer-valued tasks.
The partial-ordering of precedence over subtask execution that

describes task execution can be characterized as a directed acyclic
graph (DAG). We say, for each parallel task τi , that there exists a
DAGGi with a collection of verticesvi, j corresponding to subtasks
τi, j . Each vertex is assigned as an attribute the workload ci, j of the
corresponding subtask. A directed edge from vertex vi,a to vi,b
exists if and only if τi,a ≺ τi,b and there is no τi,c for which

τi,a ≺ τi,c ≺ τi,b , i.e., τi,b directly succeeds τi,a .
For each graph vertexvi, j , we characterize its critical-path length,

or span, li, j ∈ N as the longest path originating at that vertex, and

weighted by the execution time of each vertex along the path (in-

cluding ci, j , the weight of the originating vertex). We characterize,

for the corresponding task τi , the span Li ∈ N, which is the greatest
span among all vertices, i.e. the critical-path length of the entire

DAG. The span corresponds to the earliest completion time of a

job in the task, relative to its activation time, if given an infinite

number of cores on which to execute. It is clear that for a task to

be schedulable, Li ≤ Di .

The system model presented in this section abstracts away con-

text switches, costs of communication between subtasks, and other

overheads that are likely to be relevant in practice. However, as

we noted in Section 2, prior work has shown that for a given plat-

form and task set it is reasonably straightforward to measure and

integrate them within the parameters of the system model.

4 FEDERATED SCHEDULING FOR
INTEGER-VALUEDWORKLOADS

In [26], it is shown that a heavy task τi characterized by workload

Ci , span Li , and deadlineDi is schedulable by any work-conserving

(i.e., greedy) scheduler given sufficient cores:

ni = ⌈
Ci − Li
Di − Li

⌉ (1)

We show here that a parallel task, to which integer values are

assigned for its deadline and all subtask workloads, is schedulable

on n′i = ⌈
Ci−Li+1
Di−Li+1 ⌉ identical cores, which provides practical and

intuitive benefits over Equation 1 for bounding the number of cores

assigned to heavy tasks.

4.1 A Proof of the Assignment
We begin with two definitions and reiterate two lemmas proven

in [25].

Definition 4.1. Summarized from [26]: Assume that a machine’s

execution time is divided into discrete quanta called steps. A time

step during which any processor is idle is an incomplete step.

Definition 4.2. Summarized from [25]: For a partially executed in-

stance of a task, the remaining critical path length is the length

of the longest path in the unexecuted portion of the DAG (includ-

ing partially executed nodes). In other words, it is the critical path

length (as described in Section 3) of the sub-DAG describing the

remaining work.

Lemma 4.3. From Lemma 2 in [26]: Consider a greedy scheduler
running on ni processors for t time steps. If the total number of in-
complete steps during this period is t∗, the total work F t done during
these time steps is at least:

F t ≥ ni t − (ni − 1)t
∗

Lemma 4.4. From Lemma 3 in [26]: If a job of task τi is executed by
a greedy scheduler, then every incomplete step reduces the remaining
critical-path length of the job by 1.

Now, we state our theorem, with a proof that closely follows the

proof of Theorem 2 in [26]:

Theorem 4.5. If a parallel task τi having integer-valued subtask
workloads and deadline is assigned

n′i = ⌈
Ci − Li + 1

Di − Li + 1
⌉ (2)

dedicated processors, then all its jobs can meet their deadlines, when
using a greedy scheduler.

Proof. Assume some job of heavy task τi misses its deadline

when scheduled on n′i = ⌈
Ci−Li+1
Di−Li+1 ⌉ cores by a greedy scheduler.

Then, over the Di time steps between this job’s release and its

deadline, there are fewer than Li incomplete steps; otherwise, by

Lemma 4.4, the job would have completed, i.e., t∗ < Li .
Because τi has integer values for all subtask workloads ci, j and

deadline Di , it also has an integer-valued span Li . So, we can say

that each time step is of unit time, and so t∗ is an integer. This

implies that if t∗ < Li , then t∗ ≤ Li − 1. Then, from Lemma 4.3:

F t ≥ n′i t − (n
′
i − 1)t

∗

and since t∗ ≤ L1 − 1 and t = Di ,

F t ≥ n′iDi − (n
′
i − 1)(Li − 1)

= n′i (Di − Li + 1) + Li − 1

= ⌈
Ci − Li + 1

Di − Li + 1
⌉(Di − Li + 1) + Li − 1

≥
Ci − Li + 1

Di − Li + 1
(Di − Li + 1) + Li − 1

= Ci − Li + 1 + Li − 1 = Ci

Since the job has work of at most Ci , it must have finished in Di
steps, leading to a contradiction. □

14
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4.2 The Improvement
We now show that the proposed assignment of cores in Theorem 4.5

is an improvement over Equation 1. First, we prove that the new

assignment is never more pessimistic than the original, i.e. that

n′ ≤ n for heavy tasks that are schedulable under both methods:

Lemma 4.6. ⌈
Ci−Li+1
Di−Li+1 ⌉ ≤ ⌈

Ci−Li
Di−Li ⌉ for Li < Di

Proof. □

Case 1. Consider a heavy task τi ; because Ci ≥ Di and Li < Di :

Di − Li ≤ Ci − Li =⇒ 1 +
1

Ci − Li
≤ 1 +

1

Di − Li
=⇒

Ci − Li + 1

Ci − Li
≤

Di − Li + 1

Di − Li
=⇒

Ci − Li + 1

Di − Li + 1
≤

Ci − Li
Di − Li

=⇒

⌈
Ci − Li + 1

Di − Li + 1
⌉ ≤ ⌈

Ci − Li
Di − Li

⌉

Case 2. Now, consider a task for which Ci ≤ Di . Because all
subtask workloads are integer values, this implies that Li ≥ 1:

Ci − Li + 1 ≤ Di − Li + 1 and Ci − Li ≤ Di − Li

So:
⌈
Ci − Li + 1

Di − Li + 1
⌉ = ⌈

Ci − Li
Di − Li

⌉ = 1

Since n′ ≤ n, we know that Equation 1 never assigns more cores

to a process than the original in [26].

We now present two observations, which demonstrate the prac-

tical and intuitive benefit of the new assignment.

Observation 1. If a task τi has Li = Di , there should be some
number of cores on which the task is schedulable.

This can be stated, equivalently, that if a parallel task has a span

equal to its deadline, the task is still schedulable given sufficiently

many cores. Indeed, consider the specific case of a sequential task.

A sequential task having workload Ci and utilization Ui = 1 is

schedulable on a single, dedicated core. In this case, since Ui = 1,

we haveDi = Ci , and as a sequential task, Li = Ci . Then Equation 1

reduces to n = 0

0
which is undefined. The new assignment of Equa-

tion 2 is n′ = 1

1
, which is the correct result. In general, Equation 1

gives an undefined result for any task having Li = Di , since it

reduces to a fraction with 0 as denominator. Under Equation 2, the

fraction has 1 as the denominator, providing a well-defined result.

For Li > Di , a task is not schedulable; for integer-valued deadline

and subtask workloads, this reduces to Li ≥ Di + 1, in which case

n is undefined (having a 0 denominator) or the ceiling function of a

negative fraction.

Observation 2. An implicit-deadline task τi with integer-valued
deadline and subtask workloads, having Li = 1, can be scheduled on
a number of cores ni equal to the ceiling of its utilization, ⌈Ui ⌉.

In this case, the task is composed entirely of unit-time subtasks,

with no dependencies among them. It is fully parallelizable: under a

work-conserving scheduler, there will be no idle cores at any time

step (except the last one, if there are fewer remaining subtasks than

cores). The new allocation correctly assigns cores:

n′i = ⌈
Ci − Li + 1

Di − Li + 1
⌉ = ⌈

Ci
Di
⌉ = ⌈Ui ⌉

4.3 Capacity Augmentation Bound
The concept of a capacity augmentation bound was defined in [25],

which, as a way to describe the performance bound of a real-time

scheduler, provides an alternative to the resource augmentation

bound or utilization bound. We restate the definition here:

Definition 4.7. Given a task set Γ, having a total utilization U ,

a scheduling algorithm S with capacity augmentation bound b

can always schedule this task set onm identical unit-speed proces-

sors as long as the following conditions are satisfied:

(1) U ≤ m/b
(2) For each task τi ∈ Γ, Li ≤ Di/b

We show, for an implicit deadline task set Γ, that the capacity
augmentation bound of a greedy scheduler over a set of integer-

valued heavy tasks is at most 2. We begin by proving the following

lemma, which makes a statement similar to Lemma 4 in [26]:

Lemma 4.8. The capacity augmentation bound of a greedy sched-
uler for a single implicit-deadline heavy task τi with integer deadline
and subtask workloads assigned n′i = ⌈

Ci−Li+1
Di−Li+1 ⌉ processors is at

most 2.

Proof. Lemma 4 of [26] proves that for an implicit-deadline

heavy task τi with integer deadline and subtask workloads, if Li ≤
Di/2, then:

n = ⌈
Ci − Li
Di − Li

⌉ ≤ 2 ∗Ui

Since we know

n′ = ⌈
Ci − Li + 1

Di − Li + 1
⌉ ≤ n

it follows that n′ ≤ 2 ∗Ui □

Then, it follows that:

Corollary 4.9. For an implicit deadline task system Γ for which
there arem ≥ 2

∑
i Ui processors, and for which all heavy tasks τi

have Li ≤ Di/2, the number of processors available for light tasks is
at least nl iдht ≥ 2

∑
l iдht Ui .

This allows us to prove an upper-bound for the capacity aug-

mentation bound of federated scheduling for integer-valued tasks:

Lemma 4.10. The federated scheduling algorithm, which assigns

n′i = ⌈
Ci − Li + 1

Di − Li + 1
⌉

dedicated processors to each heavy task τi , has a capacity augmenta-
tion bound of at most 2.

Proof. For integer-valued task sets satisfying conditions (1) and

(2) of Definition 4.7, we have shown that the total utilization of light

tasks (those with Ui < 1) is less than nl iдht /2, and so these tasks

are schedulable by any algorithm that provides a utilization bound

of 2. Since they can be scheduled by partitioned EDF or partitioned

RM [7, 11], the capacity augmentation bound holds. □
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Figure 1: Decomposition of a task DAGG (top) into the DAG
G∗ of unit-workload vertices (bottom): c denotes subtask
workload, l is span, andw is subgraph work.

5 UNIT-WORKLOAD LIST SCHEDULING
The method presented in Section 4 for federated scheduling of

high-utilization integer-valued tasks assigns sufficient processors

to guarantee feasibility of any work-conserving scheduler, given

only each task’s workload, critical-path length, and deadline. Such

constant-time assignment risks over-provisioning processors to

each heavy task, leading to resource waste. In [3], Graham’s list

scheduling [20] is applied to heavy tasks; various heuristics for

prioritizing subtasks may produce feasible schedules on fewer pro-

cessors. List scheduling assigns available subtasks to idle processors

in a non-preemptive fashion; as noted in [14], this may lead to over-

allocation of processors to heavy tasks. However, allowing the idle

subtask to preempt may induce a switching problem.
3

To address this problem, we propose list scheduling of unit-

workload subtasks. An integer-valued parallel task τi , represented
by a DAG Gi , can be decomposed into a DAG G∗i consisting of

unit-workload vertices as illustrated in Figure 1: a vertex vi, j in
Gi with workload c is mapped to a totally-ordered sequence of c
vertices inG∗i with edges forming a path from the first to the last.

Any edges into vi, j would, in G∗i , connect to the first vertex in

the decomposition of vi, j . Any edges out of vj in Gi would now

come from the last vertex in its decomposition. For such a DAG,

list scheduling assigns a priority to each unit of work; this enables

corresponding subtasks in the original DAG Gi to be preempted at

unit time step boundaries.

5.1 Common List Scheduling Heuristics
The Critical Path rule (CP) for list scheduling selects available sub-

tasks for execution in order of the greatest span. The assignment of

spans to subtasks can be performed in a depth-first search fashion;

as each vertex’s span is assigned, the total span L of the graph is

updated. This can be performed in time O(|V | + |E |).
The subsequent decomposition of theDAGG to the unit-workload

DAGG∗, which we denote as the function Convert_Unit_DAG, pro-
ceeds by first initializing G∗ as a copy of G, then establishes the

set V ∗ as a subset of G∗ consisting of the vertices that are in G∗

when it is initialized. In real code,V ∗ may be realized as a collection

3
For example, consider least-laxity first scheduling: as the preempting subtask exe-

cutes, its span immediately decreases, triggering a preemption by the subtask it just

preempted, ad infinitum.

of pointers to vertices inG∗. The procedure then iterates through

vertices in (or pointed to by elements of) V ∗. For each vertex vi
having corresponding subtask workload ci , it creates ci vertices
with unit subtask workload. These vertices are arranged in a se-

quential total order, with an edge connecting each one to the next;

the first one is assigned a subtask span equal to that of vi (i.e., li ),
and each subsequent vertex is assigned a subtask span one less

than the previous. For all vertices vj in Eini , a new edge is created

from vj to the first vertex in the sequence. For all vertices vj in
Eouti , a new edge is created from the last vertex in the sequence to

vj . The original vertex vi is then deleted. Once all vertices in V ∗

(i.e., those that were originally in G) have been decomposed and

removed, the resulting DAG G∗ now contains vertices having only

unit workloads. Each existing vertex inG must be decomposed, and

the decomposition produces an additionalC−|V | vertices. Addition-
ally, each existing edge inG must be assigned to a new vertex inG∗

and C − |V | additional edges are created. So, the total running time

of the algorithm can be expressed as O(|V |+C − |V |+ |E |+C − |V |);
since C ≥ |V | we can simplify this to O(C + |E |). List scheduling
on G∗ can then proceed in time polynomial in C and |E |.

The Largest Number of Successors rule (LNS) for list scheduling
selects available subtasks for execution in order of the greatest

total workload of the subgraph rooted at the corresponding vertex

(referred to as subgraph work in [14]). Assignment of subgraph

work to a vertex vi ∈ G can be accomplished by summing over

the subtask workloads c j assigned to each vertex vj that can be

reached by a path from vi . A dynamic-programming approach can

be implemented over the entire graph to assign subgraph work

to all vertices in time O(|V | + |E |). LNS can thus also be applied

in pseudo-polynomial time for list scheduling of unit-workload

subtasks.

Note that the decomposition of an integer-valued task DAGG to

a unit-workload DAGG∗ will need to additionally assign a subgraph
work to each unit-workload vertex. This is accomplished similarly

to the assignment of span, and does not affect the algorithm’s

execution time complexity.

5.2 Combined Heuristics
We propose two new pseudo-polynomial time heuristics that com-

bine the CP and LNS rules for unit-workload list scheduling. As we

demonstrate in Section 7.2, these often produce optimal processor

assignments to high-utilization, integer-valued tasks.

5.2.1 The Heuristics. The first proposed heuristic, CP+LNS, pri-
oritizes subtasks according to greatest critical path first. Among

available subtasks having equal spans, it prioritizes according to

the greatest subgraph work. The algorithm for list scheduling of a

unit-workload parallel task on n processors using CP+LNS main-

tains a priority queue of vertices, avail, sorted by descending span,
then by descending subgraph work (this may be realized, e.g., by

a max-heap). This is initialized by iterating over all vertices of G∗,
and inserting those for which there are no incoming edges. It also

initializes an empty candidate schedule S.

For each unit time step before the deadline, it pops up to n
vertices from the head of avail (or as many as avail contains

if ≤ n). Each of these vertices is assigned to a processor at that

time step in S. Each of these vertices then has its outgoing edges
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Figure 2: A parallel task where LNS+CP is optimal. Vertices
v3 – v8 are each connected by an edge to each of v9 – v15.

removed, and as each edge is removed, the vertex pointed to by that

edge is checked for remaining input edges. Any vertices that no

longer have input edges are inserted into avail. If at any time step,

a vertex popped from avail has a greater span than the remaining

time before the deadline, CP+LNS will fail to produce a feasible

schedule, so it returns infeasible. If, after any time step, avail is
empty, then S is feasible as currently constructed (as discussed in

Lemma 5.5). After D time steps, if avail is not empty, then there

remain subtasks to be scheduled after the deadline, so the algorithm

returns infeasible.
Because each vertex must be inserted once into avail, and each

edge must be traversed once, the running time is O(|V ∗ | log |V ∗ | +
|E∗ |), whereV ∗ and E∗ are the respective sets of vertices and edges
in G∗. Since for each vertex vi ∈ G, the decomposition procedure

adds ci − 1 edges and vertices, |V
∗ | = C and |E∗ | = |E | +C − |V |. So

the running time can be expressed in terms of the original graphG
as O(C logC + |E | +C − |V |), or, more simply, as O(C logC + |E |).

Our second proposed heuristic, LNS+CP, prioritizes subtasks
according to greatest subgraph work first, and among available

subtasks having equal subgraph work, it prioritizes according to

the greatest critical path. It proceeds similarly to the CP+LNS algo-
rithm, but avail is instead sorted first by subgraph work, then by

span. Additionally, at each time step, it attempts to schedule any ur-

gent subtasks, i.e., those having a span equal to the remaining time

until the deadline (similarly to the heuristic in [14]). To do so, the

algorithm first traverses avail to find any such subtasks. If there

are more such subtasks than available processors, or if any subtask

in avail has a span that exceeds the time until deadline, the sched-

ule is infeasible. If there are processors remaining to be assigned at

that time step, subtasks are scheduled from the head of avail. Like
the CP+LNS heuristic, the LNS+CP algorithm must insert each

vertex once into avail and traverse each edge once. However, it

must additionally traverse avail at each time step. Since avail
can have up to C vertices, this may incur an extra O(C ∗ D) time;

this brings the running time of LNS+CP to O(C logC +C ∗D + |E |).

5.2.2 A List Scheduling Algorithm. Since algorithms that are poly-

nomial in task workload exist to implement both LNS+CP and

CP+LNS, neither is optimal for integer-valued tasks in general. Fur-

ther, neither can be expected to always assign fewer processors

than the other to all integer-valued tasks.

Example 5.1. Consider a task with deadline D = 5 and the DAG

structure shown in Figure 2 (note that edges connect each vertex in

{v3, . . . ,v8} to each vertex in {v9, . . . ,v15}). LNS+CP can provide
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Figure 3: A parallel task where CP+LNS is optimal.

Algorithm 1: Integer_List_Schedule(G,D)
Input: Integer-valued task DAG G and deadline D
Output: A feasible schedule S for a number of processors n

1 Initial Setup
2 L,G ← Calc_Spans(G)

3 G ← Calc_Subgraph_Work(G)

4 G∗ ← Convert_Unit_DAG(G)

5 n ← ⌈CiDi
⌉

6 nmax ← ⌈
Ci−Li+1
Di−Li+1 ⌉

7 if n == nmax then return greedy, n ;

8 while n < nmax do
9 if CP_LNS(G∗,D,n) != infeasible then return S, n;

10 if LNS_CP(G∗,D,n) != infeasible then return S, n;
11 n ← n + 1

12 end
13 return greedy, n

a feasible schedule on 3 cores. CP+LNS, however, requires 4 cores.
On 3 cores, it will first schedule v1, then any two of {v3, . . . ,v8}.
At the second time step, it will schedule another three vertices from

{v3, . . . ,v8}. At the third time step, there are only two available

vertices (v2 and the remaining vertex from {v3, . . . ,v8}). Since all
processors must execute at each time step for the deadline to be

met, a feasible schedule will not be constructed.

Example 5.2. Consider a task with deadline D = 5 and the DAG

structure in Figure 3. CP+LNS can provide a feasible schedule on 3

cores. LNS+CP, however, requires 4 cores. On 3 cores, it will first

schedule {v1,v2,v3}, as no vertices have a span of 5 or greater.

At the next time step, it will schedule {v8,v9,v10}; v11 must also

be scheduled at this time, as it has a span of 4, but there are no

available processors remaining.

Because neither heuristic is guaranteed to assign fewer proces-

sors than the other, and because both execute in pseudo-polynomial

time, we propose to assign processors to a heavy integer-valued

task according to Algorithm 1. This first computes the span and sub-

graph work of each subtask, then computes the minimum number

of processors nmin that could feasibly schedule the task (the ceiling

of the task utilization) and the maximum number of processors

nmax needed according to Theorem 4.5. If the two are equal, it
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returns that value; otherwise, it decomposes the DAG to the unit-

workload DAG G∗. It then attempts to construct a schedule using

CP+LNS then LNS+CP for nmin processors,
4
returning if either is

feasible. Otherwise, it continues to call them both in an iterative

fashion, increasing n by one for each iteration. It stops when n
reaches nmax ; at this point, any greedy algorithm will successfully

schedule the task.

5.3 Correctness of Algorithm 1
Lemma 5.3. The function Convert_Unit_DAG is surjective over

the set G of finite parallel task DAGs with integer-value subtask
workloads onto the set G∗ of finite parallel task DAGs with unit-value
subtask workloads.

Proof. This follows from the function Convert_Unit_DAG, which
for any G ∈ G, will produce a DAG G∗ ∈ G∗. Further, G∗ ⊂ G,
and for any G∗ ∈ G∗, Convert_Unit_DAG(G∗) = G∗. Therefore
the function is surjective. □

We also present the following lemma, which states that if a

parallel task DAG G with deadline D is decomposed to a DAG G∗

by the application of the Convert_Unit_DAG function, and G∗ is
schedulable, thenG∗ is also schedulable by a preemptive scheduler

(i.e., one for which subtask execution can be preempted).

Lemma 5.4. Given aDAGG and deadlineD, if there exists a feasible
schedule S∗ for the DAG G∗ = Convert_Unit_DAG(G), then there
exists a function f : S∗ → S where S describes a feasible schedule
for G.

Proof. Consider amodified algorithm for the Convert_Unit_DAG
function that adds, to each unit workload vertex in the resulting

graphG∗, the index of the corresponding vertex inG from which it

was generated (like in Figure 1). Then, for the schedule S∗, create

a schedule S by replacing replace all vertices v∗ with the original

vertex v ∈ G.
IfS∗ is a feasible schedule, then there will be nov∗ inS∗ that exe-

cutes after the deadline; similarly, then, inS all execution will occur

before the deadline. Since for each vi ∈ G having a corresponding

subtask workload of ci , there are ci corresponding vertices in G
∗
,

when these are converted back to vertices in G, each vertex in G
will be assigned to execute in ci slots in the schedule S. Further,

each slot will be at a different time step: two vertices v∗ generated
from the same vi cannot both be in avail at the same time step,

since vertices are added to avail only when they no longer have

incoming edges, and all vertices generated from the same vi form
a totally-ordered sequence with connecting edges.

Additionally, if vi ≺ vj , then vi it will occupy only slots at

time steps before the slots occupied by vj : there is a directed path

from the last unit vertex generated from vi to the first unit vertex

generated from vj inG
∗
, which means that vj (and its successors)

will not be moved into avail until vj (and its predecessors) have

been scheduled. Thus, since each vi ∈ G will be scheduled in S

for ci unique time-steps before the deadline, and all precedence

constraints are respected, S is feasible. □

4
Trying CP+LNS before LNS+CP is motivated by results shown in Section 7.2, which

suggest that CP+LNS assigns fewer processors, on average, for the task DAGs tested.

Algorithm 2: Federated_Scheduling(Γ,m)

Input: A set Γ of integer-valued tasks τi with DAGs Gi and

deadlines Di ;m processors

Output: Feasible schedules Si for each task

1 Init
2 mr ←m ; ▷ Remaining processors

3 forall Heavy tasks τi ∈ Γ do
4 ni ,Si = Integer_List_Schedule (Gi ,Di )

5 mr ←mr − ni
6 if mr < 0 then return infeasible ;

7 end
8 if Can schedule light tasks onmr processors then return S ;

9 else return infeasible ;

Lemma 5.5. The Integer_List_Schedule algorithm always pro-
duces a feasible schedule for G∗.

Proof. For any given value of n, the CP_LNS and LNS_CP algo-
rithms schedule vertices in a greedy fashion; therefore, by The-

orem 4.5 both are guaranteed to produce a feasible schedule for

the value nmax given by Equation 2. Integer_List_Schedule at-

tempts both algorithms for values of n up to nmax − 1, after which

any greedy scheduler will produce a feasible schedule.

It remains to prove that any schedule produced for n < nmax
is feasible. Both CP_LNS and LNS_CP produce a schedule iff avail
is empty after any time step before D. Assume by contradiction

that avail is empty, but the scheduleS produced is not feasible. The

schedule S will have respected all precedence constraints among

vertices: if a vertex is placed in avail, it has no remaining input

edges, so all of its predecessors have already been scheduled; there-

fore, a vertex can only be scheduled after its predecessors. Since a

schedule has been produced for up to D time steps, no vertex in S

will be scheduled after D. So, for S to not be a feasible schedule for

G, it must be the case that there is a subset V of vertices in G not

in S. But, since G (and therefore V ) is finite, and G is acyclic, there

must be some vertex v ∈ V that has no input edge. But, if this were

the case, it would be in avail. Therefore, if avail is empty after

any time step before D, the produced schedule S is feasible. □

The theorem follows:

Theorem 5.6. The Integer_List_Schedule algorithm produces
a feasible schedule for a parallel task τi having integer-value subtask
workloads and an integer deadline D.

5.4 Application to Federated Scheduling
For completeness, we describe howAlgorithm 1 can be incorporated

into a federated scheduling algorithm for a complete task set, on a

given number of identical processors. The procedure is outlined in

Algorithm 2. Heavy tasks are scheduled on dedicated processors

according to Integer_List_Schedule; the remaining processors

are allocated to light tasks, which are scheduled according to an

existing multiprocessor scheduling algorithm (e.g. partitioned EDF

or partitioned RM). The algorithm fails if there are insufficient

processors to schedule any task.
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Figure 4: An isomorphism from a task with deadline 3 and
unit-workload DAG G∗ to a subgraph of GCPU for 2 cores.

6 OPTIMAL PROCESSOR ASSIGNMENT
Despite beingNP-Complete in general, assigning an optimal num-

ber of processors to a constrained-deadline integer-valued parallel

task often can be solved efficiently in practice. In this section, we

discuss the problem of finding the minimum number of processors

n on which a task τi with integer-valued deadline Di and subtasks

with integer-valued workloads (and therefore an integer-valued

total workload Ci ) can be feasibly scheduled.

Certainly, Algorithm 1 presented in the previous section might

produce an optimal assignment; indeed, if it assignsnmin = ⌈Ci/Di ⌉

cores, then the assignment is known to be optimal. However, in

general, this is not guaranteed to be the case. For those cases where

Algorithm 1 does not produce a feasible schedule on nmin cores,

an optimal schedule can still be constructed. In [6], it is shown that

the problem of producing a feasible schedule for a parallel task,

given its DAG, can be represented as an integer linear program,

then solved using a standard ILP solver.

We propose an alternative approach: the problem of constructing

a feasible schedule for an integer-valued task on n processors, given

its DAG, can be transformed in polynomial time to a subgraph

isomorphism problem. Despite being NP-Complete in general,

algorithms exist that solve this efficiently in many cases. We outline

a procedure by which this can be used to assign an optimal number

of processors to a task; in Section 7.3, we demonstrate the viability

of this method for a large set of randomly-generated synthetic tasks.

The procedure is illustrated in Algorithm 3. For a high-utilization

integer-valued parallel task, it takes its representative DAG G, a
deadline D, and a number of processors n. It decomposes G into its

corresponding unit-workloadDAGG∗, then generates a DAGGCPU
in which each vertex represents a time step t of execution on a

processorm ∈ {1, . . . ,n}; there areD∗n such vertices, indexedvt,m .

Edges are constructed such that for any two vertices va,x , vb,y , if
a < b then there exists an edge from va,x to vb,y ; each vertex in

GCPU has an edge to every other vertex corresponding to a later

time step. The algorithm then attempts to find a subgraph ofGCPU
isomorphic toG∗; if it finds an isomorphism, it uses this to construct

a schedule S for G∗, as illustrated in Figure 4. From Lemma 5.4,

this can mapped to a schedule for the original DAG G. The time to

constructGCPU is (D ∗ n)2; adding this to the time to constructG∗

from G, we have a time complexity of O(D2 ∗ n2 +C + |E |). Since
D∗n ≥ C (otherwise, the task is not schedulable onn processors) and
C2 > |E |, we can state this more simply as O(D2 ∗n2). Constructing
a schedule from the isomorphism f involves assigning each subtask

vi ∈ G to processorm at time t given by the mappingvt,m = f (vi );

Algorithm 3: Subgraph_Isomorphism_Schedule(G,D,n)

Input: Integer-valued task DAG G with deadline D and a

number of processors n
Output: A feasible schedule S

1 Initial Setup
2 G∗ ← Convert_Unit_DAG(G)

3 S: an empty candidate schedule

4 Generate CPU DAG
5 GCPU ; ▷ Empty DAG

6 for t ← 0 to D − 1 do
7 form ← 1 to n do
8 Create vertex vt,m in GCPU
9 end

10 end
11 forall vt,m ∈ GCPU do
12 for t∗ ← t + 1 to D − 1 do
13 form∗ ← 1 to n do
14 Create edge vt,m → vt ∗,m∗ in GCPU
15 end
16 end
17 end
18 Find an isomorphism f : G∗ → SCPU for SCPU ⊆ GCPU
19 if f exists then
20 forall vi ∈ G

∗ do
21 vt,m ∈ GCPU = f (vi )

22 Assign vi to processorm at time t in S

23 end
24 return S
25 else return infeasible;

this simply traverses each vertex, and so can be performed in time

O(C).

6.1 Correctness of Algorithm 3
We begin with the following lemma:

Lemma 6.1. For an integer-valued task τ with DAGG and deadline
D, if there is a subset of GCPU isomorphic to G∗, then there exists a
feasible schedule on n cores.

Proof. Assume there exists an isomorphism f betweenG∗ and a
subset ofGCPU . The scheduleS produced by Algorithm 3 is feasible

for the corresponding unit-workload task: since each vertexvi ∈ G
∗

is mapped to a vertex vt,m in GCPU , and since t takes values in
the range [0,D − 1], this means that each unit of work is scheduled

before the deadline. Sincem ≤ n, no processor is assigned more

than one unit of work at each time step. Further, for vi ,vj ∈ G
∗
, if

vi ≺ vj , then f (vi ) ≺ f (vj ); the edges added to GCPU guarantee

that forva,x ,vb,y ∈ GCPU , ifva,x ≺ vb,y , then a < b. This implies

that vi is scheduled at an earlier time than vj , so the schedule

follows all precedence constraints specified by G∗. By Lemma 5.4,

if S is feasible for G∗ on n processors, then it can be mapped to a

feasible schedule G on n processors. □

Next, we prove the inverse with two lemmas.
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Lemma 6.2. If there exists a feasible non-preemptive schedule for
the unit-workload task represented byG∗ on n processors, then there
is an isomorphism f between G∗ and a subset of GCPU .

Proof. A non-preemptive schedule of G∗ on n processors must

assign each unit of work represented by a vertex vi ∈ G∗ to be

executed on a processor 0 < i ≤ n for some time [t , t + 1]. All

vertices must be so scheduled such that t ≤ D − 1 to guarantee that
the task’s deadline is met.

We argue that, given a feasible non-preemptive schedule, another

non-preemptive schedule may be constructed such that all vertices

are scheduled at some time t ∈ N0. Indeed, if some vertex vi is
scheduled at a time t ∈ R+, it may be scheduled instead for time

t ′ = ⌊t⌋; its successors will still begin execution after it, and every

subtask will still complete execution before the deadline. All of

vi ’s predecessors must have been scheduled to start at some time

t∗ ≤ t − 1; this implies that they now start at a time t∗′ ≤ ⌊t − 1⌋,
i.e. t∗′ ≤ t ′ − 1 and so complete by t ′; thus, all predecessors of vi
still complete before vi begins execution in the new schedule.

So, if G∗ can be non-preemptively scheduled on n processors,

each of its vertices is scheduled at some time step t ∈ N0 < D. This
means that each vertex can be mapped to exactly one node vt,m
inGCPU . This defines a mapping f : G∗ → GCPU . For vi ,vj ∈ G

∗
,

if vi ≺ vj , a feasible schedule must have vi execute before vj .
This implies that for f (vi ) = va,x and f (vj ) = vb,y , a < b; so
there is an edge connecting va,x to vb,y in GCPU ; thus, f is an

isomorphism. □

Lemma 6.3. If a unit-workload task can be scheduled on n proces-
sors, then there exists a feasible non-preemptive schedule.

Proof. Assume that there is some unit-workload task τ with

deadline D ∈ N represented by a DAG G∗ for which there exists a

feasible preemptive schedule. Assume that the schedule is work-

conserving, i.e., there is no time at which a processor is idle when

there is an available subtask for it to execute.
5
Since the schedule

is work-conserving, the response time R of the task must be an

integer. We say that the last preemption occurs at time t∗: subtask
vi is preempted by subtask vj , and no preemption occurs after this.

Assume that if vj does not preempt vi at this point, the task will

not meet its deadline. This implies that, if vj does not preempt vi ,
then there is a subtask vk for which vj ≺ vk that will complete

execution at some time t ′ > D. Without loss of generality, let’s

consider the time tc that is the maximum completion time among

all subtasks vk : vj ≺ vk . We say that tc = D + δ . By preempting,

vj begins execution some time ϵ earlier than if it must wait for

vi to complete; since vi has a unit workload, 0 < ϵ < 1. So, by

preempting, the maximum completion time among all subtasks vk
becomes t ′c ≥ D + δ − ϵ . At this point, no more future preemptions

must occur, so all subtasks complete execution before D (under the

assumption that the preemptive schedule is feasible). This implies

that R = tc , i.e., the completion time of the subgraph rooted at vj is

5
If there exists a feasible preemptive schedule that is not work-conserving, then a

feasible schedule must also exist that is work-conserving; indeed, consider some

processor that is idle at some time t in the non-work-conserving schedule, and assume

that (1) there is some time t ′ > t for which it is scheduled to execute work, but that

(2) there is available work for it to do at time t . We can have it begin execution of the

available work at time t , and as long as that work can be preempted by the work that

was originally scheduled for time t ′, the schedule remains feasible.

the completion time of the task. Since R ∈ N, we know D + δ ∈ N
and t ′c ∈ N. But since t

′
c + ϵ ≥ D + δ and ϵ < 1, this implies that

for D + δ to be an integer, ϵ = 0. This forms a contradiction, and

so there must be a feasible schedule even if vj does not preempt

vi . Thus, if there exists a feasible schedule for a unit-workload

task, then a feasible non-preemptive schedule for that task must

exist. □

The theorem follows:

Theorem 6.4. For an integer-valued task τ with DAGG and dead-
line D, there exists a feasible schedule on n cores iff there is a subset
of GCPU isomorphic to G∗.

6.2 Solving Subgraph Isomorphism Problems
Several algorithms exist for solving subgraph isomorphism prob-

lems [24]. In general, such algorithms must find a pattern graph

inside a larger target graph, which can be solved by constraint

programming models. One such algorithm, proposed by McCreesh

and Prosser [29], introduces a backtracking approach that allows

the search to be parallelized, and introduces other heuristic opti-

mizations. This algorithm, along with a variety of domain-specific

search techniques suitable to specific classes of graphs, has been

implemented in the Glasgow Subgraph Solver [30], which can run

sequentially or in parallel, and produces a subgraph isomorphism

if one exists. In Section 7.3, we use the Glasgow Subgraph Solver to

solve the subgraph isomorphism problem in Line 18 of Algorithm 3.

We find that it is efficient in its execution, and provides a suitable

means by which to assign processors optimally to high-utilization

integer-valued tasks.

6.3 Application to Federated Scheduling
For completeness, we describe how Algorithm 3 can be applied to

federated scheduling. Similarly to Algorithm 1, we can determine

the minimum sufficient and maximum necessary number of cores

that must be assigned to an integer-valued task to guarantee schedu-

lability, then attempt to construct a feasible schedule for each num-

ber of processors in the range; the minimum number of processors

on which a feasible schedule is produced is an optimal assignment,

per Theorem 6.4. In fact, a call to Subgraph_Isomorphism_Schedule
could be placed after Line 10 of Algorithm 1; this would allow Algo-

rithm 1 to attempt to find a schedule using its pseudo-polynomial

time heuristics first, before solving the NP-Complete problem, for

each candidate number of processors.

The modified Integer_List_Schedule could then be used in

Algorithm 2 to provide federated scheduling over a set of tasks,

guaranteeing that each high-utilization task is allocated the mini-

mum sufficient number of dedicated processors.

7 EVALUATION
In this section we evaluate the new scheduling techniques pre-

sented in this paper. Section 7.1 examines how many processors

are assigned based on Theorem 4.5, versus the original assignment

described in [26], to gauge how often the new approach shows

an improvement. Section 7.2 then compares the performance of

the CP+LNS and LNS+CP heuristics to each other and to the opti-

mal assignment of cores. Finally, Section 7.3 quantifies the mean
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C ∈ NUM % FEWER % CPUs

[3,10] 120 35.8 81.6

[11,100] 161,580 21.7 82.0

[101,1000] 166,005,300 8.70 86.4

Table 1: Comparison of Equations 1 and 2

and maximum run-times of a representative subgraph solver as a

function of the probability of pair-wise graph edges.

7.1 New Federated Scheduling Bound
To gauge whether the new assignment of processors in Theorem 4.5

allocates fewer processors than the original approach in [26], we

begin by comparing the values of n and n′ according to Equations 1
and 2 respectively. We generate heavy integer-valued tasks char-

acterized only by workload C , span L, and deadline D. For C , we
iterate over all integers in the range [3, 1000]; for each workload,

we generate values of D over all integers in the range [1,C − 1];6

for each deadline, we generate values of L over all integers in the

range [1,D − 1].7 For each generated task, we compute n and n′.
Results are summarized in Table 1. We consider tasks with work-

loads in the ranges C ∈ [3, 10], C ∈ [11, 100], and C ∈ [101, 1000].
For each subset, we report the total number of tasks generated (la-

beledNUM), the percentage of tasks for which Equation 2 allocates

fewer processors than the original (labeled % FEWER), and the

percentage of total processors assigned by Equation 2 compared

to the original (labeled % CPUs). Notice that as C increases, the

range of D increases, and so the +1 terms in the numerator and

denominator of Equation 2 contribute less to the assignment; this

is reflected in the fact that as our range over C increases, the new

assignment provides an improvement in fewer cases; nonetheless,

the improvement remains significant for large values ofC . For very
large values ofC and D, it may be possible to express values using a

courser time resolution (e.g., milliseconds instead of microseconds)

to see more improvement; a study of this is deferred to future work.

Next, to assess similar improvement for admission control, we

consider task set admission under both naïve methods of allocating

processors: for a system havingm processors, we want to know

the proportion of task sets having a given utilization that can be

admitted, given core allocations according to Equations 1 and 2.

We iterate over integer utilizations U in the range [2, 64]; for each

value, we generate 1000 task sets with a total utilization ofU . Each

task set consists of a number of tasks chosen uniformly from the

range [1,U /2] (whereU /2 is rounded down). This guarantees that

each task can be high-utilization. We use a modified UUniSort [9]

algorithm to assign a utilization to each task. Utilization values

are selected from the real numbers, and we guarantee that each

task has a utilization greater than 1. Each task is then assigned an

integer-valued deadline in the range [2, 1000], selected using the log-

uniform distribution described in [16] (Eqn 4). Each task τi in the set
has its workload assigned according toCi = ⌊Ui ∗Di ⌋ to guarantee

an integer value. Finally, each task’s span is selected uniformly

from the integers [1,Di − 1]. For each task set so generated, we

compute the total number of cores n and n′ required by the task

set if assigned according to Equations 1 and 2 respectively. This

6
For D ≥ C , a single processor is sufficient.

7
The result of [26] cannot be applied to tasks having L = D .
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Figure 5: Comparison of admitted task sets form = 64

allows us to determine, for systems having m = {4, 8, 16, 32, 64}
processors, how many task sets at each utilization will be admitted

onto the system, given the two federated scheduling algorithms.

Results for 64 processors are illustrated in Figure 5. Results for

systems having fewer numbers of cores are qualitatively similar: for

task sets with low utilizations compared to the number of proces-

sors, both methods are able to admit almost all of the task sets. For

task sets with utilizations close to the number of processors, neither

method is able to admit many of the task sets. For task sets with

utilizations from about 1/4−3/4 of the number of processors, using

the new allocation of Equation 2 allows admission of significantly

more task sets compared to the original.

7.2 Comparing Heuristics
We next compare the heuristics discussed in Section 5; as these

exploit a parallel task’s DAG structure, we evaluate these methods

for synthetic tasks over a domain of randomly-generated repre-

sentative DAGs. For each generated task, we create a DAG with a

number of nodes sampled uniformly from 5−250; each node is then

assigned an integer workload in the range 5−10, and the total work-

load C is then calculated. The structure of the DAG is then defined

by edges assigned according to the Erdős-Rényi method [10]: for

each pair of vertices, an edge connecting them is added with some

probability p; the edge is always directed from smaller to larger

vertex index to guarantee that the graph remains acyclic. Once this

procedure completes, we continue to add edges at random between

disconnected vertices until the graph is weakly connected, similarly

to the method used in [14]. Once the DAG is generated, its span L
is calculated, and the task is assigned a deadline sampled uniformly

from the range [L,C − 1]. We generate 1000 tasks each for values of

p ranging over 0.05 − 0.95 in steps of 0.05, for a total of 19,000 task

DAGs. For each task, we determine the number of cores assigned

to it by the CP+LNS and LNS+CP heuristics and use the method

presented in Algorithm 3 to find the optimal processor assignment.

We summarize several findings in Table 2. First, observe that

over the space of 19,000 generated task DAGs, Equations 1 and 2

both assign ⌈C/D⌉ cores about half the time (though Equation 2

does so for about 0.9% more of the tasks). Despite the similarity

of this statistic, Equation 2 outperforms Equation 1 significantly:

Equation 1 is undefined (due to a 0 in the denominator) for 1.2%

of the tasks, and it allocates more cores than Equation 2 for an

additional 11.6% of the generated tasks.

We also find that theCP+LNS and LNS+CP heuristics presented

in Section 5 perform very well. They both produce optimal core

21
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Criteria Occurrences % of Total

Tasks 19,000 100

Eqn. 1 is undefined 222 1.2

⌈C/D⌉ = Eqn. 1 9,404 49.5

⌈C/D⌉ = Eqn. 2 9,567 50.4

Eqn. 2 assigns fewer than Eqn. 1 2202 11.6

CP+LNS is optimal 18,641 98.1

LNS+CP is optimal 18,546 97.6

CP+LNS assigns fewer than LNS+CP 98 0.5

Table 2: Heuristic Performance Over Random DAGs

assignments for a large proportion (> 97%) of the generated tasks.

This suggests that, for the class of DAGs considered, either heuristic

can be used to produce an optimal core assignment with reasonable

certainty. Further, we find that CP+LNS never assigns more cores

than LNS+CP for the tested DAGs; this motivates the choice, in

Algorithm 1, to attempt CP+LNS first for each value n, before
attempting LNS+CP.

7.3 Execution Time of Subgraph Solver
For each of the parallel tasks generated in the previous subsection,

we measured the time it took to find the optimal processor assign-

ment according to Algorithm 3. The algorithm runs in constant

(and brief) time for tasks where where ⌈C/D⌉ is equal to Equation 2;
we exclude these cases from our results.

Measurements were taken on a system with two Intel Xeon Gold

6130 Skylake processors running at 2.1 GHz, and with 32GB of mem-

ory. HyperThreading, SpeedStep, and TurboBoost were all enabled.

We used the Glasgow Subgraph Solver [30] to perform Line 18 of

the algorithm.
8
While the solver supports parallel solution search,

we invoked it in a single-threaded sequential mode; this allowed us

to write a multithreaded wrapper to run multiple instances of the

solver, each for a different DAG from the set of 19,000. Results are

plotted in Figure 6, where we show the mean and maximum exe-

cution time for each pairwise edge probability p used to generate

the DAGs. In general, DAGs with higher values of p (for which we

would expect more edges) require more time to solve. The longest

measured execution time was just over 21 minutes; this suggests

that the method proposed in Section 6 for constructing an optimal

schedule on a minimum number of cores for an integer-valued

task is viably handled by the Glasgow Subgraph Solver, even when

running it in a single thread.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we have considered federated scheduling for integer-

valued tasks.We presented Equation 2, a new, constant-timemethod

for assigning sufficient cores to these tasks, and demonstrated that

in practice, it may allow more task sets to be admitted on systems

with constrained numbers of processors compared to the original

assignment in [26]. We also presented two pseudo-polynomial time

heuristics for list scheduling of unit workload tasks, and demon-

strated that these can be applied to arbitrary integer-valued tasks.

Over a set of synthetic tasks generated according to the Erdős-Rényi

8
The Glasgow Subgraph Solver is available at https://github.com/ciaranm/glasgow-

subgraph-solver; we used the master branch at commit 5f60e1f (the latest commit on

February 9, 2022)
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Figure 6: Solver Execution Times

method, both heuristics produce optimal processor assignments

more than 97% of the time; the optimal values were found by our

proposed representation of the scheduling problem as a subgraph

isomorphism search. Using the Glasgow Subgraph Solver, it is vi-

able to solve the problem for the generated tasks, even with a

single-threaded implementation.

For future work, we would like to apply these same heuristics

to sets of tasks generated according to other random DAG gen-

eration methods, like those detailed in [10]. We intend to study

the costs and benefits of expressing workload and deadline val-

ues using a courser time resolution (e.g., for values expressed in

microseconds, by rounding up the workload and rounding down

the deadline to the nearest millisecond) or of converting floating-

point to integer values. We will also consider the application of our

new constant-time core allocation method, as well as these heuris-

tics, to semi-federated scheduling [22], reservation-based federated

scheduling [36], and federated scheduling of elastic tasks [32].
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