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Heterogeneous computing systems consisting of multigifqrim types (e.g., general purpose pro-
cessors, FPGAs etc.) are increasingly being used to achigher performance and lower costs
than can be obtained with homogeneous systems (e.g., pavadgsters). Different platforms have
different languages and simulators associated with themo-Ripe has been developed as a toolset
to reduce the complexity inherent in both the performanadyais and in the deployment of an
application to a diverse resource set. In Auto-Pipe, appbos are expressed using the data flow
coordination languag¥, which describes the application in terms of interactioetsveen functional
blocks.

As part of the Auto-Pipe system, X-Sim has been developedfedesated distributed simulation
system that can be used to conveniently and efficiently sitauhpplications. X-Eval has been
developed as a post simulation analysis tool, as part offart & optimize the performance of the
application.

This thesis presents an overview of the Auto-Pipe systesgrigions of X-Sim and X-Eval, and
sample applications to illustrate the Auto-Pipe developnegcle with an emphasis on the simula-
tion and analysis aspects.
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Chapter 1

Introduction

This thesis presents X-Sim and X-Eval, tools for simulatme analysis of applications within the
Auto-Pipe [9, 20] framework. Auto-Pipe is a developmentiemment that enables high perfor-
mance applications, particularly streaming applicatidgase developed for a diverse set of target

computational platforms and connection topologies.

Within this environment, X-Sim provides a mechanism to sateuthe entire application, both for
correctness checking as well as for performance profilingrdduces a series of traces that record
events that happened during the simulation. X-Eval serses @ost-simulation analysis tool that
uses these traces to calculate performance measuremdrdgeate performance models of system
elements. A tool planned for the future, tentatively name®g, will use results and models
generated by X-Sim and X-Eval to create more optimal maggofghe application to the target

processing architecture.

This introductory chapter describes the background of pigitiormance streaming problems and
how Auto-Pipe was developed to aid the development proCHss.motivation for simulation and
performance analysis within this framework is investigatand the goals for X-Sim and X-Eval
within Auto-Pipe are described. Related work to both X-Simd X-Eval is discussed and compared.

Finally, the outline for the rest of the thesis is presented.



1.1 Background

Heterogeneous (or hybrid) processing architectures stimgiof a multitude of different platform
types (e.g., general-purpose processors, FPGAs, chifipnogiessors) are often the target for high-
performance applicatiohs This is generally motivated by a desire to leverage theusgjrengths
of each platform so that higher performance (or lower costtlie same performance) can be

achieved. Developing applications to run on such a divessefglatforms, however, is difficult.

Target applications that we consider are predominantlyasting scientific computation applica-
tions. These applications typically involve a large amoointiata flowing sequentially through a
pipeline of computational stages, with each stage perfaggran incremental computation. For ex-
ample, an application currently being developed using th®Aipe system is VERITAS [22], the

Very Energetic Radiation Imaging Telescope Array SysterERWTAS is an astrophysics project

where data gathered from an array of telescopes is stregmmahh a processing architecture to
analyze it. The data is generated by sensing Cherenkovitadi@oduced by gamma rays striking

the atmosphere.

Streaming scientific applications like VERITAS can be repreed using an acyclic dataflow graph.
Figure 1.1 shows a dataflow graph for a simple example strepapplication (not VERITAS) that

serves as an illustrative example.

Generate

el

Uent Multiply Square Output
e3 ed

Generate mul sqr out

gen2 o2

A 4

Figure 1.1: Sample dataflow graph

The algorithm represented by this dataflow graph considitgetasks shown in the graph ddocks
A taskmay represent any computational process, from as simpleaddition to as arbitrarily com-

plex as required. Adlockis the representation of a computational task in a datafl@plgrBlocks

1Background text is similar to text in [10].
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are connected to each other &gges Edgesare dataflow graph representations of communication

channels between tasks. They can be thought of as infinites:IFhe two blocks on the lefgenl
andgen2, representlata sourcedecause they have no incoming edgbsta sourcesare blocks
that produce data without getting an input from other bloickthe dataflow graph. Sample data
generation methods include reading a file or database ngadsensor, or using a random number
generator. Data from the two generating blocks are sentemggse 1 ande?2 to thenul (multiply)
block. After being processed by theil block, data is streamed through thgr (square root) and
the out blocks. Theout block represents data sink a block which has one or more input ports but
no output ports. Results can be stored by the sink block ia filgs or a database, or simply be
output to screen. The presented dataflow graph is acycliausecthere is no path by which data
can re-enter a block it has already left. Many high perforoeascientific computations can either
be represented by such an acyclic dataflow graph, or tharidensive computation part can be

reduced to such a representation.

Processorl (—D C| By m— FPGA1

Processor2

Ethernet LAN

Processor

Figure 1.2: Sample processing architecture

Let us now consider a sample processing architecture teagitten example application can be
deployed to. Figure 1.2 shows three processors connectedctoother using an Ethernet LAN.

The first processor also has an FPGA (Field ProgrammableA3e&tg) linked to it using a PCI bus.
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A general processing architecture consists of multq@enputational resource€CRs) connected

together. A CR is a device that can execute tasks given by @itation description. Examples of
CRs include different types of general purpose proces$aiPP§), field programmable gate arrays
(FPGAS), digital signal processors (DSPs), network pmmas(NPs), graphical processing units
(GPUs), as well as others. Support for GPPs and FPGAs igiglimalt into Auto-Pipe. The Auto-
Pipe system is extensible so that in the future other CRs lsanb& supported. In the processing
architecture given in Figure 1.2, the instantiated CRslameetIntel x86 processors and one Virtex
2 FPGA.

The CRs in a processing architecture are connected usi@gonnect resourceRs). An IR is

a communication mechanism between two CRs. For exampleigiurd=1.2, the Ethernet LAN
connecting the processors, and the PCI bus connecting shericessor to an FPGA are examples
of IRs.

Processorl FPGA

PCIlBus

> sqr out

Processor2

Ethernet LAN

Processor3

Figure 1.3: Sample mapping

Mappingan algorithm to an architecture is the process of assigréat) block to a CR, and each
application edge to an IR. Consider the problem of mappimgatigorithm in Figure 1.1 to the

architecture in Figure 1.2. A possible mapping is presemédgure 1.3.
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In this mapping, the twgen blocks and therul block are mapped to one processor. Data from

thenul block passes over the PCI bus to the FPGA, wherestireandout blocks are mapped.
With this mapping, Auto-Pipe generates a single executabe deployed or ocessor 1, and

a single bit file to be deployed on the FPGA.

Processorl FPGA
| PCIBus
5'| mul | > sqr out
Processor2

Ethernet LAN

Processor3

I gen2 |

Figure 1.4: Alternate sample mapping

An alternate mapping is shown in Figure 1.4. In this mappiingtwogen blocks have been moved
to other processors. This new mapping represents a moré digtréoution of blocks to CRs, and
exploits computational parallelism present in the aldgonit If the communication delay over the

Ethernet IR is not too high, this mapping may have higherquardnce than that of Figure 1.3.

1.2 Motivation

Coordinating the multiple development languages and desityironments associated with very
different computational resources is awkward and errongr. Implementing and evaluating dif-

ferent mappings to optimize the performance of applicatiisna time consuming, complex task.

2Motivation text is similar to text in [10]
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While simulation is an essential tool in the developmenthoédblogy of some individual platforms

(e.g., FPGAS), simulating a complete hybrid system is carafdd by the need to coordinate dis-
parate compilers and simulators, often with very differenérfaces, options, and fidelities. In
addition, implementing communication mechanisms to éeldata between different devices also

increases development time.

Auto-Pipe, including X-Sim and X-Eval, were developed tai@s$s these issues. Applications are
expressed in Auto-Pipe through use of a data flow coordinddéinguage calleX, which describes
the interactions of functional blocks that comprise thdiapfion. The functional blocks themselves
are expressed in the native language(s) associated withatidevare platforms on which they are
to be deployed. For example, an FFT block to be deployed onRP®A-could be authored in
a hardware description language (HDL), such as VHDL or 9grilwhile a file /O block to be
deployed on a general-purpose processor might be author€d Data communication between
blocks deployed on distinct platforms is automaticallyyided by the system, removing the need

for the application developer to manually address thisireqent.

X-Sim is the simulation component within Auto-Pipe. It uggatform-specific native simulation
tools and direct execution capabilities to simulate theehiybrid system. This helps in establishing

functional correctness and gathering system-wide pediao® information.

Key features of X-Sim are:

Integration into the Auto-Pipe design flow.

Integration of multiple, potentially very different sinaibrs into a single federated simulation.

Automation of the system simulation by coordinating indisal simulator runs.

Collection of performance data associated with resouncdgasks.

Accelerating simulations by taking advantage of varionsusation speedup techniques (see

Chapter 5)
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Beyond simulation, the Auto-Pipe system also supports #émogment of the application onto a

physical hybrid system for execution, and in the future wilpport automated application perfor-

mance optimization.

1.3 X-Sim and X-Eval in the Auto-Pipe Design Flow

Auto-Pipe is a performance-oriented development envietrfor hybrid systems. Components of
Auto-Pipe include an X language compiler called X-Com, th&i¥ federated simulation system,

and the X-Eval analysis tool. These components form thelataindesign flow shown in Figure 1.5.

A

X Language X Language
Application le_rary
Description Files
.C, . vhd * .
L Library
Implementations Implementations
gcgvcom
i
Revise
App. & Impls.

7\

Revise
Mapping

Deploy

Figure 1.5: Design flow under Auto-Pipe
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The human icon represents steps that are done manuallyoard kepresent automated tools pro-

vided as part of Auto-Pipe for application development.raads represent a choice that needs to

be made, with yes and no answers leading to different negs ste

The design flow given in the figure starts on the top, with X Lizage files created by a user. In
these files, the user describes the application algorithetarget processing architecture, and an
initial mapping of the algorithm to the architecture. Theséanguage files, along with various
X libraries to manage communication and profiling, are céeapby X-Com to generate platform-
specific source C and VHDL files. In turn, these X-Com generéites are combined with user-
created C and VHDL implementation files, and compiled byfptat-specific compilersgcc and

vcomn to create deployable executables for each CR.

In the development of any heterogeneous application, sitioul is an essential tool. For example,
FPGA designs are regularly simulated prior to deploymein gme physical chip. In the Auto-Pipe
infrastructure, X-Sim simulates the entire applicationtoanatically taking care of coordination

between multiple simulators that are used to simulate réiffetarget CRs.

X-Sim produces a set tfacesthat provide a full history of all resource level events. 3&&aces are
recorded at edges mapped to IRs (Interconnect Resouroesf the start and end of processing of
source and sink blocks. For example, Figure 1.6 shows wheteg are recorded in the application

introduced earlier.

Data trace files, represented by ‘D’ files in the figure, stbeedata that was transferred over a cor-
responding edge. Timestamp trace files, represented bylé¥'ifi the figure, store the exact times
at which the transfers occurred. Both data and timestamp dile recorded for each edge in the
dataflow graph. The data files can be used to do a functionakalfe¢he simulation, in addition to

aiding debugging efforts. The timestamp files can be useénemte a history of execution times
for each block that has both input edges as well as outpuse@yeexecuting simulations within the

Auto-Pipe infrastructure, X-Sim runs individual block sifations in context, meaning their inputs
are more readily representative of the actual data to beprem the deployed system. The sim-
ulation executions test a block’s individual correctnessvall as the correctness of its interactions

with other blocks. To allow timing analysis to be done formeuand sink blocks, timestamps are



PCIBus

Ethernet LAN

/
, ]
i
Processor2

Figure 1.6: Traces recorded for sample mapping

also stored to record when source bloskartedexecuting, and when sink blocksndedexecuting.

Additional details of X-Sim’s mechanism, including tracase provided in Chapter 3.

Output from execution of the application simulation may Rarsined by the user to determine if
the whole application executes correctly. If errors octhe,user can use data traces collected from
the simulation run to narrow down problem areas and focusglgibg efforts on the malfunctioning
blocks. Once correctness has been established, the usase3iEval to analyze the performance
of the application. For each block in the dataflow graph, XlHEeads the input and output times-
tamp trace files. By subtracting the input times from the outpnes, execution times for each
block can be calculated. How the analysis for different $ypeindividual blocks is done, and how

performance analysis is done for the application as a wialescribed in more detail in Chapter 4.

The results of performance simulation may be used to inya&tithe implications of alternative
mappings of blocks to computational resources, or alteelgtto tune individual block implemen-
tations. A proposed tool for this has tentatively been nadie€dpt. The augmented Auto-Pipe

design flow including this new tool is shown in Figure 1.7.
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A

X Language X Language
Application Library
Description Files
., . vhd ﬂ .
L ] Library
Implementations Implementations
gcg vcom
A 1!
Revise X-Sim
App. & Impls. f
a *
yes
Revise X-Eval
Mapping 1
S 1
i X-Opt .,
Deploy

Figure 1.7: Augmented design flow under Auto-Pipe

Note that the difference in this design flow from the previflaw is that manual optimization has
been replaced by X-Opt, an automated performance optimizé&bol. It is planned that X-Opt
will use results from X-Eval to analyze the performance dividual blocks within the application,
and will be able to determine more optimal mappings of bldokesources. Additional details on

X-Opt can be found in Section 2.6.

1.4 Related Work

X-Sim is a federated simulation system designed to modehsting applications mapped to a

hybrid processing architecture. We will consider work teteto X-Sim in three fields:
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¢ federated simulation systems

e hybrid architecture targeted application developmentesys

e streaming application development systems

A federatedsimulation system is one in which multiple simulators, edfiederatesimulators, run
to simulate a single system. These federate simulators ean bifferent simulation languages,
and even be of very different fidelities. Such systems atedheterogeneoutederated simulation

systems, and X-Sim is an example of such a system.

A popular standard for parallel federated simulation isHiigh Level Architecture (HLA) [5, 6, 14]
developed by the Defense Modeling and Simulation Office [Bhe HLA is a general purpose
architecture for coordinating a distributed set of simuisitspread across a variety of computing

platforms. Figure 1.8 shows the general structure of a HuAmitant federated simulation system.

| Real Time Infrastructure |

Figure 1.8: An HLA simulation system

Autonomous, heterogeneous federate simulations run adlpbwith each other. These heteroge-
neous simulators need to be able to communicate with eaehn bilt do not share a common native
communication interface. HLA enforces an Interface Spetiion that federate Simulators must
adhere to. By conforming to this Interface Specificationlefate simulators can interact, through

an underlying Run Time Infrastructure (RTI) [3] simulatibackplane, with each other. The RTl is
responsible for:

e construction and destruction of shared data objects

e time synchronization of simulation operation between fatis

e coordinating access to shared data objects
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X-Sim is similar to the HLA/RTI distributed federated siratibn architecture. A target processing

architecture includes many different CRs that need to belsi@d. If the architecture is a hetero-
geneous mix, different types of simulators are needed tolaie the different components. For
example, a native execution model can be used to simulatppicaion component mapped to a
general purpose processor, while a ModelSim [15] simutatian be used to simulate a different
component mapped to an FPGA. The equivalent to the RTI fomXiSa system of timestamp and

data trace files.

The trace files produced by blocks mapped to all resources dawniform format. This allows
simulators for different CRs to be able to seamlessly conicate with each other. Auto-Pipe is
an extensible system, designed to allow more CRs to be siggborthe future. X-Sim is similarly
extensible. A developer adding support for another CR tpp&uto-Pipe must also add the trace
generation code for the simulator associated with the newdCR Sim. This will allow the new

simulator to communicate correctly with all the other federsimulators.

Let us now consider work related to X-Sim from a differentgparctive, looking at application

development systems targeted towards hybrid, or heteeagesn processing architectures.

The first system considered is Ptolemy Il. Ptolemy Il is “acfelava packages supporting hetero-
geneous, concurrent modeling and design” [7]. It is a pald@©fBerkeley’s Ptolemy project [18],
which studies modeling, simulation, and design of coneureemputational systems, focusing on
assembly of heterogeneous components. Ptolemy Il has nfahg @ame goals as X-Sim, par-
ticularly the analysis of heterogeneous processing actoites. However, there are also some key
differences between the two systems. Ptolemy Il is focusetthe modeling of heterogeneous sys-
tems, with little attention given to actual deployment oreal processing architecture. In Ptolemy
II, modeling is approached from a top-dovanalytic perspective. The whole application is first
designed by representing different tasks (or blocks) byyéinanodels. More detailed functional
implementations for the blocks are written only later. Imizast, X-Sim uses a bottom-up perfor-
mance modeling approach where implementations are fullgldped first before being profiled to
create analytic models. The main reason for this differéadke different targets for the two de-

sign tools. The Ptolemy Il system is targeted towards eméedgstems, wheldatencyresults are
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often crucial to the operation of an application. By degigna system from the beginning with re-

quired timing models, latency requirements can be satisfiedontrast, X-Sim is targeted towards
streaming applications, usually with large data processaguirements, wheréhroughputis the
most critical performance metric. Latency requirementy beconsidered later using performance
modeling and revised mapping facilities. This allows easenplementation and deployment to
be given a higher priority, appropriate for a system like &Ripe where ease of use for end-user

scientists and engineers is an important goal.

LabView [12] is a popular proprietary heterogeneous apfibn development environment from
National Instruments [17]. The main feature of LabView tHatinguishes it from other similar
systems is that LabView has a graphical language “G” thasé&luo describe the application. G
allows users to create graphical representations of tastfdiak them by drawing wires. This
makes the system very popular with scientists and enginvaeosdo not have much background in
conventional programming. Rudimentary functional sirtialais supported in LabView, but there

is no extensive mechanism to profile the timing performaridéazks.

We now shift the focus to streaming application developm@&tU (Granular LUcid) [13] is an ap-
plication development system for granular data-parallegmmming, including for streaming ap-
plications, targeted towards general purpose computeusek a high level programming language
called Lucid [2] to express implicitly parallel relatioriph between sequential functions (or tasks)
that are implemented in C. Lucid does not simply structuredpresent the edges between blocks
like X does. Instead, it uses functional relations to expaEta dependencies between user-defined
C functions. GLU is able to express functionally more compkdationships between blocks, but
requires significantly more user effort in porting over aiisg®g application to the GLU frame-
work. Functional level debugging is provided by GLU, butyoat the level of traces that verify the
data dependencies between blocks. In terms of a dataflova,gtzgse traces can be used to check
whether the data being produced on an edge by an upstreakrbiiches the data being consumed
by a downstream block. In Auto-Pipe, this level of functibolecking is inherently provided by

the X-Com compiler.
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In addition to functional debugging, GLU also provides a hradsm for performance profiling of

the application. Compiling GLU source code creates one oeigeneratorexecutables, with each
generator executable having one or menarker executables assigned to it. Generator executables
are in charge of interpreting the dataflow relationshipsvben blocks and running worker executa-
bles at the right time with the right data. Worker executabtelude the actual implementations
of the dataflow graph blocks. GLU provides performance rogtior each generator and worker
executable, including values for total runtime, total iBpkentation execution time, and idle time.
In addition to performance analysis, GLU is capable of dyicdoad management as well as static
load distributions, and of providing performance metrmsdach generator and worker executable.
X-Sim and X-Eval combine to provide a profiling mechanism dmplications written under X,
while X-Opt will provide the ability to determine an optimstiatic load distribution over the differ-
ent available CRs. In GLU's case, the CRs are all GPPs, egablmof running any block because
each block is a C implementation. This lets worker loads beadycally distributed among CRs.
In Auto-Pipe, the CRs are more heterogeneous, so work caasdy be dynamically reallocated.
The emphasis in Auto-Pipe is thus on determining the optstadic allocation of work to CRs (i.e.

mapping the application to the heterogeneous architgcture

Streamlt [19] and StreamC [1] are two other high level lamgsathat have been developed to
facilitate the development of streaming applications oftirgore processors. Streamlt is platform
independent but has primarily been built to support the RAdt@ssor [21] developed at MIT. It

has a legal Java syntax, and is used to represent the rekipobetween tasks, called ‘filters’ in

this system. The simulator for the system is btl [16], a cyazteurate simulator specific to the RAW
processor. StreamC [1] was developed in conjunction wighStanford Imagine processor, and is
specifically aimed to this target. Two simulators are awd@dor the Imagine processor. Idebug
is a functional simulator that uses the Visual Studio demgygnvironment and is used to debug
Imagine applications during development. 1Sim, on the iotlaad, is a cycle-accurate simulator for
the Imagine Processor. It is used for performance profilamgl like Idebug, is a platform specific

simulator.

Being a federated simulation language for streaming agjdic, all the simulators mentioned for

other streaming languages are appropriate targets fog beinas federate simulators within X-Sim.
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For example, a possible application might have an MIT RAWepssor stream data to an Imagine

processor. X-Sim can provide the means to run a federatedlagion where simulators for the
two different processors are run at the right times and vhighright data to simulate running of the

complete heterogeneous application.

1.5 Overview of Thesis

This thesis presents X-Sim and X-Eval, the simulation aralyais parts of the Auto-Pipe de-
sign environment. Chapter 2 presents the broader AutoSigtem, describing the different tools
available to the developer. Chapter 3 presents X-Sim, ibésgrits underlying theory as well as
execution mechanism. Chapter 4 looks at X-Eval, describow resultant traces from X-Sim runs
are analyzed to understand the performance of an applicatio Chapter 5, we look at various
techniques that are used to speed up simulation runs. Clafueks at some sample applications
to analyze both application performance as well as sinarlatiinning times. Finally, Chapter 7
summarizes the current state of X-Sim and X-Eval, and desstihe future work planned for these

tools.
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Chapter 2

The Auto-Pipe System

The goal of this thesis is to present X-Sim and X-Eval. Howeteeget a good understanding of
these simulation and analysis tools, it is important to ustded the broader Auto-Pipe system and

see how these two tools fit into the bigger picture.

The goal of the Auto-Pipe system is to take a description cdlgarithm and a target architecture
and to produce a deployable system that has high performaritis chapter will take a sample

dataflow and processing architecture and use it to desdribdifferent components of Auto-Pipe.

2.1 X: A Language for Describing Target Applications and Arditec-

tures

The X-Language forms the basis for the whole Auto-Pipe systét is a coordination language
that is used to describe the dataflow of an algorithm, thestadgprocessing architecture, and the

mapping of the algorithm blocks to processing resources.

Consider the exampleest 1 algorithm whose dataflow is presented in Figure 2.1. Two siaiice
blocksgenl andgen2, are shown on the left side of the dataflow. These are instaot¢he
GENERATE block, a type of block that performs the function of gen@xg@thumbers and sending
them to an output port. At the dataflow interface level, (dENERATE block has a single outpyt0
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GENERATE

genl |y0 SUM HALF STORE

x0

el
e3 e4
GENERATE N sum x0 half | yo x0 | store
’-"X
e2

h 4

gen2 |y0

Figure 2.1: Algorithm dataflow for exampteest 1

which is of typeFLOAT32. Figure 2.2 shows the interface and the X description o3BNERATE
block.

GENERATE

block GENERATE {

| yo —» output FLOAT32 y0;
h

Figure 2.2: X Language code for tiBENERATE block

Blocks are the basic components that build up an applicatigarithm. They represent a single
task within the algorithm. A block is named by a user-choskemiifier, in this cas€&ENERATE. A
block specification also has a list of input and outpattsthat indicate the types of data input and
output from the block. In the case of tlBENERATE block, there is only a single output por©

of type FLOAT32. This means that data produced b@ENERATE block on itsy0 port is of type
FLOAT32.

X supports multiple types of data, with each of them confoigrio the corresponding IEEE stan-

dard. The main types are:

UNSIGNEDS, UNSIGNED16, UNSIGNED32, UNSIGNED64

SIGNEDS, SIGNED16, SIGNED32, SIGNED64

e FLOAT32, FLOAT64, FLOAT128

STRING
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The X-Level description of the block only gives a structwtatcription of the block. For example,

for the GENERATE example, we know that the block produceSLaOAT32 on its single output port
y0. The X code does not specify how that OAT32 is produced, or what it means semantically.
The actual functioning of the block is given by itaplementatiorsource code that is written in a
platform specific language such as C or VHDL. For@#NERATE block, the implementation code
determines how data is produced onytieport. Implementation files will be considered in the next

section, Section 2.2.

Consider another block, tH&UMblock, shown in Figure 2.3.

SUM block SUM {
4% input FLOAT32 X0, X1;
@—; output FLOAT32 yO0;
—p x1 h

Figure 2.3: X Language code for tisMblock

This block has two inputg0 andx1, and a single output0. In the case of th&UMblock, the
implementation determines how data that is consumed omthiput ports is processed to produce

output on the single output port.

In this way, all the blocks in the dataflow for an algorithm defined using the X Language. In
addition to block definitions, X also provides a mechanisnmgbantiate blocks and connect them

to each other to form a dataflow graph.

Figure 2.4 shows the X Language description of the entirerdlgn shown in Figure 2.1. Block
definitions ofHAL F andSTORE follow the same pattern as that describedG&NERATE andSUM
Thet op block does not have any inputs or outputs, and represenishibke application. Within

top, both the blocks required for the algorithm and theiatlatv interconnections are specified.

First, all the blocks in the application are instantiatedr &ample, line 23 creates two instances of
the GENERATE block.
23 GENERATE genl, genz;




block GENERATE {//generate a number
output FLOAT32 yO0;

h

block SUM { //add two numbers
input FLOAT32 x0, x1;
output FLOAT32 yO0;

|3

block HALF { //divide a number by 2
1 input FLOAT32 x0;

output FLOAT32 yO0;
%

s block STORE {//save the results
input FLOAT32 x0;

© o N o g »~ w N P

N T
o A w N S}

h

block top { //top level dataflow description
//no inputs or outputs for top block

NN B R P
P O © © =~

/Iblock instances:
GENERATE genl, genz;
SUM sum;

HALF half;

STORE store;

NN NN NN
N o g o~ W N

/ledges

el: genl.y0O—> sum.x0;
e2: gen2.y0-> sum.x1;
e3: sum.y0—> half.x0;
e4: half.y0—> store.x0;

W W W W NN
w N B O ©

h

usetop;

w
hN

w
(5]

Figure 2.4t est 1_al go. x: Sample algorithm description
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Once all the blocks for the dataflow have been instantiate@fldw connections between the ports

of the blocks are made. This is done by placing an arrewbetween a block’s output port and
another block’s input port. For example, line 29 makes a eofion (labelede1) betweengenl’s

output porty 0 andsunis input portx0.

29 el: genl.y0O—> sum.x0;

Let us now consider a target architecture on which the alyoris to be deployed, shown in Fig-
ure 2.5, consisting of three processors connected to ehehn vih Ethernet LAN. Two of the pro-

cessors are additionally linked to an FPGA over a PCI bus.

prem— proc[1] D C [y

processor

proc[Z] B FPGA

LAN

processor

] procl[3]

processor

Figure 2.5: Processing architecture for exanimest 1

Each separate node in a processing architecture is calbethautational resource (CR)n this
example, there are four CRs, three processors and one FREBA R is an instance offdatform
Platforms are classes that represent the languages thaktaased to implement an X block on a
real world device. A CR instantiates a platform, giving deéirvalues to platform configuration
options such as whether MMX is supported (for Pentium piaig), which part number is being

used (for an FPGA card) etc. Figure 2.6 shows the platfornadstons for the given example.
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/Nibrary code defines base HDL and C platforms
#include "std.x"

/[———FPGA platform definitior- ——
platform HDL;
platform HDL_Virtex4:HDL {

config STRING part;//FPGA part name

© 0 N o O 9~ W N P

¥
10 //[———GPP platform definitior- ——
u platform C;

platform C_x86:C{
config UNSIGNED16freq=1600;/default frequency in MHz

PP
w N

14 };
15 platform C_Pentium4:C_x86{
16 config STRING hasMMX = "yes";

17 };

Figure 2.6: X Language platform declarations for exantst 1

Base platforms such &4DL andC are defined inside the X library filet d. x. Platforms can be
extended by other platforms, as shown in Figure 2.6 line G&HBL_Vi r t ex4 is declared to be
a subclass ofiDL. Platforms can haveonfigsdefined inside their bodies, which give configuration
options for the particular platform. In the caseH®L_ Vi rt ex4, thepart config lets the X

compiler X-Com know which part to use when the implementaitosynthesized.

If no default value is given for a config, as is the case forghet config, the user must provide
a value when instantiating the platform. Contrast this wlitahas MMX config where the default
value" yes" is given. The user does not need to provide a valud&xMUX when instantiating a

C Penti umd. The default valué yes" will automatically be assigned to the config.

Linktypesare classes used to define the interconnections betweer @Rig/pes are instantiated by
Interconnect Resources (IRs), similar to how platformsrastantiated by Computational Resources
(IRs). Figure 2.7 shows how linktypes are declared fortthet 1 example. Similar to platforms,
linktypes too can be organized in hierarchies. In this edanfjus_pci is a subclass of theus

linktype.
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llibrary code defines base bus and switch linktypes
#include "std.x"

//———PClI bus declaratior- ——
linktype bus;
linktype bus_pci:bus{
config UNSIGNED16freq=66, width=32;
3

/[———Ethernet LAN declaratior ——
linktype switch;
linktype switch_ether:switch{
config bandwidth=1000//bandwidth in Mbps

© 0 N o O 9~ W N P

P
w N P O

h

i
'S

Figure 2.7: X Language linktype declarations for exani@st 1

Once all the required platforms and linktypes are declatesy; must be instantiated using CRs (for
platforms) and IRs (for linktypes). Additionally, the tdpgy of the processing architecture must

also be described, as shown in Figure 2.8.

/[———CR declarations- — —
resourcefpgais HDL_Virtex4( part="XC4Vv8000");
resourceproc[3]is C_Pentium4{
/lthese frequencies override the default of 1600MHz
(freq=3200), (freq=3200), (freq=2800)
¥

/[———IR declarations- —
resourceLAN is switch_ether(
{ proc[1], proc[2], proc[3] }
//default bandwidth=1000 used

© O N o g » w N P

P
» O

);
13 resourcePClis bus_pci{
1 {proc[1], proc[2], fpga}

5 )

[
N

Figure 2.8: X Language topology description for exantpdest 1

On line 2,f pga is declared as a CR instance of tHBL_Vi r t ex4 platform, with the config
option part set to the name of the particular FPGA devicee Brshows the declaration of a whole
array of CRs. Three processors are declared here, all doptatype C Pent i umd, and their

config option frequencies are given in a list.
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The IRs for the example are also presented in this code. $hidéere the topology of the target

hardware architecture is described. Line 10 of the X codéadex the IRLANto be an instance of
the platformswi t ch_et her, and assigns the thrge ocs declared earlier to be nodes on this
IR.

10 resourceLAN is switch_ether(
1 { proc[1], proc[2], proc[3] }
12 //default bandwidth=1000 config for LAN used

13 );

Similarly, line 14 declarepr oc[ 1], pr oc[ 2], andf pga to be nodes on theCl IR, which in

turn is an instance of theus_pci linktype.

4 resourcePClis bus_pci{

5 { proc[1], proc[2], fpga}

16 //default freq=66 and width=32 configs for bus_pci used
17 };

-

[

So far, we have looked at X language descriptions of the ifgordataflow, as well as the de-
scription of the targeted processing architecture. Nowiselook at how the X language is used
to describe mappings of dataflow blocks onto the processittgtacture for the exampleest 1.

Consider the mapping shown in Figure 2.9.

In this mapping, the twdENERATE blocks,genl andgen2, are mapped tpr oc[ 1] . Data
from these blocks is transferred over PCI to fipga CR where it is summed together, and then

transferred back over PCl far oc[ 2] .

The mapping of blocks to CRs and edges to IRs is done simplysimguhe X Language keyword
map as shown in the code snippet in Figure 2.9. Note that line S¢clwmaps dataflow edges
to thePCl IR, could be omitted from the code and the X-Com compiler \dug able to infer

that mapping. This is because there is only one possibl®@R, that that can transfer data from

proc[ 1] tof pga, or fromf pgatoproc[ 2] .

In this section we showed how the X language is used to destirdalgorithm for an application,
the target processing architecture, and the mapping okbland edges to CRs and IRs. We will

now consider X-Com, the Auto-Pipe tool that compiles X laanggl code to executables.
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map { top.genl, top.gen2 o proc[1];
map { top.sum }to fpga;
map { top.half, top.store }to proc[2];

(S I N N

map { top.el, top.e2, top.e3fo PCI;

Figure 2.9: Mapping for exampleest 1

2.2 X-Com: Compiling Heterogeneous Applications

X-Com is the compiler developed in conjunction with the X gaage. Figure 2.10, modified from

a figure in [20], shows the design flow of applications devetbpsing X-Com.

X-Com takes in a list of X Language files that define the appibca The command line call to run

the X-Com executablgcomis given below:

Xcom sourcel. X source2.x source3. X ...

These input files are parsed by X-Com in order (espur cel. x followed by sour ce2. x

followed bysour ce3. x, and so on). Collectively, these X Language source coderBlgesent
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Block implementations

X Language
Algorithm

Processing
Architecture

Resource
Mappings

Real Device
Bindings

—

Revise algorithm for correctnessﬂ

1A

Figure 2.10: X-Com design flow

the application algorithm, processing architecture, nrappand architecture device bindings. X-
Com applies the C pre-processor to each source file befosingamwhich allows an X Language
file to include another X Language file using thencl ude directive. This allows for a cleaner

file organization, and allows the user to avoid writing a |flag file for the entire application.

Another big benefit is that X Language files can be organizeletonodular, allowing different
architectures and mappings to be switched out simply byitie a different file. Consider the ex-
ample X application that was shown in Figure 2.9. Separatanguage files can be used to describe
the algorithm, the architecture, and the mappingst 1_al go. x (Figure 2.4)t est 1_ar ch. x
(Figure 2.11), and est 1_mappi ng. x (Figure 2.12) give the X Language descriptions of these

parts of the application.

Intest 1 al go. x (Figure 2.4), the block types usedtiest 1 are defined in lines 1-17. The top
level blockt op is then defined in lines 18-33 to describe the structure odldparithm dataflow.

test1l arch. x (Figure 2.11) describes the processing architecture &rélst 1 example. Line
1 of the file is a#i ncl ude statement that includest d. x, an X Language library file. This
file contains definitions for the standard CRSL andC, and IRsbus andswi t ch. These base
resources are then extended to define resources specifis % #pplication,HDL_Vi rt ex4 on
line 5,C x86 on line 11,C Penti un¥ on line 14,bus_pci on line 20, ancswi t ch_et her
on line 26. Finally, the topology of the architecture is giva the bottom of théest 1_ar ch. x

file.



#include "std.x"

/[———FPGA platform definitior- ——
platform HDL;
platform HDL_Virtex4:HDL {

config STRING part;//FPGA part name

© o N o O » w N P

%
/[———GPP platform definitior- — —
10 platform C;

platform C_x86:C{
config UNSIGNED16freq; //frequency in MHz
I3

platform C_Pentium4:C_x86{
config STRING hasMMX = "yes";
%

//———PClI bus declaratior- ——
linktype bus;
linktype bus_pci:bus{
config UNSIGNED16freq=66, width=32;
3

/[———Ethernet LAN declaratior ——
linktype switch;
linktype switch_ether:switch{
config bandwidth 1000//bandwidth in Mbps
%

/[———CR declarations-——
resourcefpgais HDL_Virtex4( part="FXC4Vv8000");
resourceproc[4]is C_Pentium4{
(freq=3400), (freq=3400), (freq=2800)
¥

/I———IR declarations- —
resourceLAN is switch_ether(
{ proc[1], proc[2], proc[3]}

W W W W W W W W wWwwWNNNNN N DNDNDNDNNYN R R R R R R R R R
© © N o o A W N P O © 0O N O OO0 »~» W N P O © 0o N o o0 b~ W N P
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a1 resourcePClis bus_pci{
a2 { proc[1], proc[2], fpga}

s}

Figure 2.11t est 1_ar ch. x: Sample architecture description
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Now that the application algorithm and processing architechave been described in two X Lan-

guage files, the mapping of the algorithm blocks to architectesources can be done in a third file,

test1l_map. x (Figure 2.12).

#include testl algo.x
#include testl arch.x

map { top.genl, top.gen2 o proc[1];
map { top.sum }to fpga;
map { top.half, top.store }to proc[2];

o g A~ W N B

Figure 2.12t est 1_map. x: Initial sample mapping description

Note that this file includes the two previous X Language filesst 1_al go. x andt est 1_ar ch. x,
on Lines 1 and 2. If an alternate mapping was required witlsémee algorithm and architecture, the
only file that would need to be changed would be the mappingQitensider the alternate mapping

shown in Figure 2.13.

genl

gen2

proc[1] vV Yy

e sum

half

fpga

LAN

proc[2]

P store

procl[3]

Figure 2.13: An alternate mapping for examplest 1
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In this mapping, thest or e block has been moved fropr oc[ 2] to pr oc[ 3] to more evenly

distribute the workload. The only change required to immatthis new mapping would be to

substitute fileg est 1_map. x by the filet est 1_map2. x given in Figure 2.14.

#include testl algo.x
#include testl arch.x

map { top.genl, top.gen2 o proc[1];
map { top.sum }to fpga;

map { top.half } to proc[2];

map { top.store }to proc[3];

N o g M W N B

Figure 2.14t est 1_map2. x: Alternate sample mapping description

Note that edge mappings have been excluded in both the giapping X Language files. In all
cases, there was only a single possible IR option for eddes toapped to. X-Com is able to figure

out such implicit mappings of edges.

Going back to the X-Com design flow diagram (Figure 2.10) atiteginning of this section, let us
consider the block implementation files shown at the top.s&hmplementation files provide the
functionality for the X Language specified blocks. Currertlere are two major implementations
for blocks: C implementations and VHDL implementations. Stall consider the APIs for both

these languages.

2.2.1 C API and implementations for X blocks

To illustrate the implementation of a block implemented inl€t us take the&sUMblock from the
t est 1 example. The block level diagram for ti#JMblock and its corresponding X Language

description are repeated in Figure 2.15.

From this description we know that ti&UM block takes in twoFLQOAT32s, and outputs one
FLOAT32. The C implementation for this block must match this blockatgtion. Figure 2.16
gives the generalized API for ALL X blocks, while Figure 2.dives the implementation skeleton

for the SUMblock.
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SUM block SUM {
4% input FLOAT32 X0, X1;
@—> output FLOAT32 y0;
—p x1 h

Figure 2.15: X Language code for t&&Mblock (same as Figure 2.3)

The C API for ALL X blocks consists of one data structure andrflunctions. It is important to
note here that the data structure and four functions aredwdiared once for every type of block. In
ourt est 1 example, there are tWGENERATE block instancegienl andgen2. To signify these
blocks, two instances of the data structreGENERATE _dat a are created. These data structures
are then passed into the four functions shown before to tbalffunction” ongenl or gen2. In

the case oBUM there is only a single instance (calledm) in our example.

The data structure (Figure 2.17), in this c&seSUM dat a for the SUMblock, contains a clock to
internally keep an aggregate of total time spent in runnibfpek. This can be used to collect basic
performance measurements. Its use is replaced in thisthgs{-Sim trace collection and X-Eval
analysis which provide more detailed performance measemésnas will be seen in later chapters.
Also contained in the data structure are pointers to thespafrthe block, and a bit portmask that
informs the block of whether data is available at each ofnifgit ports. Finally, the data structure
for an X block also contains pointers t@and function and a el ease function. These functions
are generated by X-Com during compilation, and are usednialtg to send data downstream and
to release upstream data respectively. Use oftred andr el ease functions is illustrated later

when theX _SUM push function is considered.

Each of the implementation functions is now considered in.ttrhe first such function included
in the C API for an X block is the ni t function. This function is called at the beginning of an X
application run.

29 void X_SUM_init(struct X_SUM_data«d) {}

As shown in this code snippet, no initialization work is rgqd for aSUMblock. Other blocks may

require some initialization work. For example, the iniation code for &ENERATE block might
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1 Mlibrary file contains definitions for Xclock_t and portnkas
2 #include"X.h"

© 0o N o g M W
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11
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13
14
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17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

struct X_<blockname>_data {

|3

/l internal clock for performance measurement
Xclock t clock;

// pointer to send function for sending data to an output port
void (xsend){nt);

Il pointer to release function for releasing data on an inpatt
void (xrelease)ft,char);

Il bitmask (array of chars) with info about data on input ort

// each bit corresponds to an input port

// 00000010 means x1 has data and x0 does not

/I 1 char for up to 8 ports, so e.g. use portmask[3] for 18 inpaits
portmask_t portmask[<number of port/8>];

/lone line per port
<datatype><port>;

/ladd any internal state data that needs to be kept track of
/lfor e.g. GENERATE might have a counter variable store@ her

/[——— implementation functions for the X bloek——//
// initialization function called on startup
void X_<blockname>_init§truct X_<blockname>_data) { ... }

// destructor function called on termination
void X_<blockname>_destrog{ruct X_<blockname>_data) { ... }

[/l push function called when data is received on a port
void X_<blockname>_pushkf{ruct X_<blockname> data){ ... }

I/ go function for blocks that are sources of data
int X_<blockname>_gatruct X_<blockname>_data) { ... }

Figure 2.16: C API forll X blocks
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1 Hlibrary file contains definitions for Xclock_t and portnkas
2 #include "std.x"

© o N o 0 » w
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struct X_SUM_data {

h

Il internal clock for performance measurement
Xclock _t clock;

I pointer to send function for sending data to an output port
void (xsend)int);

Il pointer to release function for releasing data on an inpatt
void (xrelease)t,char);

// bitmask (array of chars) with info about data on input ort
// each bit corresponds to an input port

// 00000010 means x1 has data and x0 does not
portmask_t portmask[1];

st of ports

FLOAT32 «iport0; // input port x0
FLOAT32 xiportl; // input port x1
FLOAT32 xoport0; // output port yO

//no internal variables required for SUM block

/[——— implementation functions for SUM bloek——//
// initialization function called on startup
void X_SUM _init(struct X_SUM_datax) {}

/I destructor function called on termination
void X_SUM_destroygtruct X_SUM_datax) {}

[/l push function called when data is received on a port
void X_SUM_pushstruct X_SUM_datax) {

}

/I go function for blocks that are sources of data
int X_SUM_goétruct X_SUM_datax) {

}

return 1;

Figure 2.17: C implementation for tf&JMblock
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seed the random number generator and initialize the courgbla to 3, as shown in the following

code. The count variable keeps track of how many numbetsist to be generated.

void X_GENERATE_initétruct X_GENERATE_datad) {
srand(time(NULL));
count = 3;

}

A W N R

Note that for the implementation of@&ENERATE block to work correctlyst dl i b. handti ne. h
would need to be included for the® and() andt i me() functions respectively. Since there are
two GENERATE blocks, the data structure pointers for bgianl andgen?2 would be passed into
the global functiorX GENERATE i nit.

In addition to the initialization function, go function (line 58 of Figure 2.17) is also included in
the C API, mainly as a way for data sources to create data amtdtsato the rest of the application.
When a C binary is created and run for a processor, it callgthinctions of all the X blocks on
that processor in a round robin schedule. For exampigeiifl, gen2, andsumwere all mapped to
proc[ 1], the binary for that processor could call the functions for the blocks in the following
order:genl,gen2,sumgenl, gen2,sumgenl etc. However, each block is kept on the round
robin schedule only until itgo function returns a 1, at which point it is excluded from theestule.

A SUMblock returns a 1 the first time itgo function is called, as shown below.

ss int X_SUM_gogtruct X _SUM_dataxd) {
59 return 1;

60 }

On the other hand, @ENERATE block would keep generating a random number and sending it
downstreantount times, as shown in the code in Figure 2.18. After generatiegdst random
number, &GENERATE block would return a 1 to signify that it should not be calleymore. The
count variable was set to 3 iX_GENERATE_i ni t, soX_GENERATE_go will generate three
random numbers. Thgo function for aGENERATE block is shown in Figure 2.18.

In this case, the order of calling thlgo functions in the schedule would bgenl, gen2, sum
genl, gen2, genl, gen2 etc. The schedule would calumonce, andgenl andgen2 three

times each.
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int X_GENERATE_go¢truct X_GENERATE_datad) {
if (d—>count <= 0){//check if more numbers need to be generated
return 1,

}

1
2
3
4
5
6 //allocate memory

7 d—>oport0 = gmallocgizeo{ FLOAT 32));

8

9 /lgenerate random number on output port yO

10 x(d—>oport0) = 1&rand();

11

12 //[send the data on oportO

13 send(0);

14

15 /lupdate the count

16 d—>count-—;

17

18 if (d—>count == 0){//check if this was the last number

19 return 1;

20 }

21

2 Ilreturn 0 to signify that this go function should still belled
23 return O;

24}

Figure 2.18:go function for GENERATE block

Another function included in the C APl is thrush function. The push function in the C API of an

X block is called whenever a new piece of data arrives at aritg @iiput ports. The implementation
code can then check the bitmask given by its portmask to sehwiput ports have data ready for
processing. If all the data the block needs is ready, theklitan process the input data and send it
over its output ports using theend function. Once it has consumed the input data, it can use the
r el ease function to clear itgpor t mask, and additionally free input data memory if required.

Figure 2.19 shows the push function UM

When multipleSUMblocks are present, there is a global push function for aM3tlocks, with
the pointerd specifying which block instantiation the push function &ry called on. In example
t est 1 there is only one SUM block, sbcan only point tsum For the functionrX GENERATE_push

(not shown here), the pointer argumeintan point to eithegenl ortogen2.
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35 void X_SUM_pushstruct X_SUM_data«d) {

36

37 /lreturn data ready at both input ports x0 and x1
38 if (checkPortsUpTo(d>portmask,1)){

39

40 /ly0 points to same data as x0

a d—>oport0 = d->iport0;

42

a3 //data at yO = data at x0 + data at x1

a4 x(d—>oport0) =x(d—>iport0) + x(d—>iportl);
45

46 /[clear portmask bit for xO but don’t deallocate its memory
a7 release(0,0);

48

49 //clear portmask bit for x1 and deallocate its memory
50 release(1,1);

51

52 //send the data on oportO

53 send(0);

54 }

55 }

Figure 2.19: Push function f@UMblock

For this discussion, recall theapor t 0 corresponds to input poxtO, i por t 1 corresponds to input
portx1, andoport O corresponds to output poyO. Line 38 checks whether data is available on
both the input port®por t 0 andoport 1. Line 40 sets the data pointer fp0 to the pointer for
x0. On line 47,r el ease(0, 0) dequeues a data element from the FIFO for pdrt but does
not free the memory for that data element because that membeing used for porg0. The first

0 refers to the Oth portx(), and the secon@ tells release to not deallocate memory. On line 50,
rel ease( 1, 1) dequeues an element from thé port FIFO and deallocates the memory. Finally,

the data on pory 0 is sent downstream on line 53.

The final C API function for all X blocks is the destructor faion. This function is called for each
block at the very end of an X application. Once again, in threeaaf theSUMDblock, the body of
this function is empty, but other blocks might need end otaken operations to perform such as
deallocating memory, closing files, etc.

32 void X_SUM_destroygtruct X _SUM_dataxd) {}
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2.2.2 VHDL block implementations

The other major implementation language currently sugpoobly X-Com is VHDL. The skeleton

VHDL API for the SUMblock is given in Figure 2.20.

entity X_SUMiis
port(
clk : in std_logic;
rst :in std_logic;

——input port x0

input_x0 :in X_unsigned32;
avail_xO0 :in std_logic;
read_x0 out std_logic;

© o N o o » w N P
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——input port x1

input_x1 :in X_unsigned32;
avail_x1 :in std_logic;
read_x1 out std_logic;

T < =
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——output port yO
output_y0 :out X_unsigned32;
write_y0 :out std_logic;

P
[N

)i
end X_SUM;

NN R
= O ©

» architecture archof X_SUMis

NN
w

29
30 end architecture arch;

Figure 2.20: VHDL implementation skeleton fStUMblock

The code generation for HDL blocks automatically inserts@$ between blocks to manage data
transfer. This allows any block to “pull” data from upstre&iOs whenever it wants as long as data
is available from upstream blocks and “push” data to doveastr FIFOs whenever data produced

by the block itself is ready.

Let us examine how the interfaces to input and output porf&8R®s work. Consider first the input
port x0, the code for which is given on lines 7-10nput _x0 is the data line for the upstream

FIFO for portx0. It is set to the first available data in the FIFO, and undefiwbdn no data is



36
available.avai | _x0 goes high when data is available in the upstream Fir&ad_xO0 tells the

upstream FIFO that this X block has consumed the first aveilailece of data. It causes the FIFO

to discard the first data item and move to the next one if anyerdata is in the queue.

Consider now the output poytO, given on lines 17-19out put _yO0 is the output data line from
the X block. The X block assertar i t e_y0 high when it wants to write the data omt put _yO0

to the downstream FIFO.

The code for the internal architecture of the VHDL block igegi in Figure 2.21, illustrating how

the input and output ports are used.

22 architecture archof X_SUMis

23 signal all_rdy : std_logic;

24 begin

25 all_rdy <= avail_xOand avail_x1;

26 read x0 <= all_rdy;

27 read_x1 <= all_rdy;

28 output_y0 <= unsigned(input_x0) + unsigned(input_x1);
29 write_y0 <= all_rdy;

30 end architecture arch;

Figure 2.21: Architecture body for VHDL implementation bEtSUMblock

al | _rdy is an internal signal, similar to theor t mask variable from the C API, that is used to
keep track of when all the required data is ready at inputsp@nce this signal goes high, t8eM
X block writes the sum of the two inputs to the downstream Fl&@l “reads” from the upstream

FIFOs, letting them know that it has used the first pieces tf ttam both of them.

2.2.3 Compilation of Deployable Executables

We have shown how the input to X-Com is a set of user-createdn§uage files, supplemented by
library files, that fully describes the application. Froneshk inputs, X-Com creates a source file for
each of the targeted CRs in the CR’s specific language. Ingkiestage of compilation, CR specific
compilers are used; the GNU C Compiler [11] for processor &&etts and the ModelSim [15] HDL
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compiler for FPGA CR targets. These compilers take in X-C@negated source files and user-

defined implementation files to create deployable execesdbl the targeted CRs. Library files that
contain platform specific definitions and functions are #sbinto the platform specific compilers.
The whole process of compiling X Language code into CR-$igetbde, and then compiling the
generated CR-specific code and user-defined implementedide into deployable executables is
managed by a manually generated Makefile. Future work iesl@litomating the creation of this

compilation flow controlling Makefile.

2.3 X-Sim: Simulating Applications and Collecting Traces

When targeting a complex hybrid architecture, it is usefulun a simulation run first. Hardware
implementations are simulated in ModelSim [15], an HDL detion and verification tool, while
software implementations may be simply run natively on aetiggment processor. A trace file

based system is used as the interconnect resource (IR)éetdlghe simulation CRs.

To set up the simulation, the algorithm description filest 1_al go. x, presented earlier in Fig-
ure 2.4, is used since the algorithm does not change whemgiarsimulation. The target archi-

tecture, however, does change as shown in Figure 2.22.

Hardware implementations are now targeted/HDLSI m a CR that represents ModelSim. The
definition for VHDLSI mis given in the library filest d. x. Software implementations are now
targeted toC, the base C language platform definedsind. x. Both of the IRs are declared to

be of typeFi | el O Fi | el Ois the simulation trace file communication mechanism. Itaes d
fined in the library filefi | ei 0. x. Since the CR and IR names are the same as before, the
mapping filet est 1_rmap. x shown previously in Figure 2.12 can still be used, with théy on
difference being that the alternate architecturetfilsst 1_si mar ch. x will be included instead

of t est 1_ar ch. x. Additional details fotVHDLSi mandC platforms and thé-i | el Olinktype

are given in Chapter 3.
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#include "std.x"
#include "fileio.x"

/[definition for VHDLSIm and C CR platforms given in includibel std.x
/[definition for FilelO IR platform given in included file fitex

/[———CR declarations- — —
resourcefpgais VHDLSIm;
resourceproc[3]is C{
(freq=3400), (freq=3400), (freq=2800)
%

//——IR declarations- — —
resourceLAN is FilelO (
{ proc[1], proc[2], proc[3]}

résourcePCI is FilelO (
{ proc[1], proc|[2], fpga}

Figure 2.22:t est 1_si mar ch. x: Sample simulation architecture description

S -®
Se .o"
gen2

(] e (00 (50T

proc[3]

Figure 2.23: Trace capture points foest 1
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After running the simulation, trace files are generated shae details of communication between

CRs as well as the start of execution of data source blockgtendnd of execution of data sink
blocks. For example, the data and timing trace files storedhit est 1 example is shown in

Figure 2.23. ‘D’ files in the figure represent data trace fidew] ‘T’ files represent timing trace files.

Data trace files can be examined by the user to check if they thevcorrect values. Once correct-
ness has been established from the data trace files, theyttnaice files are passed to X-Eval for
performance analysis of the application. Refer to Chapfer additional details on both data and

timing trace files, as well as for more details about the meisha of an X-Sim simulation run.

2.4 X-Eval: Analyzing Simulation Timing Traces from X-Sim

/
T T
l I
. .

Figure 2.24: Trace capture points fogpga CR

Timing trace files are used by X-Eval to characterize thegoerince of CRs. Consider tfigpga

CR with theSUMblock mapped to it, shown in Figure 2.24. TB&Mblock has two input ports
x0 andx 1, and one output post0. Timing trace files have been captured for each of these.ports
X-Eval subtracts the input times from the output times toriggout the execution times for the CR.
This history of execution times is then used to generateopmadnce metrics such as the mean and

variance of execution times. Further analytic modelingdpecific CRs as well as for the entire
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system can be done. This will be examined in more detailechepr 4, along with more details

of trace analysis methods and performance characterzatio

2.5 X-Opt: Performance Optimization

The analytic models generated by X-Eval can be used by X-@ahalyze the performance of the
entire system, and to identify system bottlenecks with thel gf creating more optimal mappings
of the algorithm to the processing architecture. X-Opt h@tdren developed yet, so currently these
mappings are generated manually. Mappings created mgrardily X-Opt must be re-evaluated
to determine performance behavior. X-Sim allows rapidai@dn of re-mappings by speeding up
simulations using various techniques. One technique igmalate independent CRs in parallel.
Another is to use analytic models or trace timing data froevjmus simulation runs as a substi-
tute for re-simulating a CR. Rapid re-simulation techngattow re-mappings to be simulated and
evaluated much faster, allowing X-Opt or the user to rapidfyout a large number of mappings.

Simulation speedup techniques are discussed in more geGlilapter 5.
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Chapter 3
Simulation using X-Sim

Thus far, we have described Auto-Pipe as a holistic apphicadevelopment system, explaining
how X-Sim and X-Eval fit into the wider system. This chaptelvde in more detail into the X-Sim

simulation tool, using exampleest 1 (Figure 3.1) introduced in the previous chapter to illustra

various aspects of this tool.

out.dat out.dat avl.dat avl.dat
out.ts out.ts avlts avl.ts

oy
___ ints in.ts

[
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tpt.ts )
“ genl }"' — —
L P
i é gen2 *‘
tpt.ts we-c"
R
z f .
5 pga
[+}--3 e A
tpt.ts . . q / T
T * out.dat
tpt.ts A i
e in.ts avl.dat
Lo’ avl.ts
T

tpt.ts proc[3]

map { top.genl, top.gen2 o proc[1];
map { top.sum }to fpga;
map { top.half, top.store }to proc|[2];

Figure 3.1: Traces gathered for sampkst 1 mapping
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The first section presents a step-by-step description of@&im simulates the example mapping.

The next section describes usage of the X-Sim tool, prasgattutorial for how to set up an X-Sim
simulation for an application developed under the AutoeRipstem. The final section discusses the

trace files generated by X-Sim.

3.1 An Example X-Sim Simulation Run

This section presents the X-Sim simulation run forttleest 1 example. Figure 3.1 shows the traces
that are created at the end of the entire simulation run. Matethe timing trace files on the left
markedt pt . t s aret est poi nt timing trace files, generated only when the user specifigs tha
they want trace data to be captured for those specific paiikeialgorithm. All the other trace files
are generated by default because they store traces for coitation that happens on algorithm
edges mapped to interconnect resources (IRs). Detailswftbi@apture arbitrary est poi nt

traces are given in the next section.

For the givent est 1 mapping, three different computation resources (CRs) rmestimulated,
proc[ 1],f pga, andpr oc[ 2] . Under X-Sim, a separate simulation is used for each CR.$n th
case X-Sim integrates the three simulations into a singlertged simulation. Ther oc[ 1] and
proc[ 2] CRs are both instances of the platfo@nwhich represents a general purpose processor
(GPP), whilef pga is an instance of the platforfnpga, a physical FPGA chip. To simulate a GPP,
X-Sim may use aative executiomodel; that is, the deployable binary is run directly on gugét

GPP. Execution of the program on the native GPP in effectasctssimulation.

If the target GPP (called thphysical target CRis unavailable, then a similar GPP (called the
simulation target CIRcan be used to replace the target GPP in the simulation. »@n@e, a

simulation target Pentium 4 with a 2.8GHz frequency mightibed to simulate a physical target
Pentium 4 with a 3.2GHz frequency. Functionally the simalatmatches the end deployment
exactly. Scaling the performance results (e.g., timingneies) can be done to roughly account for

the difference in frequencies of the simulation and targatimmes.
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ModelSim [15] is used to simulate the FPGA chip. It acts asthmulation target to the physical tar-

get FPGA chip. ModelSim is a function and timing model sinbmidor hardware designs authored
in various HDLs (Hardware Description Languages), inaigdvVHDL and Verilog. It is primarily
a GUI based simulation environment, using wave diagramgyofss to allow functional and tim-
ing debugging of hardware modules. However, in additiorhtoGUI, ModelSim also provides a
command line interface. X-Sim generates scripts that useadn-GUI text-based interface to run

ModelSim.

X-Sim simulates the Interconnect Resources (IRAN and PCl by modeling them with a file
system based communication mechaniBirl, el O. Any message sent on a target IR gets simulated
by a write to a trace file, and correspondingly a messagepieitem an IR gets simulated by a read

from a trace file. Examples and details of trace files are giatehe end of this chapter.

top_genl yO_out.dat ﬁ H top_genl yO_out.dat
‘ t 1 yO_out.t top_gen2_y0_out.ts
top_genl_src_tpt.ts“x op_genZ yb_outts P_gens_yo
top_genz_src_tpt.ts. I o
Sel genl T

proc[1]

Figure 3.2: Simulation opr oc|[ 1]

For the given mapping being simulated, X-Sim does a serideddrated simulations. Refer to
Figure 3.2, which shows the first simulation done by X-Simgeweha complete native-execution
simulation ofpr oc[ 1] is run. The timing traces on the left end of tBENERATE blocks store

a complete history of the starting times for the executiorihelse blocks. Theseest poi nt
traces are recorded at points specified by the user. The ddtanaing traces on the right end of
the GENERATE blocks store all the data writes done to 1€l IR by genl andgen2 on their
outputs. These output time traces are catled . t s timestamps. It is important to note here that
the shown federate simulation is rtocompletion so the trace files created store a complete record
of timings and data produced over the entire simulation ttrrdor this CR. The simulation for
proc[ 1] must be finished and a complete record of output traces mugemherated before the

following simulations can be done.
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The main reason to record the user-defihed . t s timing traces is to gather timing data for points
in the algorithm that do not correspond to edges mapped tR am lthis case, gathering the timing
traces at the beginning of tHEENERATE blocks allows the simulation to record start times for
executions of ther oc[ 1] CR. By looking at the pt . t s andout . t s timing traces recorded
for proc[ 1], X-Eval can later reconstruct a history of the executionesnfor the CR. Currently
no mechanism is provided for recording agtavalues at the arbitrary testpoints. Data recording
is not necessary for timing analysis, which is the main psepaf the testpointing feature. However,

it may be a useful debugging feature that can be incorporataduture version of X-Sim.

genl L.
~ genz' o PC= I ‘.'
< ’r ? '- v
- 0 M . .
progfl] ; T
- b = | sum

/

top_genl yO_out.dat q . ~ :
! < fpga.
top_genl y0_out.ts ! ! ;

top_sum x0 avl.dat
top_sum x0 avl.ts

top_gen2 y0 out.dat
top_gen2_y0 _out.ts

q top_sum x1_avl.dat

top_sum_x1 avl.ts

Figure 3.3: Simulation of communication betwganoc[ 1] andf pga

After the simulation fompr oc[ 1] , the communication modeling tool X-Model is used. X-Model
reads the outputo(t . t s) timing trace files generated in the previous simulatiomp,stelds a

modeled communication delay to the times, and generategvthet s timing traces on the right
of Figure 3.3. These timing traces represent the times aatarbe available to the downstream CR

f pga.
Complete traces of data and the times the data was availalflpga are now available for the
third simulation step. ModelSim is now used to simulafega (see Figure 3.4). X-Sim reads the
avl . t s timestamps to determine when it is allowed to read data framrput data traces. When
ModelSim reads in the data, it stores the data input and @$sddimesi(n. t s) in a set of timing

traces files (Figure 3.4). It is possible for tha. t s andavl . t s times for a piece of data to be
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different if the data becomes available to be read, but tH@A-B busy processing a previous piece

of data and thus cannot input the data that is available. feétiefthe data that is available is kept
in an input queue until the FPGA brings it in for processindie Wifference between then. t s
andavl . t s times is thus the queue waiting time for a piece of data. Aftecessing, ModelSim

writes data and timing trace files on the outputf @figa in the trace files labeledut . dat and

top_sum_x0 avl.dat q q top_sum_x1 avl.dat
ts /)
top_sum x0_avlts 4 . =1 [~ top_sum_x1 avl.ts " {op__sum_x0.in.ts
e Tteee. ° 2 17 ] top_sum xLints
PCIm el P_stm x4

out.ts.

.....

foga q top_sum_y0_out.dat
top_sum_y0_out.ts

Figure 3.4: Simulation of pga

At this point, X-Model is used to simulate communication afalfromf pga to pr oc[ 2], similar
to its use in Step 2 of the X-Sim simulation. Figure 3.5 shdws process. The data and timing
(including a communication model delay) are placed inaké. t s timestamp files for use by the

simulation forpr oc[ 2] .

i
top_half x0 avl.dat
top_half x0_avl.ts
T . . e sum
half €& B .

E—— fpga N
store 4 top_sum_yO_out.dat
top_sum_yO_out.ts

proc[2]

Figure 3.5: Simulation of communication betwdgmga andpr oc| 2]

In the final step of the system simulation, as shown in FiguBe & native execution simulation is
done to simulate the operation of GRR oc[ 2] . Timing trace files withi n. t s timestamps are
again generated, as well gpt . t s timestamps. The next section details how to set up and run the

X-Sim simulation example shown here.
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top_half x0_avl.dat

top_half x0_avl.ts

=LANH

7 |

top_half x0 in.ts
.. T |top_half_src_tpt.ts
top_store_sink tpt.ts top_store_src_tpt.ts

Figure 3.6: Simulation gpr oc[ 2]

3.2 Tutorial for Setting up a Simulation using X-Sim

rlA‘
XU vhd |
Application Mapped to

Physical Target

c J Application Mapped to
Simulation Target

. JAppIication Mapped to

Simulation Makefile% mk i Simulation Target

Simulation Trace Files

Figure 3.7: Design Flow for X-Sim

Figure 3.7 shows the high level steps involved in setting sipalation for an application developed
under Auto-Pipe. The input set of X Language files represtr@sdescription of an algorithm
and a physical target architecture, as well as the mappirnigeo&lgorithm to the architecture. A
physicaltarget architecture in this context means an architectuseis comprised exclusively of

real world devices such as general purpose processors dB4 ERips. This can be contrasted
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with a simulatedtarget architecture, which can include simulation targeish as ModelSim. The

first step of the X-Sim design flow consists of modifying the Xriguage files to change the target

architecture to a simulated one.

The second step uses the X-Dep tool to generate a Makefildnabtomates the running of X-Sim.
As mentioned in the previous chapter, X-Dep is used to defasither a physical or simulation
target. In the context of X-Sim, X-Dep is used to deploy thlgoathm to a the simulation target. The
Makefile created by X-Dep coordinates the running of theriatée X-Sim simulation by keeping

track of the dependencies between the different simulators

In the third and final step of the X-Sim flow, the generated Miékés used with therrake’ to
actually run the X-Sim simulation and generate trace dathtaning files. We will continue to
use the same mapping foest 1 that we have been using throughout this chapter. The faligwi

sections describe the individual steps of the X-Sim flow inerdetail.

3.2.1 User Modifications to Files

map { top.gen1, top.gen2 o proc[1];
map { top.sum }to fpga;
map { top.half, top.store }to proc|[2];

Figure 3.8: Mapping for exampleest 1

The X Language statements mapping blocks to CRs for our éeaisigiven in Figure 3.8. When
deploying to a physical (i.e., non-simulation) target &satture,pr oc[ 1] andpr oc[ 2] are both
instances of the platfori@, which represents a general purpose processor, Wpie is an instance
of the platformf pga, a physical FPGA chip. The IRs linking thpr oc andf pga CRs areL AN,
an instance of thewi t ch_et her linktype, andPCl , an instance of thbus_pci linktype. The

original physical platforms are shown in Figure 3.9.

Under X-Sim, a separate federated simulator is used to atme@lach CR, so in this case X-Sim
would use three simulators (one eachffpiga, proc[1], and proc[2]). This is shown in Figure 3.10.

GPPs in X-Sim are simulated natively, so the platformgoroc|[ 1] andpr oc[ 2] remain the
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/[———CR declarations- — —
resourcefpgais HDL_Virtex4( part="XC4Vv8000");
resourceproc[3]is C_Pentium4{
(freq=3400), (freq=3400), (freq=2800)
%

/I———IR declarations- —
resourceLAN is switch_ether(
{ proc[1], proc[2], proc[3] }
);
resourcePClis bus_pci{
{ proc[1], proc[2], fpga}

Figure 3.9:0riginal physical deployment targets for examplest 1

/[———CR declarations-——
resourcefpgais VHDLSIm; //simulates HDL_Virtex4
resourceproc[3]is C_Pentium4{
(freg=3400, xsim="true"),
(freg=3400, xsim="true"),
(freq=2800, xsim="true")
%

/I———IR declarations- —
resourceLAN is FilelO( //simulates switch_ether
{ proc[1], proc[2], proc[3] }
);
resourcePClis FilelO{ //[simulates bus_pci
{ proc[1], proc[2], fpga}

Figure 3.10: Simulation platforms for examplest 1
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same,C_Pent i un4. The difference in th€ Pent i umd simulation target CR is that thesi m

option is set td't rue" . This turns on C language macros for testpoints that areribesclater
in this section. When deployment is done to a simulationetasnd thexsi moption is set to
"true", the testpoint macros evaluate to a set of commands tha¢ ¢&&m to record pt . t s

timing traces. When deployment is done instead to a physcgét and thexsi moption is set to
"fal se", the macros evaluate to blank statements (i.e., the masio@y compiled out. Note

that the default setting for thesi moption isfalse

An FPGA platform is simulated by a ModelSim simulation undeim. To specify this, the
platform HDL_ Vi r t ex4 is switched toVHDLSI m the X-Language platform corresponding to
the ModelSim simulator. Similarly, the physical platforregi t ch_et her andbus_pci are

replaced by the communication simulation platfdfm el O.

By making these changes to the X Language files, the aplichis now been configured to run a
simulation. In the default configuration, X-Sim capturetad@nd timing trace files at all ports that
send or receive data over the simulation IR (InterconnesbRee)Fi | el O. For our example, the

automatically generated trace files are shown in Figure. 3.11

fpga

LAN
.
4

proc[3]

Figure 3.11:Defaulttrace files fort est 1 (i.e. withoutt pt . t s traces)
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block GENERATE {//generate a number
misc {
testpoint "src";
filepath "temp/Xfileio";
%
output FLOAT32 yO0;
%

N o o0 A W N P

Figure 3.12: X Language description @®ENERATE block with a testpoint

In addition to the default traces that focus on the inputs @ntguts of CRs, X-Sim also supports
the ability to record traces at arbitrary points in blockspped to processors. To achieve this,
testpoints are added to blocks. For example, to add a testpainedsr ¢ to the GENERATE block,
the X Language code for the block would get lines 2-4 added tsishown in Figure 3.12. The
main features on those lines is the specificatiorf ®f c" as the name of the testpoint, and the
specification of t enrp/ Xfi | ei 0" as the directory where trace files IGENERATE block will be
stored. Testpoints are implemented under the X Languageayngn use of then sc feature of X
Language blocks. Thei sc is a convenient feature of the X Language that allows additiblock
properties to be added on easily, in this case the testpoopepty. To add more testpoints to the
CGENERATE block, simply add another line inside the sc code section that defines an additional
testpoint. The timestamps for the new testpoint will beesddn a separate timing trace file inside
the filepath directory. By adding the testpoint to the X Language spettific, the X-Compiler
knows to generate a function callegoi nt that implements the ability to record timing traces for

testpoints. Note that the generated code is not shown here.

The second change the user needs to do is to add a macro topleeniemtation header file for the
block. Figure 3.13 shows the header file for (BEENERATE block with the added testpoint macro
on line 7. When compilation is done with an addeDXSI Moption, this macro evaluates to a

declaration of a pointer to thepoi nt function.

The user is now able to record timestamps on the testpointeweethey wish inside the implemen-
tation code. This is shown in Figure 3.14. Line 6 in this figsinews the user recording a timestamp

on testpoint "src" before starting to generate a number.¥hexsi moption for the CR is set to
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#include "X.h"

1

2

3 struct X_GENERATE_data {
4 Xclock _t clock;

5 void (xsend){nt);

6 void (xrelease)t,char);

7 TPOINTFUNC,;

8 portmask_t portmask[1];
9

10 FLOAT32 xoport0;//output port yO

11

12 int count;//number of random numbers to generate
13 };

14

15 void X _GENERATE_initétruct X_genU32_datad);

16 void X_GENERATE_destroytruct X_genU32_datad);
17 int X_GENERATE_puslifit p, struct X_genU32_datad);
18 int X_GENERATE_gostruct X_genU32_datad);

Figure 3.13: Header file fdBENERATE block with a testpoint

"true”, theTPO NT( " src") macro evaluates to a call to theoi nt function with the" src"

testpoint name.

In a similar manner to thésr c" testpoint for theGENERATE block, two testpoint$ src" and
"si nk" were added to th8TORE block. These testpoints record the start and end of praugssi
for this block. Note that the testpoiritsr ¢ for a STORE block is completely separate from
the testpoint' sr c¢" for a GENERATE block, similar to how they0 port for aSUMis completely
separate from thgO port for aGENERATE block. The block definition for the testpoint&TORE
block is given in Figure 3.15, the header file is given in Fg8rl6, and the C implementation code

is given in Figure 3.17.

Using testpoints allows the additionapt . t s traces shown in Figure 3.1 to be recorded along
with the default traces that get recorded for ports on IRsndJthe testpointing feature thus allows

timestamps to be stored at any point in the C implementatoute ¢ This is necessary to be able
to obtain start and end of processingt . t s timestamps, which in turn are required to be able to
do performance analysis of resources containing sourcsiakdlocks. Additionally, testpointing

allows more in-depth timing results to be gathered for anptga block execution the user wants
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int X_GENERATE_go¢truct X_GENERATE_datad) {
if (d—>count <= 0){//check if more numbers need to be generated
return 1;
}elsq
/lrecord a timestamp for testpoint "src" here
TPOINT("src");

}

/[allocate memory
d—>oport0 = gmallocgizeof FLOAT 32));

© 0 N o o h W N P

PR
» o

/lgenerate random number on output port yO
x(d—>oport0) =rand() % 10 + 1;

PR P
A w N

//send the data on oport0
send(0);

PR e
N o o

/lupdate the count
d—>count-——;

NN R
O © o

if (d—>count < 0){//check if this was the last number
return 1;

}

/lreturn 0O to signify that this go function should still belea
return O;

NN N NN
o g o~ W N

N
~
—

Figure 3.14:go function for GENERATE block with a testpoint

block STORE {//generate a number
misc {
testpoint "src";
testpoint "sink";
filepath "temp/Xfileio";

input FLOAT32 x0;

o N o g A~ w N B

h

Figure 3.15: X Language description 8T ORE block with testpoints
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© 0 N o g » W N P

N T
o o A W N P O

#include "X.h"

struct X_STORE_data {
Xclock _t clock;
void (xsend){nt);
void (xrelease)it,char);
TPOINTFUNC,;
portmask_t portmask[1];

FLOAT32 «iport0; //port x0
¥

void X_STORE_initétruct X_STORE_datad);

void X_STORE_destrogtruct X_STORE_datad);
int X_STORE_pushft p, struct X_STORE_datad);
int X_STORE_gogtruct X_STORE_datad);

Figure 3.16: Header file fd8TORE block with testpoints

void X_STORE_pusigtruct X_STORE_datad){
/Istore a timestamp for start of execution
TPOINT("src");

//set result to value on input port
float result =xd—>iport0;

/lprint result to a file
fprintf(pfile,"Result%f\n", result);

llrelease port and free associated memory
release(0,1);

/Istore a timestamp for end of execution
TPOINT("sink");

Figure 3.17:push function for STORE with testpoints
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to timestamp. Testpointing is currently only implemented®@ implementations. A future revision

of X-Sim will include support for testpointing inside VHDImiplementations.

3.2.2 Running X-Dep to Create an X-Sim Makefile

After the user has modified the original X language and impletaition input files, the next step is
to create a Makefile that can be used to run the simulation tddieised to automatically generate
the Makefile is called X-Dep. X-Dep is run simply by callingetX-Dep binary with the name of
the top level X Language file, and piping the result into a MiddkeFor example, the following line

writes the simulation Makefilsi m nk for the X application given by est 1. x.

xdep testl.x > simnk

X-Dep uses the application description given in the X Lamggui@ analyze the dependency order of
the resources. For example, for thest 1 example, X-Dep will analyze the application to figure
out that the order of simulation executions should be toffinspr oc[ 1] , then to run X-Model to
simulate communication fromr oc[ 1] tof pga, then to run the ModelSim simulation fépga

and so on. The main parts of the Makefile generated by runniigXare shown in Figure 3.18.

The comments at the start of the Makefile identify which X Liaage file was useXsyst em nk

is an included file that contains the definition ek LEI OPATH, a variable that indicates where
trace files are stored. Theper f files are used to keep track of which simulations have already
been done. For example, after the first simulationpiooc|[ 1] is done, the filproc_1_. perf

is generated to indicate that the first simulation has beamptaied.

3.2.3 Running X-Sim

Once the simulation Makefile has been created by X-Dep, atl tdmains is to actually run the
X-Sim simulation. This is achieved by simply running the enand ‘rake si nul at e”. When

this command is run, the simulation Makefile finds that it recibdee. per f files. These files form
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

29

simulate: proc_1 .perf fpga.perf proc_2 .perf
echo Simulation done.
proc_1 .perf:

proc_1_  >& proc_1_.out

echo Done > proc_1_.perf
fpoga.perf: proc_1_ .perf

xmodel —i top_genl _yO0O out.ts -1 freq=3.4e9 \
—0 top_sum_xO0_avl.ts -2 freg=1e9

mv top_genl yO out.dat top_sum_xO0_in.dat

xmodel —i top_gen2_y0 out.ts -1 freq=3.4e9 \
—0 top_sum_x1_avl.ts -2 freq=1e9

mv top_gen2_yl out.dat top_sum_x1 in.dat

vsim —c¢ SimModule —do "run; quit —f"

echo Done > fpga.perf

proc_2_.perf: fpga.perf
xmodel —i top_sum_y0_out.ts -1 freq=1e9 \

mv

—0 top_half_x0_avl.ts -2 freq=3.4€e9
top_sum_y0_out.dat top_half_x0_in.dat

proc_2_ >& proc_2_.out

echo

clean:
rm
rm
rm

Done > proc_2_.perf

proc_1 .out proc_1_ .perf
fpga . perf
proc_2_ .out proc_2 .perf

Figure 3.18: Simulation Makefile farest 1
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a dependency order that cauggsoc_1_. per f to be generated first, by executipgoc_1_to

run the simulation fopr oc[ 1] .

The second per f file in the dependency orderfigpga. per f . For each of the application edges
leading intof pga, xnodel is run to simulate communication over these edges and genia
requiredavl . t s files. The data files are simply moved over to make them reatyppéoModelSim
run. After the input files are ready, the ModelSim command tallvsi mis used to simulate the

FPGA.

Finally, the last simulation fgor oc[ 2] is run after the input files have been readied. The command

make cl ean removes the output andper f files from the simulations.

If an application has two resources that can be run in parétlen the Makefile reflects this paral-
lelism by only expressing the required dependency ordematiting more. For example, if there
was a mapping where data was producegrioc[ 1] and then data went out to two output blocks,
one inproc[ 2] and one inproc] 3], then it is possible to run the two processor simulations
in parallel. The simulation fopr oc[ 1] must still be run first. However, after that the simu-
lations forpr oc[ 2] andproc[ 3] can be run in parallel because they only depend on the file
proc_1 . perf created by the simulation fgsr oc[ 1] . Running simulations in parallel and

other techniques for simulation speedup will be examinedhiapter 5.

3.3 Simulation Trace Files

In this section, we will describe the timing and data tracesfijenerated in an X-Sim run. There
are four types of timing trace filegvl . ts,in.ts,out.ts,andt pt.ts. Timestamps inside
the first three types of trace files directly correspond tadatorded in data trace fileavl . t s
timestamps correspond to the times that data becaaiable at the input port of a block.n. t s
timestamps correspond to when data wassumedat an input port.out . t s timestamps, as one
might expect, correspond to when data was output from arubgpigrt. In contrast to these types

of timing trace filest pt . t s timestamps are not directly associated with a data portdadhey
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correspond directly to any ports. Insteddyt . t s timing trace files store timestamps at points

specified by the usenside the implementation using macros as was explained in theiquev

section. The naming convention for timing trace files fokote template:

<bl ock> <port|testpoint> <type>.ts

For example, the timing trace fiteop_genl yO0_out . t s hasout . t s traces for they O port of
blockt op. genl. Thefilet op_genl_src_t pt. t s, onthe other hand, hagt . t s traces for

thesr ¢ testpoint of block op. genl.

The template<bl ock> refers to the full name of a block instance (etgpp_genl). The<t ype>
refers to the type of the por&vl i n,out ,ort pt. <port |t est poi nt >refers to the port (e.g.,

CGENERATE's output porty0) or, in the case of pt . t s timestamps, the name of the testpoint.

Data files have the following naming convention:

<bl ock>_ <port>_<type>. dat

The templatesbl ock> and<por t > are the same as for timestamp files. Note that a data file
can never have a testpoint instead of a port in the name beckia traces are not recorded for
testpoints inside a function. Tha ype> refers to whether data was recorded coming into or going
out of a port. An output port hasaut . t s and aout . dat file associated with it. An input
port has aavl . ts,i n.ts and ai n. dat file associated with it. A testpoint hag @t . t s file

associated with it.

During the X-Sim simulation of our example mappimy,oc[ 1] is the first resource simulated.
The simulation ofpr oc[ 1] produces the trace files shown in Figure 3.X8ENERATE blocks
were only set to run three times for brevity. The time tradesws here use made up numbers
for illustration purposes only, and were not recorded fratual simulations. Actual timing trace

results from X-Sim simulations are presented in later airapt

Thet op_genl_src_tpt.ts file stores timestamps gathered from tTHeMESTAMP( ) call in

genl’sgo function. Thet op_genl_yO0_out . t s file stores timestamps for when the data in the
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top_genl src_tpt.ts top_genl y0 out.ts top_genl y0 out.dat
Ous 5us 6.41
11lus et ° 17us 3.22

23US _________ ) -_.’- 28US 975
LAN -—.- PCI

top_gen2 src_tpt.ts proc[l]  ““._ top_gen2 y0 outts top_gen2 yO out.dat
Sus 11us 8.13
18us 23us 1.96
28us 33us 7.39

Figure 3.19: Simulation traces fpr oc[ 1]

top_genl yO0_out. dat file was output fromgenl’s porty0. The other three files parallel the

same functions as described, this time for blgen?2.

3.3.1 Trace File Formats

We will now describe the formats in which data and timestaanesstored in trace files. Data trace
files have a straightforward format, storing data direathybinary (rather than ASCII) form. The
top_genl yO0_out. dat file, for example, containELOAT32 data values, each of which is

stored as a 32-bit binary value.

Timing trace files have a slightly more complex format. Titaesps are stored as 64-bit unsigned
binary values. In processor simulations, the system clackte simulation targetis directly
recorded as timestamp values. Recall that the simulatigettés the native processor that is avail-
able for running the simulation on. It may be the same as teréifit from the finaphysical target
processor. When the system clock timestamps are combinidkwbwledge of thesimulation
target processor’s clock frequency and the initial system clooketi the simulation times can be
accurately calculated. The first 512 bytes of timing traessfilre reserved for a header stored in hu-
man readable ASCII format. The header for filgp_genl_yO0 out . t sis shown in Figure 3.20.
The first line identifies this files as an X timestamp trace filee second line stores the simulation
processor’s clock frequency, which as an example is shovee ®2GHz. The third line stores the
compile time of the binary being executed in the simulatfurely for additional information for a

user. The fourth line stores the offset in clock ticks. Thisetfis the system clock recorded at the
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start of simulation. Note that once again these numbersyatbetic, and that the offset is set as a

nice round number to make calculations easier to follow.

\#XTSFile
freq=3200000000
\#compile_time=10:36:14
offset=1000000000000000
end

Figure 3.20: Header for timing trace fileop_genl y0_out.ts

As an example, if the first timestamp in the trace file was 100006000000, then the simulation

time would be calculated as given below:

(timestamp - offset) / frequency

= (1000000016000000-1000000000000000) / 3.2GHz = 5us

This calculation tells us thays after the simulation started running, tpen1 block output the first
random number on itg0 port. In the case of ModelSim simulations, the default fexgry stored
in timing trace files is 1GHz, because ModelSim simulatiore ran using ns as the base time
resolution. Since timing trace headers are in ASCII, theylmaviewed directly, using commands

such ashead.

To view the binary timestamps in the body of a file, a binaryvitng tool such afiexdunp (hex-
adecimal dump for UNIX) ood (octal dump for cygwin) must be used. For example, the contiman

given below will print out all the binary timestamps in a file.
od -j512 -t d8 -w8 top_genl y0 out.ts

The-j 512 option skips the first 512 bytes of the file (the header). Thed8 tells od that the
timestamps are 8 bytes long numbers that should be printeid decimal format. The w8 option
causesd to print out 8 bytes (one timestamp) per line. The output ftbencommand is given in
Figure 3.21. The left column values are offset values inlidgimestamp file in octal format (512,
520, 528, 536). The right column values are the recorde@gsystock values. Simulation times

can be calculated by subtracting the offset clock valueF)Lahd then dividing these values by the
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clock frequency (3.2GHz). These calculations give theesltus, 17s, and 2&s, matching the

values that were shown in Figure 3.19.

0001000 1000000000016000
0001010 1000000000054400
0001020 1000000000089600
0001030

Figure 3.21: Timestamps for timing trace filep_genl_y0_out.ts

3.3.2 Reconstructing a Simulation Run from Traces

This section shows how a simulation run can be reconstrucgien) the traces generated by a sample

X-Sim simulation run, starting with ther oc[ 1] simulation traces given previously in Figure 3.19

At simulation time @«s, the binary fopr oc[ 1] started executing by callingo on blockgenl.
The go function then generated the float data value 6.41 at tipge $n the binary’s round robin
schedulegen2’s go function was called next. That function generated 8.13 as1IThe round

robin scheduler then went back and calggeh1’s go function again, and so on.

After pr oc[ 1] , the communication of data fropr oc[ 1] tof pga overPCl is simulated. As-
suming that X-Model uses a simple constapisSelay to model the communication delay, the
traces recorded are given in Figure 3.22. X-Model simplysafics toout . t s times to get the

correspondin@vl . t s times.out . dat files are copied over to creasw| . dat files.

top_genl y0 out.ts top_genl yO out.dat top_sum_x0_avl.ts top_sum_x0 in.dat
5us 6.41 10us 6.41
17us 3.22 22us 3.22
28us . 9.75 33us 9.75
_________ ®
s PO (|
i I fpga
Lo’ * proc[l] 2
top_gen2_y0_ouf.ts top_gen2 y0_out.dat top_sum_x1 avl.ts top_sum_x1 in.dat
11lus 8.13 16us 8.13
23us 1.96 28us 1.96
33us 7.39 38us 7.39

Figure 3.22: Simulation traces for communication frpmoc[ 1] tof pga
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top_sum_x1_avl.ts top_sum x1 in.dat top_sum_x0_avl.ts top_sum x0 in.dat
16us 8.13 10us 6.41
28us 1.96 . 22us 3.22
38us 7.39 ,»°" 33us 9.75
top_sum x1lints  "Ts. T ¢ top_sum _x0_in.ts
16us ) 9 .- 10us
28us —1°° 22us
38us IR 5 33us
PCI sum
fpga '_
top_sum_y0 out.ts top_sum_y0 out.dat
17us 7.27
29us 2.59
39us 8.53

Figure 3.23: Simulation traces fbpga

The next simulation is of pga. The trace files for this simulation are given in Figure 3.28e
avl .ts andi n. dat files were set up by the previous simulation. The first piecelaif to
become available was the float 6.41 on marm x0 at time 1Q«s. Since the ModelSim simulation
was not busy doing any previous processing, it was able tt ifye data at that time, making /1€
the firsti n. t s time forsum x0. Then the simulation had to wait till time 16 for the data on
portsum x1 to become available, at which time the float 8.13 was inpat ihé module. At time
17us, the simulation finished calculating the sum and outputvttiee 7.27 on porsum y. The
simulation then waited till time 225 so it could input data on postum xO0. It further waited till
time 28s to input data on pogum x0. Calculation of the second sum was complete at times29
Calculation of the third sum was done in a similar manner &ofitst two, and was completed at
time 3%s. The simulation of data transfer franpga overPCl to pr oc[ 2] is again modeled by

a constant ps delay, and is shown in Figure 3.24.

Finally, the simulation fopr oc[ 2] is run, generating the traces shown in Figure 3.25. Note that
no data is gathered by X-Sim for the testpoint at the end of theer e block. Thest or e block, or
anysinkblock, for an application presumably always either recaiieutput data in an output file,
prints it out to screen. The user can examine the output filergged by the application to check for
correctness. This is independent of the trace recording 8gnX-Sim. Future work may include
the ability to record additional data traces at testpoiwtsich would allow data to be recorded at

the end of sink blocks, as well as any other arbitrary points.
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top_half_x0_avl.ts top_half x0_in.dat

22us 7.27
34us 2.59
44us . 8.53 —
=P C = sum
half —®
_ _ half g .
< .
— .
out .
top_sum_y0_out.ts top_sum_y0_out.dat
proc[2] 17us 7.27
29us 2.59
39us 8.53

Figure 3.24: Simulation traces for communication frbpga to pr oc[ 2]

top_half x0_avl.ts top_half x0 in.dat

22us 7.27
b 3dus 2.59
;. 4dus 8.53

top_half_x0_in.ts

% seee... 22us
- 42us
63us
top_half_sink tpt.ts
“e.. 26us
. . 46us
L top_store_src_tpt.ts 67us
. 26us
top_store_sink_tpt.ts 46Us
42us 67us
63us
83us

Figure 3.25: Simulation traces fpr oc[ 2]
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The simulation ofpr oc[ 2] is interesting because it shows blocking occurring. The fiiece of

data is input as soon as it appears, at simulation times 2Processing of this data then took.20
resulting in the creation of ipt . t s timestamp at 42s. Although data was available faal f’s
input port at time 34s, itis only input into the CR at time 42 because the CR was busy processing
an earlier piece of data. Similarly, the third piece of datate input port is queued from time Ag

till 63us before it could be processed. Simulation of ginec[ 2] CR, and of the entire X-Sim

simulation, ends at simulation time 88

| Resource] Block/Edge | datg | data | data | Mean ||
proc[ 1] genl waittime | Ous | Ous | Ous Ous
exec. time|| Sus | 6us | Sus | 5.33us
gen2 waittime || Ous | Ous | Ous Ous
exec. time|| 6us | 5us | Sus | 5.33us
PCl genl.y0->sum x0 | waittime | Ous | Ous | Ous Ous

exec. time| 5us | 5us | 5us Sus
gen2.y0->sum x1 | waittime | Ous | Ous | Ous Ous
exec. time| 5us | 5us | 5us Sus

f pga sum waittime || Ous | Ous | Ous Ous
exec. time|| 1us | 1us | 1lus lus

PCI sumyO->hal f.x0 | waittime | Ous | Ous | Ous Ous
exec. time|| 5us | 5us | 5us Sus

proc[ 2] hal f waittime || Ous | 8us | 19us us
exec. time| 4us | 4us | 4us 4us

store waittime || Ous | Ous | Ous Ous

exec. time|| 16us | 17us | 16us | 16.33%s

Table 3.1: Performance results toest 1

Table 3.1 shows a summary of all the timing results from sam@lected for out est 1 example.

These results can be gathered by using X-Eval, as will be shothe next chapter.

3.4 Limitations of X-Sim

This section talks about limitations on application maggithat can be simulated using X-Sim. As

explained before, X-Sim is a federated simulation systerarezindividual simulations for each CR
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are run in the correct dependency order. For example, fandggping that we have been looking at

for ourt est 1 example (e.g. Figure 3.1), the simulations are run in tHeviehg order:

e proc| 1]

communication of data fromr oc[ 1] tof pga

f pga

communication of data frorhpga to pr oc[ 2]

proc[ 2]

The native execution simulation fpr oc[ 1] is run to completion, generating complete output data
and timing traces for porgenl. y0 andgen2. y0. None of the blocks mappedpw oc[ 1] need
data from blocks mapped to other CRs, so the simulatioprfarc[ 1] can be the first to run. The
sumblock mapped td pga is dependent on data producedgayoc[ 1] and communicated over
PCl . Thus, both the simulations f@r oc[ 1] and for the communication of data fropm oc[ 1]

tof pga must be done, before the simulation fggga can be run.

Let us now consider the mapping shown in Figure 3.26. In trepping,genl andgen2 are
mapped tgor oc[ 1] , andsumis mapped td pga as before. However, theal f andst ore
blocks are now mapped fr oc[ 1] instead of tgpr oc[ 2] . In this mapping, the simulation for
proc[ 1] cannot be run to completion because ktad f block needs data from theumblock.
Output data and timing traces for teemblock are only created once the simulationffgrga has
been run. Thus, the simulation fpr oc[ 1] is dependent on the simulation fbpga. However,
thesumblock (which is mapped tbpga) needs data from thgen1 andgen2 blocks (which are
mapped tqr oc[ 1] ), so the simulation fof pga is dependent on the simulation fpr oc[ 1] .
There are thus cyclical dependencies between the simugagbCRspr oc[ 1] andf pga. Al-
though the given mapping is possible to implement using theaXguage, its simulation is not

supported by X-Sim.

If a mapping can result in cyclical dependencies, then tlreenou X-Sim design is not able to

simulate it. The simulation for a CR needs to have a compésterd of all the traces it is dependent
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) o [ [

proc|2]

proc[3]

Figure 3.26: Cyclical mapping for examplest 1

on before it can start running. A cyclical dependency betwa® CRs results in a situation where

both CRs are waiting for the other to be run so that they hdvwbalequired traces.

A possible future way to overcome this limitation is to runltiple simulations in parallel, feeding
data to each other via pipes. For example, the simulatooresc| 1] andf pga can be run in
parallel, withgen1l andgen?2 producing data opr oc[ 1] , sumoperating on that data drpga,
andhal f using the summed data @m oc[ 1], all simultaneously. With parallel simulations that
feed data to each other simultaneously, a simulation casepaxecution when it is waiting for data
from other simulations. A mapping that would, in real lifetcause any deadlocks would not cause
any deadlocks for the simulation either. The ability to rynlically dependent simulations will be

added in a future version of X-Sim.
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A related limitation of X-Sim is the simulation of IRs doestraxcurately model communication

delays if cyclical dependencies occur. Cyclical dependsnin IRs are often caused by multiple
edges sharing a common IR. For example, data enterifgtfa CR has to first be simulated being
transferred over theCl IR. Thef pga CR simulation is thus dependent on @l IR simulation.
However, data exiting thepga CR also has to be simulated being transferred ovelP@ielR. The

PCl IR simulation is thus dependent on thpga CR simulation. Once again, we see a cyclical
dependency, this time between the simulationdPor andf pga. Cyclical dependencies between
IR simulations and other simulations are particularly camnrm mappings, because often the same

IR links multiple CRs together.

To solve this problem, X-Sim simulates each edge in isafatieor example, the two input edges
into f pga and the output edge out bfpga are all independently simulated. The two input edge
simulations are done before th@ga simulation, while the output edge simulations is done after
thef pga simulation. The downside to this independent edge sinuiatipproach is that it does
not take into account the effect of IR sharing between mlelguges. For a single edge simulation,
the communication simulator is smart enough to queue datafers while applying latency delays,
and make sure that multiple data elements cannot be traedfever the same medium at the same
time. However, multiple edges are simulated independestiythe communication simulator can-
not account for data being transferred over the same medmuitaneously ovedifferentedges.
Because of this problem, communication latency over an fRddeled well, but bandwidth sharing

between multiple edges is not.

This may be a serious issue in applications where multipteegdnapped to the same IR and one
or more edges take up a significant portion of the IR’s bantlwidh such cases, the traffic on a
high traffic edge can significantly affect the performancéraffic on other edges. The long-term
solution to this problem is, again, to implement the abitityrun simulations in parallel. All the
edges mapped to a single IR are mapped by a single commuonicitiulator. This communication
simulator is run in parallel to the simulations for all CRs, that cyclical dependencies can be
taken into account. The ability to model the performance oftiple edges mapped to a single IR
is already available, in the form of thevodel 2 tool. Combining this multiple-edge simulator

with the ability (in a future X-Sim version) to run multiplensulators in parallel will allow the



67
performance of IRs to be more accurately modeled. Xinedel 2 tool will be explained in more

detail in Chapter 5.

In this chapter, we described how X-Sim can be used to createmgprehensive trace record of
the operation of an algorithm mapped to a hybrid target techire. In the next chapter, we will
describe how X-Eval can use the generated trace files toan#ig algorithm and mapping, and to

provide insight to the user to help optimize the application
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Chapter 4

Analysis using X-Eval

After a simulation run is done, an extensive set of data amégtamp traces are available that
capture a history of the federated simulation executiomacds are recorded at all algorithm edges
that are mapped to interconnect resources (IRs), as wellaay @xplicitly marked trace testpoints.

The mapping of exampleest 1 reproduced in Figure 4.1 will again be used as an illustativ

example.

(] e (00 (50T

proc[3]

Figure 4.1: Traces recorded for examplest 1 (Same as Figure 2.23)
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This chapter tackles the problem of how to do performancéysisaon simulation traces. The

first section in this chapter, Trace Visualization, shows XGEval can generate a graphical event
timeline that shows a visual representation of all the essestorded in X-Sim trace files. The next
section shows X-Eval being run to analyze thest 1 application. The third section, Production
Rules in X-Eval, describes hoproduction rulescan be used to characterize the operation of blocks
and allow performance metrics for blocks to be calculatedally, the last section gives a tutorial

on how a user can run X-Eval on their application to generatéopmance results.

4.1 Trace Visualization

Traces are stored in binary in a number of different tracs,fikdth one trace file recorded for each
port. While binary dump tools provide an instant mechaniswiéw the raw data in trace files, they
do not provide a convenient method to understand system sinai@dation trace results. As part of
the analysis tool-set, X-Eval can process all the trace fdesrded by X-Sim and combine these
traces into a single global event timeline. Initial profmg of the timeline graph were developed in

cooperation with Greg Galloway, a student working with tiBSSyroup.

An example of a timeline graph that is automatically gerestdty X-Eval is shown in Figure 4.2.
This timeline shows the traces generated for a simulatioroftiest 1. The same timeline zoomed
in on the first 10@s of the simulation run is shown in Figure 4.3. Note that fagst timeline
graphs, the est 1 application simulation was configured to generated 100egain each of the
two GENERATE blocks, rather than 3 values as before. This X-Eval gengrgtaph shows all
the events that happened during the simulation on one cadliimeline graph. Each line on this
timeline corresponds to the traces recorded in a diffeisr@stamp trace file. For example, the first
line displays all the traces that were recorded for the t@stgor the beginning of processing for
thegenl block. The second line shows the traces recorded at the tonitplue same block. Lines
3 and 4 show the corresponding events for bigek2. The next two lines show thaevl . t s and

i n.ts traces recorded at paxD of block sum The rest of the lines display the remaining traces

gathered for the simulation run.
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Figure 4.2: Timeline generated foest 1
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Let us now consider a sequential reading of the timelinetistafrom the left and going across to

the right. The start of the simulation corresponds to thédien 1. sr c timestamp. This represents
the time that the CRr oc[ 1] started running. After running for approximately&)pr oc[ 1]
outputs a data value @enl’s output port. The timeline shows that the next timestanrpésrded

at gen2’s sr c testpoint, indicating that processing pnoc[ 1] switches to thegen2 block.
Generation of the first number from bloglen2 happens very soon afterword. Processing switches
betweengenl andgen2, as expected from the round robin scheduling implementeithénX
Language. The shown timeline is for a simulation run wherh &@NERATE block is configured

to output 100 elements before terminating. From the tineehive can see that generation of the last
199 numbers fronpr oc[ 1] takes about 1505, while the generation of just the first number alone
took about 5@s. This can be attributed to caching effects, because théries number generation
function is called ompr oc[ 1] it must be loaded into cache from main memory. For all but s fi

number, the instructions for number generation are presesiche and thus runs much faster.

After data is produced on the output ports pnoc|[ 1], it must travel over thé>Cl IR. In our
simulation run, the communication delay model for @ IR is a us delay per data element.
The first data orgenl. out is produced around the B8 mark. The first data becomes avail-
able on the other side of the interconnect resourge later, as shown on the timeline marked
top_sum x0_avl . ts. Thereafter, data is produced genl’s output port in a steady stream.
The communication delay simulator X-Model has to wait thedeled 5:s to transfer each data
element before it can move to the next element. This consligaly turns out to be a bottleneck,
as data that was produced within a period of 1$® spread out over a period of 58 A simple
calculation shows that 100 data elements transferred ozemanunication link with a fixed delay
model of Sis must accrue a delay of at least p80so the timeline shows that the simulation acted
in accordance with theoretical expectations, and thatd@hancunication link is a bottleneck for this

application.

Data on the output of thepga CR is produced almost as soon as data is available at the gRItsi
Data elements at the input of the oc[ 2] CR’shal f block are available everys, still reflecting
the bottleneck effect of delays caused byH@ IR. Once again, we can see a caching effect in the

way that the first processing of thel f block takes a lot longer than subsequent executions. The
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last time for the entire simulation timeline can be found lom line markedr i nt . out , at about

simulation time 560s.

A preliminary visual inspection and analysis of the gerestdimeline thus shows that the commu-
nication linkPCl is the bottleneck in the simulation. To test this theory,thapsimulation was run
with the same mapping and application, where the commuaicatlay for thePCl IR is modeled

as a constantyis delay (Figure 4.4).

Total processing time for the simulation run has approxatyabeen cut in half, from 5665 to
280us, confirming our observation that communication delay &®@r was a critical bottleneck in
the system. This simple re-run of the simulation fast 1 shows how the X-Sim infrastructure,
along with simple trace visualization techniques, helpsige understand application performance,

identify bottlenecks, and test out hypotheses.

In addition to visualization of X-Sim traces, X-Eval is alsapable of more in-depth performance
analysis of applications developed under Auto-Pipe. The section takes a look at how this is

done for the est 1 example application.

4.2 An Example X-Eval Performance Analysis

In this section, we will look at how X-Eval does performancalgsis on each block of theest 1
example application. To keep things simple, we will use thee traces as were shown in the
simulation run described in Figures 3.19, 3.22, 3.23, 33225. Recall that for that simulation run,

the GENERATE blocks were configured to generate 3 values each.

Consider the first bloclgenl. Thetop_genl_src_tpt.ts timestamp file, generated by
the user-defined testpoistr ¢, captures each time thgeenl started generating a number. The
top_genl _yO0_out. t s timestamp file, on the other hand, captures each timgdme finished

generating a number and output it on its output pd@rt The time each number generation took for
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block genl can thus be calculated by subtracting each outfng_genl y0_out .t s times-

tamp from the corresponding testpoirdp_genl src_t pt.t stimestamp. This relationship of

timestamps for blockienl can be represented by the followipgpduction rule
genl.src — genl.yO0

X-Eval views blocks as entities that run production rulespraduction rule consists of two parts,
an input condition (on the left side of the), and an output action (on the right side of the).
The input condition specifies which timestamps cause the taulbe invoked, otriggered For
block genl, a timestamp on thgenl. sr c testpoint triggergenl’s production rule. On being
triggered, a production rule starts running. denl’s case, the rule always starts running right
after being triggered, meaning that the waiting time (dtiane - trigger time) is always zero for
this rule. After starting, a production rule runs for a certamount of time (the execution time),
and then produces timestamps specified by the output a¢tmrblockgenl, the production rule
produces a timestamp @enl. y0. The execution time for a block’s production rule is calteth
by subtracting rule start from rule finish times. For the fiinste gen1’s production rule ran, we

find that the execution time wasy(5-0us=) Sus.

Figure 4.5 presents genl timeline which shows both X-Sim timing traces as well as XaEv
block production rule timings. The top two timelines showe -Sim timing traces from trace
filest op_genl_src_tpt.ts andtop_genl _yO_out.ts. These correspond to the times
that were shown in Figure 3.19. The bottom three timelinpsesent the X-Eval production rule
timings for thegen1 block. The first timeline represents the time the productide was triggered.
For thegen1 block, the trigger time corresponds directly to the timeorded by thegenl. src
testpoint. The second timeline represents the time theuptimh rule start running. For thgenl
block, this also corresponds directly toganl. sr c timestamp. The third timeline represents
the time the production rule finished running. A time on thisdine corresponds directly to a

timestamp inthé op_genl y0 out.ts

The three times the production rule ran are shown with diffesymbols in the figure. The first
run is represented by a + symbol, the second run Bysymbol, and the third run by ansymbol.

Subtracting the production rule start time from the promurctule trigger time gives production
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genl.src -> genl.y0

1st execution
2nd execution
3rd execution X

top_genl_src_tpt.ts - e s PR .
top_genl_y0_out.ts [ R4 R .
rule trigger - e s PR .

rule start - e s PR .

rule finish - e R .

first execution time = 5us

| | | | |
0 20 40 60 80
Time (us)

Figure 4.5: Timeline for bloclgenl

rule waiting times that are zero for each run. Subtractirrgpioduction rule finish time from the
production rule start time gives the following productiarer execution times for thgenl block:
5us, 6us, and Js. The average execution time is 3 The execution times for bloakenl
correspond directly to the times calculated by subtracgiegl_src_t pt . t s timestamps from

genl y0 out.t s timestamps.
Block gen2, which operates similarly to bloaken1, has the following production rule:
gen2.src — gen2.y0

In this case, a timestamp on testpag@n?2. sr ¢ triggers blockgen?2 to produce a timestamp on
output portgen2. y0. The timeline for bloclgen?2 is given in Figure 4.6. The execution times for
each production rule run for this block are ajl§ so the average execution time is algs5The

production rule waiting times are once again zero for eanoh ru
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gen2.src -> gen2.y0

1st execution run -+
2nd execution run
3rd execution run X

top_gen2_src_tpt.ts [ e R .

top_gen2_y0_out.ts [ s SR .

rule trigger e e R .
rule start [ e S .
rule finish e R A S SR o .
first execution time = 6us
| | | | |
0 20 40 60 80
Time (us)

Figure 4.6: Timeline for bloclgen2

For both blockggen1 andgen?2, the production rule is a simple one-to-one rule. One tiaragpt
in a testpoint file triggers the production rule to produce timestamp in an output port timestamp
file. Block sumprovides a more interesting case. This block takes in a vatueach of its two
input portssum x0 andsum x1 , adds them, and outputs the result on its output parn yO0.

The production rule for theumblock is given by:
sum x0 and sum x1 — sumyO0

The input condition for this rule is thend’ed combination, orconjunction of the two input ports
sum x0 andsum x1. This means that the production rule will be triggered bydbmbination
of one timestamp osum x0 and one timestamp osum x1. When both of these input values
become available (i.e. at the latter of the tawd . t s timestamps) the production rule is triggered.
For example, the first value on patim x0 became available at simulation timeyH) and the first

value on porsum x1 became available at 8. Corresponding to the latter of these two times, the
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production rule was triggered for the first time af$6 The time the production rule starts running

corresponds to the time when all triggering values have bemnt by the block (i.e. the latter of the
twoi n. t s timestamps). The latest triggering value (in this instarnice value on porsum x1)

was input at time 1fs, so this is the start time for the first time the productide ran.

The output action for the rule is simply the output psttm y0. Thus, corresponding to the first
timestamp in the output timestamp file for pedm yO0, the first execution run for the production
rule finished at 1is. The difference of the rule start and finish timgss,lgives the execution time
for the first production rule run. All three execution runs bdock sumactually took ks, so the
average execution time for the block is alses1 These and subsequent timestamps and production

rule runs are shown in Figure 4.7.

sum.x0 and sum.x1 -> sum.y0

1st executionrun
2nd execution run
3rd execution run X

top_sum_x0_avl.ts [ e D Ao b
tOP_SUM_XO_iN.ts [ S SR TR -
top_SUM_XL_@Vlts s A S e N
tOP_SUM_X1_iN.tS [ B B R — .
tOP_SUM_Y0_OUL.LS oo B R o .

rule trigger [ B B DR -
FuUle Start [ s N R — .

\
rule finish e B R o .

second execution time = 1us

| | | | |
0 20 40 60 80
Time (us)

Figure 4.7: Timeline for bloclkum

Thehal f block takes in a value on its input port, halves it, and owgubn its output port. The

production rule for this block is:
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hal f.x0 — hal f.y0

half.src -> half.sink

1st execution +
2nd execution
3rd execution X

top_half X0_avl.ts [ e D -
top_half_X0_in.ts [ e K .
top_half_Sink_tpt.ts [ s DK -

rule trigger [ e T —
FUlE StArt oo L \ ————————————————————— K .
rule finish e e — Ko .

second execution time = 1us

| | | | |
0 20 40 60 80
Time (us)

Figure 4.8: Timeline for blockal f

The timestamp and production rule timeline for bldekl f is given in Figure 4.8. The first value
arrived at porthal f. x0 at time 2Z:s. Thehal f block started processing that value right away,
and finished processing it at timej2§ passing it on to thet or e block. For thehal f block, the
next value arrived at its input port at timejal but processing of this value could only start at time
42us, indicating that this value had a waiting time of (42-34g$8The reason that theal f could
not start processing the second value as soon as it wastdgailas that that or e block, which is
mapped to the same CR, was busy processing the first valuevditieg times for the three values

for blockhal f are Qus, 8s, and 1@s, while the three execution times are glis4
For thest or e block, the production rule for blockt or e is given by:

store.src — store.sink
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store.src -> store.sink

1st execution -+
2nd execution
3rd execution X

tOP_StOre_SrC_tpt.ts oo T DKo —

tOP_StOre_SINK_tPL.LS [ e D K

FUlE trigQEr oo T P —
FUlE STart [ I D .
rule finish e T K]
execution times = 16ps, 17us, 16us
| | | | |
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Time (us)

Figure 4.9: Timeline for bloclst or e

The timeline for this block is given in Figure 4.9. The wadgtitimes for this block are all zero,
indicating that thest or e block was able to process data as soon as it was provided thathie
block. The reason this happens is that when data is pushedporthal f . yO, it results in the
st or e block’s push function being called. Refer to [20] for moreads of how binaries generated
from X Language applications run. The execution times fersthor e block are 1&s, 17s, and

16us.

H X-Eval Block H Mean Wait Time\ Mean Exec. Timq\

genl Ous 5.33us
gen2 Ous 5.33us
sum Ous lus
hal f Ous 4us
store Ous 16.33:s

Table 4.1: Summary of performance resultstfeist 1
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Running X-Eval ont est 1 with the given production rules generates all the individuaiting

and execution times that were presented in this sectionakedpresented in a table format in the
previous chapter in Table 3.1. X-Eval also gives a short samgraf the analysis results, presenting
the figures given in Table 4.1. The fact that data entegngc[ 2] experiences waiting time
before being processed indicates that the performanpe @[ 2] is a limiting factor int est 1's
overall performance. A possible optimization would be tpgtine thehal f andst or e blocks
over separate processors. This re-mapping will be exploredlater chapter. The next section,

meanwhile, provides an explanation of production rulesighaot specific to thé est 1 example.

4.3 Production Rules in X-Eval

4.3.1 An Informal Approach

Production rules can be used in X-Eval to capture the reistip between X-Sim traces for an
otherwise black-box X Language block. Consider the simpkeaovhere a single block is mapped
to a CR. This is shown in Figure 4.10. At the end of an X-Sim s$ation, trace files are available

by default for each of the two input ports as well as for thgpatiport. X-Eval needs to analyze the

traces to generate a history of execution and waiting timethe block.

A fo|
blockl x0 dat.ts q

. XU | blockl X0 in.ts A blockl y0 out.ts
blockl x0 avl.ts [ T ST

[}

blockl x1_dat.ts ﬂ ' CR1
block1 x1 avl.ts blockl x1 in.ts

Figure 4.10: Simple X Language block mapped to a CR
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Using production rules, a user can specify how X-Eval shanlayze the traces from the input and

output ports of a block. For instance, the above block coelésum’ block that consumes two
inputs and produces one output. It could also just as easily‘pass through’ block that consumes

an input on either input and produces an output.

Production rules can be used to distinguish between thesestations of input to output traces. If

bl ock1 is a ‘sum’ block, its production rule can be represented by:

bl ockl. x0 and bl ockl. x1 — bl ockl.yO
According to this specificatiorhl ock1 consumes one piece of data on both of its input poéts
andx1 to produce a single piece of data on its output pyd@t If bl ockl was a ‘pass through’
block instead of a ‘sum’ block, its production rule wouldtieed be:

bl ockl. xO or bl ockl.x1 — bl ockl.yO

This specifies thabl ock1l consumes a piece of data on either one of its input ports usma

piece of data on its output port.

I
block1 x0 avl.dat H I
X0 av | blockl x0 in.ts block2 y0_out.dat H
blockl x0 avl.ts .

block2 y0_out.ts

=’

blocki yo) @blockz e

CR1
blockl x1 avl.dat

A
blockl x1 avl.ts blockl XL in.ts

Figure 4.11: Two simple X Language blocks mapped to a CR

Consider the block mapping shown in Figure 4.11, where twoaXduage blocks are mapped to

CR1, and traces are only collected at the default points inditat the figure. In this case, it is
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possible to make X-Eval treat the combination of the two X guzge blocks as a single X-Eval

block. If bl ock1 is a ‘sum’ block whilebl ock2 is a simple ‘pass through’ block, the production

rule for the X-Eval block formed by the combination of the tWwd.anguage blocks is given by:

bl ockl. x0 and bl ockl.x1 — bl ock2.y0

If bl ock1l is a ‘pass through’ block instead, then the combined praoluctle is:

bl ockl. x0 or bl ockl.x1 — bl ock2.yO

The flexibility in defining an X-Eval block allows even mulkgpCRs to be grouped together in a
single X-Eval block. For example, consider again exanmmst 1 that was given in Figure 4.1.
Say that we want to find latency metrics for when a pair of nusbes first generated to when the
average of the two numbers was finally calculated. The tiragpthoc[ 1] first started generating
the two numbers is give by the timestamp recordedybynl. sr c, and the time thapr oc[ 2]
finally finished storing the result is given by the timestaraparded byst or e. si nk. An end-to-

end latency analysis of theest 1 application can thus be done by the production rule:

genl.src — store.sink

The entiret est 1 can be considered to be a single X-Eval block, with the abeaduzction rule

defined for it. The execution time for a run of this X-Eval bdtogill be calculated by subtracting a
st or e. si nk timestamp from the correspondiggnl. sr c timestamp. Figure 4.15 in the next
section will provide additional details on treating theient est 1 application as a single X-Eval

block with a single production rule.

Users are also given the flexibility to define multiple praifue rules for a single X-Eval block.
For example, the user can choose to treatpthec[ 1] CR from thet est 1 example as a single

combined X-Eval block with two production rules, one eachgenl andgen2:
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genl.src — genl.yO0

gen2.src — gen2.y0

Another equally valid way for the user to specify oc[ 1] 's operation is to combine the two

production rules into one:

genl.src or gen2.src — genl.y0 or gen2.y0

A lot of flexibility is provided to users so that they can tail-Eval to analyze their application

in the way that makes most sense to them. They can choose tatisia per X Language block,

per CR, or for a combination of block groupings. The productiules simply provide a method to
express the semantic operation of otherwise black box X uageg blocks. It is up to the user to
describe production rules that give meaningful and useéitimg time and execution time statistics.
The next section gives a formal description of X-Eval prdgrcrules, as well describing how pro-
duction rules are used internally by X-Eval to analyze arliegfon. The final section, Section 4.4,
gives a tutorial with a concrete example of production raled X-Eval being used in analyzing the

t est 1 application.

4.3.2 A Formal Approach

Consider Figure 4.12, where a single X Language blaick is mapped to a CR. This is theEval

block b, that we will use as an illustrative example in this section.

An X-Eval block can have multiple input and multiple outggdrts An X-Eval block port corre-
sponds either to an X Language port, or to an X Language testpoet p represent an arbitrary
X-Eval block input or output port. Thee, ; represents théh eventon portp (€.9.,epix.x2,2 IS the
second event on input pol k. x2). Events are eitheinput eventsor output events An input
event corresponds to a piece of data arriving at and entannigput X-Eval block port, and has

associated arrival and input times. An output event comegdp to a piece of data exiting an output
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x0

yo0
x1

blk
x2 yl

x3

CR

Figure 4.12: X-Eval bloch

X-Eval block port, and has an associated output time.if an input X-Eval block port, thes, ; is

an input event. Similarly, ip is an output X-Eval block port instead, they); is an output event.

The set of all input ports for an X-Eval bloékis represented by, ;,, and the set of all output ports

is represented b¥, ;. For X-Eval blockb,

Py ={ bl k.x0, blk.x1, blk.x2, blk.x3}

Pyou ={ bl k.y0, blk.yl1}

For brevity in this section, whenever a port term suchx@ss used without an associated block

name, assume that it refers to bldakk. Portx0 thus implicitly refers to porbl k. x0.

A sequence of terms will now be introduced that will allow vsgive a formal definition of a
production rule. Aport multiplenp represents the pairing of the pgraind non-zero natural number
n. For example2x0 represents the pairing of the numi2eand the pork0. The termp by itself
can be used implicitly to mean the port multidle. A port multiplenp is said to besatisfiedby a

set of events when that set of events consists @fents on the port.

One or more port multiples combined usiagds forms aconjunction such as:

2x0 and x2
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which consists of the two port multipleé®x0 andx2 anded together. A conjunction is said to be

satisfiedby a set of events when that set of events satigliee port multiples in that conjunction.
For example, the above conjunction is satisfied by 2 evenpodnx0 and 1 event on pox2. Note
that a port multiple by itself can be considered a conjumctigth only a single port multiple in it

(e.g.x1 can be considered a conjunction).

A set of conjunctions combined usitg s forms adisjunction such as:

(2x0 and x2) or x1

The two conjunctions in the above disjunction ar&2%0 and x2, and 2)x1. A disjunction is
said to besatisfiedby a set of events when that set of events satisfigsof the conjunctions in
that disjunction. For example, the above disjunction igsBat by either 1) 2 events o0 and 1
event onx2, or 2) 1 event on x1. Note that here too, a conjunction byfitssh be considered a
disjunction with a single conjunction in it. Thusl can be considered to be a port, a port multiple
(1x1), a conjunction (consisting of a single port multiple), andisjunction (consisting of a single

conjunction).

A restriction in defining conjunctions is that the ports misteitherall input orall output ports.
For example, the following conjunction ibegal becausex0 is an input port whiley0 is an output

port:

2x0 and yoO

A conjunction can either be an input conjunction with allubports in it, or an output conjunction
with all output ports in it. Similarly, a disjunction is algither an input disjunction with all input
ports in it, or an output disjunction with all output ports fukther restriction on disjunctions is that
one port can only appear in a single conjunction for a singdgidction. This restriction simplifies
the task of matching X-Sim traces to the correct X-Eval potidun rule, as will be discussed in

Section 4.3.3.
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A production ruleq consists of an input disjunctiod, ;, and an output disjunctiod, ,,;. The

production rule is represented by the expression:
dq,in - dq,out,
An example of a production rule is:
production ruleg,; : ( 2x0 and x2 ) or 2x1 — 2y0

A production ruleqy,; is fully represented by its X-Eval blodkand its indexj. For exampleg; ;
corresponds to thgh production rule of block. Production ruley, ; is triggered when a set of
events happens at X-Eval bloéls input ports thasatisfieshe disjunctionithj,m. A disjunction is
satisfied by a set of events whany of its conjunctions is satisfied by the event set. A conjumti
in turn, is satisfied wheall of its port multiples are satisfied, and a port multiplg is satisfied
when the set of events includes exactlynput events on porp. When the first matching set of
input events is found for a production rujethey combine to form the firshput record 7y, | in 1.
Thelth set of events that triggeredcombine to form théth input record r, , ;. For example,
consider production rulg,; given previously for the X-Eval block shown in Figure 4.1%ra

with the following timeline of sequential input events.
input events 2,01, €x2,1, €x1,1, €x0,2, €x1,2

Note that the sequential order of input events is the sameeasequential order of the correspond-
ingi n. ts timestamps. Evert,; happened before even, 1, evente,, 1 happened before event
ex1,1, and so on. An X-Eval block evaluates each input event inesecgi until it has encountered
a combination of events that triggers one of its productides. The combination of input events
makes up an input record. On triggering a production rule,eents in the input record acen-
sumed and cannot trigger that rule again. For the given samplaesege of input events, the first
three events cannot trigger any production rule becaugedih@aot satisfy the input disjunction for
any rule. When the fourth eveny , is considered in addition to the first three, a combinatiam ca

be formed that satisfies the input disjunction for productide g, ;. The input record formed is:
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rqbll,in,l = ( €x0,1s €x2,1: €x0,2 )

This combination of events satisfies the first conjunction,ifis input disjunction:

2x0 and x2

With the triggering of the production rule, these eventscamesumed and cannot be used to trigger
any rule again. However, the eveni ; has not been consumed and is still available to form a rule
triggering combination. When the fifth input eveny , is considered next by the blodk it forms

a valid combination along withy ; to trigger production rulgy, ;. The input record formed in this

case is:

Tqp1,in2 = (ex1,1,€x1,2)

This combination satisfies the second conjunctiopjfis input disjunction2x 1.

When triggered, a production ruieproduces a set of events satisfyig,,;, by satisfyingany of
the conjunctions il o+ This set of events forms asutput recordr, ,,;,. The first triggering of
the production ruley, ; from our example sequence of input events produces thenmlipoutput

record:

Tqy1,0utput,1 = (eyO,l’ €y0,2 )

The second triggering produces the following output record

Tayoutput2 = (€y0,3s €y0,4 )

These output records show up on the output ports of the X{iwak as the following sequence of

output events:
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output events ey,1, €,0,2, €y0,3: €y0,4

The Ith triggering of a ruleg corresponds to one input recorg;,,,;; and one output record

Tgoutput, - 1HE €xecution time, ; for the production rule run can be calculated from:

tq,l = tq,output,l - tq,input,l

tg,input,» the Ith record input timestamp for rulg, is thelatesttimestamp from all the events in
rg,input1- Similarly, thelth record output timestamfy o,;,.:, is thelatesttimestamp from all the
events inr, ,,¢put- ONCe all the input and output records for a production rutedetermined, the
distribution of its execution times can thus easily be dakead. The crucial problem of how to
determine which events make up each input and output recoehth production rule is tackled in

the next section.

4.3.3 Determining Production Rule Records from X-Sim Trace

An X-Eval blockb can have multiple production rules, with the set of prodrctiules represented
by Q,. The set of input and output ports are represented’fyy and P, ,,; respectively. The
sequentially ordered set of all events for ppiis represented bji,. The ordered set of all events
for all input ports for blockb is represented by, ;,. E 0.+ represents the corresponding setifsr
output ports. The ordered sets of input and output recomdgrtmluction ruleg are represented by
Ry in @andR, ot respectively. The ordered sets combining input and ougmards forall production
rule for blockb are Ry ;, andR, ;. Production rules have the property that tipegserve order
This means that the output events for thietriggering of a rule; cannot happen sequentiatiyter
any output events far's (I + 1)th triggering. Production rules run in the order they weiggered
in, on a FIFO (First In First Out) basis.

GivenQy, Py ins Py outs Ep,ins Eb,out» @nd the property of order preservation, we would like toltie a

to deterministically findRy, ;,, and Ry, o
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Recall that in the previous section, we specified that twjudiions can never have a port (input

or output) in common. This means that any two rules on a blbwekys coverexclusivesets of
ports. A ruleg can only consume events on ports covered by its input dispmand only produce
events on ports covered by its output disjunction. No othé¥srcan consume events on ryle
input ports, nor produce events gis output ports. This leads to the important conclusion that
when formulating input and output records for a bldckve can consider production ruleq and

its covered input and output portsin isolation without considering the operation of other rules

on the block

Now, also consider the property that each conjunction wittriy disjunction also has an exclusive
set of ports (i.e., two conjunctions within a disjunctiomnoat share a port). This means that we can
consider each conjunction of a rule’s disjunction in isolaias well. For example, consider the rule

9,1 Presented before and reproduced below.

production ruleg,; : ( 2x0 and x2 ) or 2x1 — 2y0

When assigning input records for rujg;, we need to look at two conjunctions. The first conjunc-
tion covers portx0 and x2, while the second conjunction covers just the part Conforming to
the port exclusivity principle, these conjunctions do natdnany ports in common. When creating
input records from input events for rujg ;, we can thus look at the first conjunction first and create
all the records corresponding to it by just looking at thents@®n port<0 andx 1. After all the in-

put records for the first conjunction have been created, wetemn consider the second conjunction
and create all the input records for it, only looking at egemt portx1. Finally, all output records
for the single conjunction for rulg, ; can be created by looking at the events on g@t When

creating records, a single conjunction is considered at arie.

A record always consists of thigst input events that correspond to a particular conjunctiar.af

input conjunction, the first input events to satisfy it formiaput record and trigger a production
rule. For an output conjunction, all the output events fromula being triggered are guaranteed
to be produced before any output events produced by a lageting because of the principle of

order preservation.
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foreach (ule g in block b){
foreach (isjunction d in q){
foreach ¢onjunction c in d){

while (events left orr’s covered ports){
create emptyecord r
foreachportmultiple np in c){
addn events orp tor

}

storer

Figure 4.13: Algorithm for X-Eval Record Generation Code

Given our discussion of how input and output records can berg¢ed by considering production
rule conjunctions in seclusion, the pseudo-code given gurei 4.13 shows the algorithm imple-
mented inside X-Eval to create records for an X-Eval blbcBy describing blocks using produc-
tion rules, X-Eval can generate distributions of waitingl @xecution times for each “run” of the
block. This allows users to get an idea of performance ofviddal blocks inside the application.
Although most types of application blocks can be modeled amalyzed using production rules,
there are some types of blocks that cannot directly be mddwgteX-Eval. They are described in

the next section.

4.3.4 Restrictions on X-Eval Modeling

Block and production rule definitions given by the user telEXal how to group together X-Sim
traces to form input and output records, and from that géaeraiting and execution times. In
this section, we will look at what the main requirements astrictions are in defining production
rules, and what types of blocksnnotdirectly be modeled by X-Eval. A list of the restrictions

when specifying production rules is given below:

¢ disjunctions and conjunctions must be non-null



92
e blocks must preserve execution order of rules

e a port can only appear once inside a rule disjunction

e a port cannot be used in more than one rule specification

The first requirement is that disjunctions and conjunctionsst be non-null. This means that rules
cannot be triggered by a null set of input events, nor can fineguce a null set of output events
when triggeredThis prevents, for example, filter blocks from being modeledlirectly (without
added testpoints) as an X-Eval block.Say a blockbl k1 (no corresponding figure) takes in an
input value on its input port0, and then depending on the value either passes on the vaéon
output porty O or does not produce any data on its output port. One might teastiaracterize this

production rule as:

bl k1. x0 — bl kl1l.y0 or ( )

This is not a valid specification because the second outpytiection is null. The problem is that
X-Eval can figure out when the rule triggers, but has no X-Sawkd that can let it realize when
the rule executed but did not produce any data onytBeoutput port. To be able to model this
block as X-Eval block with production rules, it is necessianythe block to produce a trace when it
decides even toot produce data on its output port. This can be achieved by gddtastpoint that
is timestamped whenevbt k1 filters out thex0 value. If the testpoint is namdd | t er ed, then

the correct production rule definition would be:

bl k1.x0 — blkl.y0 or blk.filtered

Similarly if the blockbl k1 were a data generation block that only had a single port, kb port

y0, then one may want to characterize its production rule as:

() — blk1.y0
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This definition is not valid because of the null input disjtioc, and can be rectified by adding a

testpoint (e.g.sr ¢, which is timestamped whenever the block starts generatingmber). The

corrected production rule definition would then be:

bl k1.src — bl kl.yO0

This method was seen for tlgeen1 andgen2 blocks in ourt est 1 example. A similar solution

exists for data sink blocks, like thet or e block in thet est 1 example.

The second restriction for production rules is that proiductules preserve execution order. Sup-
pose a rule has two input records,andr,, and two output records; andr,. The corresponding
times aretq, tp, t3, andty, wheret,<t, andts<t,. The order preservation principle guarantees that
rq triggered the rule to producg, andr, triggered the rule to producq. Essentially it allows
sequentially corresponding input and output records todeeg together to calculate execution

times.

This restriction can be a problem when multiple X Languagekd are combined together to form
an X-Eval block. For example, consider the bldwkk2 with one input portx0 and two output

portsy0 andy1, and the internal structure shown by Figure 4.14.

(o) |

switch I y0
—

delay yl

blk2

Figure 4.14: An X-Eval block with a long and short productioihe execution path

The production rule fobl k2 is given by:

bl k2. x0 — bl k2.y0 or bl k2.y1l
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Data entering on pofil k2. x0 is switched to either the first or second output ports of therimal

switch block. Data that travels through the second path moighrough a second internal block
before being output on polil k2. y1, and will usually take longer to be output than data that

travels through the first path and is output on pgrk?2. yO0.

Consider the following scenario. Data (corresponding ¢torgr; ) entersbl k2. x0, and is switched
along the second (bottom) path. As the first piece of dataiigybgrocessed by the delay block,
another piece of data (recorg) arrives at the switch block. The internal switch block ardiagt
block can run in parallel, for example if they are mapped fmasate CRs, or if they are mapped to
a CR that can run blocks in parallel (e.g., an FPGA). As thefiece of data is being processed by
the delay block, the second piece of data is switched aloadirtt (top) path. It exitbl k2. y0
(formingrs), while the first piece of data &till being processed by the delay block. Finally, the first
piece of data finishes being processed by the delay blockexitabl k2 from porty1 (forming

7’4).

When X-Eval reads the X-Sim traces for this block (por@s y0 andy 1), it will associaters with
r1, andry with r,. This is the expected association according to the ordesepration principle.

However, this is incorrect given the internal structure lotk, and our given case scenario.

A solution to this problem is for the user to spit 2k into two X-Eval blocks, with a testpoint
(e.g. atestpoint calletnt er nal ) at the edge between the switch and delay) components. The

production rules for the two different X-Eval blocks areritgiven by:

bl k2. x0 — bl k2.y0 or bl k2.internal

bl k2.internal — blk2.yl

An alternative solution is to just be aware of this problemt, dccept that output records may get
associated with the wrong input records. The number of imgk output records are still equal
so the right number of production rule runs will still be falinThe individual execution times

calculated will be off, but thaverage(and total) execution time will stay the same because:
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(t3-t1) + (ts-t2) = (t3-t2) + (ts-t1)

The third restriction for a production rule is that a port carty appear once inside a disjunction.
Consider the case if blodikl k3 has a single input pox0 and a single output poyO (no corre-
sponding figure shown). The function the block provides imput a piece of data on poxt0, and
then produce either one or two pieces of data on pBrtOne may want to specify the production

rule for this block as:

bl k3. x0 — bl k3.y0 or 2bl k3.y0

However, this violates the third restriction, because pOrappears twice in the output disjunction.
Consider the case where two input pieces of data appear or @oandbl k produces three input
pieces of data on potO0. There is no way for X-Eval to be able to figure out whether teosd
output event was produced by the first rule execution or therskrule execution. This problem,
too, can be solved by adding a testpalatne that is timestamped by the block whenever it is done
executing, and produces one or two outputs/On The new production rule definition would then

simply be:

bl k3. x0 — bl k3. done

The final restriction on production rules is that a port cdrbeused in more than one rule specifi-
cation. For the last block we considered, with either onenar dutputs being produced for every
input, another way the user may have chosen to describe #ratam of the block might have been

by specifying two rules:

bl k3. x0 — bl k3.y0

bl k3. x0 — 2bl k3. y0

This presents the same problem as before, and can also led sob/same way as before by adding

the testpoinbl k3. done and defining a single production rule for the block.
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In conclusion, if production rules are specified and perfagoording to the definitions given in the

previous section and restrictions given in this one, theatmand output record lists can be created
for each rule. Using these record lists, performance nusnban be calculated for each X-Eval
block.

4.3.5 Generating Performance Metrics and Models

Once X-Eval blocks and production rules have been definethmpeance metrics can be calculated
and analytic performance models can be created. Firstetteed generation algorithm presented
earlier is used to translate event lists into record listsefach production rule. The model for X-
Eval blocks is that one block consists of a set of input anghwtuports and a set of production
rules. When a combination of input events occurs that triggggroduction rule, those input events
form an input record for that rule. On being triggered, a pieduces output events that satisfy
its output disjunction. These events form an output recdxfier a complete simulation run and

X-Eval analysis, a production rule has the same number oftiapd output records.

The difference between the time an output record is prodbgea rule and the time that the rule
started running is defined as that rule’s execution time. [fthexecution time for rulg, tols is thus

given by the expression:

tq,l = tq,l,out - tq,l,in

wheret, ; ., is the time the last event of output recorg ,,; was produced, ant} ; ;, is the time
the last event of input recorg ; ;, was consumed. A complete history of the times it took to eteecu
a ruleq can thus easily be calculated once a complete input and tonetpord trace is generated for

the production rule.

This trace of execution times can be used as a substitutddoandtual simulation of a CR, when
a re-simulation of an entire application is done. Similadgy variety of statistical results can be
calculated (e.g. mean, standard deviation, etc.) to paremeny desired statistical model. The

use of traces and models a simulation speedup techniquesdsilikxd in more detail in the next
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chapter. Before moving on to the next chapter, however, weige a tutorial on how to use X-Eval

to analyze an application.

4.4 Tutorial for Analyzing an Application using X-Eval

Suppose the user would like to get end-to-end latency timethe exampld est 1. Figure 4.15

shows a minimasemanticdile (.smx file) that causes X-Eval to calculate the requiraldies.

1 block top

2 port genl.sran_port

3 eventapp_genl_src_tpt.tv/l_event
4 eventapp_genl_src_tpt.is_event

5 port store.sinkout_port

6 eventapp_store_sink_tpt.tsut_event
7 rule genl.src—> store.sink

Figure 4.15: Basic semantics file specification for examgst 1

A semantics file declares all X-Eval blocks, all the ports amés for these blocks, and a list of
X-Sim trace files where timestamps can be found for eventshiggpened on the given ports. For
example, in the example semantics file, line 1 declares awva{{8ock calledt op. The next line
declares an input port on this block callgdnl. src. This corresponds to the testposxtc on
thegenl X Language block. X-Sim testpoints can be declared as X-Bhak ports. However,
X-Eval block ports can be either input port or output portsfestpoints must always be declared
as one type or the other when used as ports. Note that herestpeintgenl. sr c is used as an
input port. In the semantics file, all the X-Sim trace filesoassted with the X-Eval block port are
listed, along with what type of events the timestamps shbaltteated as. In the case of a testpoint
being treated as an input port, the timestamps collectedreaged as both availability and input
times. Line 5 in the semantics file shows another testpsintir e. out , being used as an output
X-Eval block port. The X-Sim timestamp file for that testpois interpreted to provided output
times for events on that output port, as specified on line BalRi line 7 defines the production rule

for the single X-Eval block as a simple single-input singléput trace relation.

X-Eval can be invoked by following command line call:
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xeval -x testl.snx

A summary of results is printed to the output, and can be pipexda results file if desired. This
summary of results gives the average execution and waitimggstfor each production rule. For our

simple semantics file, the output summary given by runningvét is shown in Figure 4.16.

1 Block Rule Mean Wait Mean Exec
2 top rulel Qs 51.33%s

Figure 4.16: Results summary for end-to-end analystseaft 1

In addition to the results summary, more detailed resules fidre created for each production
rule that record details from individual runs of the rule. eTifiree files created for the produc-
tion rule given in our simple .smx file ateop _rul el i ndex.ts,top_rul el _exec.ts,
top_rulel wait.ts. The firstfile,t op_rul el i ndex. ts, records which conjunction in
the output action a production rule actually output to fotheaxecution run. This value is used
in trace-driven simulation substitution, and its use wél éxplained in the next chapter. The sec-
ond file,t op_rul el_exec. ts, records the execution time for each time the productioa rul
ran. Finally, thet op_rul el _wai t.t s file records the waiting time for each time the rule ran.
The index file records values in 8-bit unsigneds, while theeptwo files record values in 64-bit

unsigneds. Execution and waiting times are recorded insenomds for high precision.

For our example, the three values in the index file would alllH#ecause there is only one out-
put conjunction that produces output according to the mtda rule. The three execution times,
representing the end-to-end application latency, would2pes, 52:s, and 6@s. The three waiting

times, which are not too useful for an end-to-end applicatinalysis, are all zero.

The average latency to generate one output for the entirkcappn is shown by X-Eval to be
51.3%s. As we saw in the last chapter, the total time to run the egttin and generate three
outputs was 83s. If we had zero parallelism, the time to generate threeutsitwould have been
154us. Parallelism in the application implementation has adldwhe process to be sped up from

taking 154:s to only 83:s, a speed up of roughly twice when generating three outputs.
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block genl
port genl.sran_port
eventtop_genl_src_tpt.&vl_event
eventtop_genl_src_tpt.ie_eventsx
port genl.yOout_port
eventtop_genl y0 out.tsut _eventx
rule genl.src—> genl.y0

© o N o O » w N P

block gen2
port gen2.sran_port

10 eventtop_gen2_src_tpt.@vl_event
11 eventtop_gen2_src_tpt.ia_event:x
12 port gen2.yOout_port
13 eventtop_gen2_y0_out.tsut_eventsx
14 rule gen2.src—> gen2.y0
15 block sum
16 port sum.x0in_port
17 eventtop_sum_x0_avl.tavl_eventx
18 eventtop_sum_x0_in.t;_eventx
19 port sum.xlin_port
20 eventtop_sum_x1_avl.tavl_eventx
21 eventtop_sum_x1_ avl.t;_event:x
22 port sum.yOout_port
23 eventtop_sum_y0_out.teut_eventx

24 rule sum.x0 and sum.x%> sum.y0
25 block proc2
26 port half.xQin_port

27 eventtop_half_x0_avl.tavl_eventx

28 eventtop_half_x0_in.tsn_event:x

29 port half.sinkout_port

30 eventtop_half_sink_tpt.teut_eventx
31 port store.sran_port

32 eventtop_store_src_tpt.@vl_event
33 eventtop_store_src_tpt.ia_event:x
34 port store.sinkout_port

35 eventtop_store_sink_tpt.tsut_eventx

36 rule half.x0 —> store.sink

Figure 4.17: Detailed semantics file for exampksst 1

1 Block Rule Mean Wait
2 genl rulel @s
s gen2 rulel @s
4 sum rulel Qs
s half rulel Qs
s store rulel @s

Mean Exec
5.33us
5.33us
lus

4us
16.3%s

Figure 4.18: Results summary foest 1 analysis
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A more informative analysis of application performance barone by breaking up the application

into more X-Eval blocks, as shown in Figure 4.17. In this setica file, each X Language block
corresponds to an X-Eval block. An asterisk at the end ofatlvat lists an X-Sim trace file tells

X-Eval that events from that file should be added to the aetwegated timeline plot.

Running X-Eval on this more complete semantics file givesekalts shown in Figure 4.18. We can
see from these results that data has to wait an averagesdiefore it can be processed by tie f
block. Also, thest or e block is exhibiting an average execution time of 16:88hich is relatively
high compared to other blocks’ execution times. Given thattal f andst or e block share the
proc[ 2] CR, a possible next step would be to map #eor e block to the unusegr oc|[ 3]
CR, and re-simulate and re-analyze the application. Theai@pter, Simulation Speedup, shows

techniques for speeding up re-simulations of an X Languagécation.
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Chapter 5

Simulation Speedup Techniques

After an application has been written and debugged usingotr@nd X-Sim, the next step is to
optimize its performance. Optimizing the performance @f éjpplication consists of a cycle of re-
mapping the algorithm, re-simulating the new mapping, a@dmralyzing the simulation traces, as

was shown in Figure 1.5 in Chapter 1.

By speeding up the re-simulations of applications, new rimggocan be tried out faster, shortening
the development and performance optimization cycle. Tthaatage will become even more im-
portant when an automated X-Opt tool is developed, and tHerpgance optimization cycle is able

to run multiple iterations in a short amount of time.

P x0 yo
proc[2]
(0] 0] b2l [s0] >0
(3] >
E] . % proc =% . W
B | > 0] bia] (o] | 0
proc[1] procf4] proc[6]

> 0] b4l (yo]

procl[5]

Figure 5.1: First mapping of example applicatioaest 2
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Consider the example applicatiorest 2 given in Figure 5.1. Each block in this application has a

built-in delay of 1s per execution. Block waits for 1s and then generates four numbers, one on
each of its four outputs. It runs ten times, making the totethber of values generated 40. Blocks
b[ 1] throughb[ 4] each wait 1s before passing through a data value from thait jports to their
output ports. Blocke waits 1s before inputting four data values, one from eaclsahput ports.

Each block is mapped to its own processor CR in this mapping.

For our analysis and discussion, we can consider the conmaion delay to be negligible. This
is because communication delay is on the order of microgk;omhile processing time is on the

order of seconds (i.e. a million times longer).

We will use thet est 2 application to illustrate how simulation time can be realcEhere are two

primary methods of speeding up X-Sim application simufaioThe first technigue involves run-
ning multiple federate simulations in parallel. The sectethnique involves substituting federate
CR simulations with either trace-based models or with dmatlistribution-based models. These

techniques are described in detail in the following sestion

5.1 Simulating CRs in Parallel

As we saw in Chapter 3, X-Dep can be used to create an X-Simflalteat coordinates the running
of different federate simulators. A federate simulator bareither the simulation of a CR (e.g., a
processor or FPGA simulation), or the simulation of an edg@pad to an IR (usingnodel ).

The Makefile generated by running X-Dep on thest 2 application is shown in Figure 5.2.

Let us consider what happens when the simulation descripeti® Makefile is run on a single-
processor core machine. The first simulation to be run fogiven mapping is the CR simulation of
proc[ 1] . Nothing else can run before this simulation, because #viery else in the application
mapping is downstream fromr oc[ 1] . Only blocka is mapped tqr oc[ 1] . This block runs
10 times, with each run taking 1s. Thus, a core must run fotd.8snulate the complete operation

of proc[ 1] .
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simulate: proc_[1-—6].perf
echo Simulation done.

proc_1 .perf:
proc_1_ >& proc_1_.out
echo Done > proc_1_.perf

proc_2 .perf: proc_1 .perf
xmodel —i top_a_y0O_out.ts -1 freq=3.4e9
—0 top_b_1 x0_avl.ts —2 freq=3.4e9
mv top_a yO0 out.ts top_b_1 xO0_ avl.dat
proc_2 >& proc_2 .out
echo Done > proc_2_.perf

proc_3 .perf: proc_1 .perf
xmodel —i top_a_yl out.ts -1 freq=3.4e9
—0 top_b_2 x0_avl.ts —2 freq=3.4€e9
mv top_a_yl out.ts top_b_2 xO0_avl.dat
proc_3_ >& proc_3_.out
echo Done > proc_3_.perf

proc_4 .perf: proc_1 .perf

#### ... similar to proc[2] and proc[3] ###
proc_5 .perf: proc_1_ .perf
### ... similar to proc[2] and proc[3] ###
proc_6_.perf: proc_[2—5] . perf
xmodel —i top_b_1 yO0 out.ts -1 freq=3.4e9
—0 top_c_x0_avl.ts -2 freq=3.4e9
mv top b 1 yO0 out.ts top_c_x0_avl.dat
xmodel —i top_b_2 yO0 out.ts -1 freq=3.4e9
—0 top_c_x1_avl.ts -2 freq=3.4e9
mv top b 2 y0 out.dat top_c_x2 _avl.dat
xmodel —i top_b 3 yO0 out.ts -1 freq=3.4e9
—0 top_c_x2_ avl.ts -2 freq=3.4e9
mv top_b 3 y0 out.dat top_c_x2 avl.dat
xmodel —i top_b 4 yO0 out.ts -1 freq=3.4e9
—0 top_c_x3_avl.ts -2 freq=3.4e9

mv top_b_4 y0 out.dat top_c_x3_avl.dat
proc_6_ >& proc_6_.out
echo Done > proc_6_.perf

clean:
rm proc_[1-6] .out proc_[L1-6] .perf

Figure 5.2: Simulation Makefile for first mapping oést 2
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Each of the four processorpr oc[ 2], proc[ 3], proc[ 4] , andpr oc[ 5] , take 10s to run to

completion. To simulate these four processors, the sipgieessor core machine must run a total
of 40s. Note that the communication modeling time is beingpigd because it is negligible in
comparison to the CR simulation time. Finally, theoc[ 6] CR takes approximately 10s to run
and simulate. The total time required to simulatettiest 2 application on a single-core machine

is thus approximately 60s.

Consider now the scenario where the same X-Sim simulationrison a four-core chip multi-
processor (CMP) machine. As before, the simulationpgooc|[ 1] is run before anything else

in the application. This simulation takes 10s, same as befdihe simulations fopr oc[ 2] -
proc[ 5] are dependent on ther oc[ 1] simulation, but are not dependent on each other. Thus,
all the simulations for these four CRs can be run in paralethe four processors of the CMP. Each
of the four simulations take 10s to run. When run in sequethesfour simulations took 40s to run.

In contrast, running the four simulations in parallel on @dP only takes 10s total.

Finally, pr oc[ 6] , which is dependent on the simulations faroc[ 2] - proc[ 5], is run on

a single core. This last simulation takes 10s. The total fionghis CMP parallel simulation of
t est 2 is thus 30s rather than the 60s for the single-core seqlientialation. This represents
a speedup of 2 to run the X-Sim simulation. The speedup possible throughuise of a CMP
simulating parallel CRs is dependent on the parallelisnsgmein the application mapping and on
the number of processors available on the CMP the simulaiteing run on. Future work may
include the ability to distribute simulation work over a gller of computers, allowing even more

speedup in the simulation of application mappings withdgsgrallelism.

5.2 Substituting CR Simulations

Another technique for speeding X-Sim simulations is to stlie CR simulations with either trace-
based models or with analytic distribution models. It is aripnt to note here that simulation

speedup using CR substitution is only possible when the GRbkan defined as an X-Eval block
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in a. snx file. Figure 5.3 shows a semantics file where the user has deforaplete production

rules for each block.

1 block a

2 [x ... %l

3 rule a.src—>a.y0 and a.yl and a.y2 and a.y3
4 block bl

5 [x ... %l

6 rule b1.x0—>b1.y0
7 block b2

8 [x ... %l

9 rule b2.x0—> b2.y0
10 block b3

1 [x ... %l

12 rule b3.x0—> b3.y0
13 block b4

14 [x ... %l

15 rule b4.x0—> b4.y0
16 block ¢

17 [% ... %l

18 rule c.x0 and ¢.x1 and c.x2 and ¢.x3> c.sink
19 block top

20 [% ... %l

21 rule a.src—>c.sink

Figure 5.3: Semantics file for examplest 2

5.2.1 Using Trace-Based Models

If the user runs the simulation fdrest 2 and analyzes the results, they will find that the total
resultant application running time for the application @3 All the CR simulations are native
processor executions, so the simulation running time  20s. Note that the application running
time refers to the predicted running time of the deployediegiion, while the simulation running
time refers to the time it took to simulate the applicatiorgat the predicted time. For the initial
mapping oft est 2, thus, both the application running time and the simulatiaming time are
60s.

If the first three (from a total of ten) executions for blockwere plotted, the timeline shown in

Figure 5.4 would be generated. This timeline has been dpeciadified to show each execution of
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top_c_x0_avl.ts [
top_c_x0_in.ts
top_c_x1_avl.ts |
top_c_x1_in.ts e
top_c_x2_avl.ts |
top_c_x2_in.ts |
top_c_x3_avl.ts |
top_c_x3_in.ts |

top_c_sink_tpt.ts [

TR R R
X K K X X K X X

1st execution -+
2nd execution
3rd execution X

execution times = 1s, 1s, 1s

rule trigger -
FUle Start |- -
rule finish |- \Jr\\% s -
1 1 1 1
0 5 10 15
Time (s)

Figure 5.4: Timeline for block (First mapping ot est 2)

20

the production rule using a different symbol. Additionallyoduction rule trigger, start, and finish

times have also been added to show how execution times wierdatad. Since we are looking at

theoretical numbers here, we find that the timeline givesxasty 1s as the execution times for

each time bloclc ran.

0] by (0]

(L

src | @

L] b1 (o

C | sink

88088

proc[1]

X

o] o o]

proc[2]

P x3

CIEJEL)

proc[6]

Figure 5.5: Second mapping for applicatibast 2
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1 Simulate: proc_[126]. perf

2 echo Simulation done.

3

4 proc_1_.perf:

5 proc_1 >& proc_1 .out

6 echo Done > proc_1 .perf

7

s proc_2_.perf: proc_1_ .perf

9 xmodel —i top_a_y0 out.ts -1 freq=3.4e9
10 —0 top_b_ 1 x0 avl.ts -2 freq=3.4€e9
1 mv top_a_yO_out.ts top_b_1 x0_avl.dat

12 xmodel —i top_a_yl out.ts -1 freq=3.4e9
13 —0 top_b 2 x0 avl.ts -2 freq=3.4€e9
14 mv top_a yl out.ts top_b_2 x0_ avl.dat

15 xmodel —i top_a_y2_ out.ts -1 freq=3.4e9
16 —0 top_b_3__x0_avl.ts —2 freq=3.4e9
17 mv top_a _y2 out.ts top_b_2 x0_ avl.dat

18 xmodel —i top_a_y3_out.ts -1 freq=3.4e9
19 —0 top_b_4 x0_avl.ts —2 freq=3.4€e9
20 mv top_a y3 out.ts top_b_4 x0_ avl.dat

21 proc_2 >& proc_2 .out

22 echo Done > proc_2_.perf

23
2 proc_6_.perf: proc_1 .perf proc_2 .perf

25 xmodel —i top_b 1 yO0 out.ts -1 freq=3.4e9
26 —0 top_c_xO0_avl.ts -2 freq=3.4e9
27 mv top_b_1 yO out.ts top_c_x0_avl.dat

28 xmodel —i top_b 2 yO0 out.ts -1 freq=3.4e9
29 —0 top_c_x1 avl.ts -2 freq=3.4e9
30 mv top_b_2 y0 out.dat top_c_x2__avl.dat

31 xmodel —i top_b_3__y0 out.ts -1 freq=3.4€e9
32 —0 top_c_x2 avl.ts -2 freq=3.4e9
3 mv top_b 3 y0 out.dat top_c_x2 avl.dat

34 xmodel —i top_b_4 _y0 out.ts -1 freq=3.4e9
35 —0 top_c_x3 avl.ts -2 freq=3.4e9
36 mv top_b_4 y0 out.dat top_c_x3_avl.dat

37 proc_6_ >& proc_6_.out

38 echo Done > proc_6_.perf

39

20 Clean:

a rm proc_[126]_.out proc_[126]_.perf

Figure 5.6: Simulation Makefile for second mapping efst 2
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Now suppose that the user wants to try out a slightly diffene@pping for comparison, where blocks

b[ 1] -b[ 4] share the same procesgoroc[ 2] . This new mapping is shown in Figure 5.5. The
Makefile generated for this new mapping is shown in Figure Ré&-running this simulation will
take 10s forpr oc[ 1], 40s forpr oc[ 2], and 10s fopr oc[ 6] , giving a total simulation run
time of 60s. Blockd[ 1] - b[ 4] are now combined into one single-threaded binary. Thus, in a
native execution simulation, only a single processor candeel to simulater oc|[ 2] , resulting in

a 40s simulation running time f@r oc|[ 2] .

Say that the user is confident that X-Eval blacKcorresponding to X Language blockand CR
proc[ 6] ) will perform about the same as in the previous simulatiam iecall that running X-
Eval on the simulation results for an application generatesc. t s execution time trace files for
each X-Eval block. The execution time traces in these filestmapplied to the newvl . t s

timing traces (from the re-simulation) to generate t s andout . t s timing traces.

Figure 5.7 shows thavl . t s that are generated for the input ports of X-Eval blaci.e., for CR
proc[ 6] ). Theseavl . t s timestamps reflect the times data became available tprtle[ 6]
under the new mapping. Note the differenceaml . t s timestamps in this simulation and the
avl . t s timestamps in the previous simulation. The reason datanheeaailable at later times in
the simulation of the new mapping is that blodi{sl] - b[ 4] have to share processing time on a

single processor, and thus take longer to produce data.

Once newavl . t s times for blockc’s input ports have been generated in the re-simulation, the
execution times calculated from the previous simulatioblotk ¢ (1s, 1s, 1s, ...) can be applied
to the newavl . t s times to generate neimn. t s andout . t s times. Figure 5.8 shows the new
avl . t s generated by the re-simulation of the re-mapping, as weli@asewi n. t s andout . t s

times generated by applying the execution times from befotke newavl . t s times.

First the rule trigger times are found by looking at &inél . t s times. For example, the first rule
trigger time is calculated to be 5s, because that is the &tastavl . t s time for the first input

record. Note that an input record for blockconsists of one event from all four input ports. At 5s,
there was data available at every input port, and so the ratetriggered for the first time. Since

the CR is not busy executing a previous triggering (this ésfifst triggering), it can start executing
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the production rule right away. The first rule start time iggtalso 5s. All thé n. t s times for

all input data is set to this time. A delay of 1s is applied te thle start time to generate the rule
finish time to get 6s. A delay of 1s is used because that is theuton time recorded from the
previous X-Sim run of bloclc. All the out . t s times are set to the rule finish time, 6s. All the
execution times recorded for blockfrom the previous simulation run can be applied to the new
avl . t s times to get new timing traces for blockwithout having to re-run the CR simulation for
pr oc[ 6] . This same technique can also be applied to blncBlock a is a source block, so there
are no data availability constraints on its operation. Ekea times are applied one after the other
in a sequence to generdt®p_a_src_tpt.ts andtop_a_y[0-3] out.ts timing traces

for each execution of bloch.

The tool that uses execution traces as a substitute fonmelaing a CR is callednmodel 2. Using
xnodel 2 as a substitute for a CR simulation can greatly reduce the tiequired to simulate
that CR. For example in the re-simulation toést 2, the re-simulation times fopr oc[ 1] and
proc[ 6] can be reduced to almost zero, making the total X-Sim sinomdtme 40s instead of

60s. This corresponds to a theoretical simulation speetilibs .

To make the simulation substitutions, lines 31, 34, 37, dhdré deleted, because the CR simulation
substitution does not makes use of any data files. Additipnate 5 from Figure 5.2 is replaced

by:
5 xmodel2 —x test2.smx —b a

and line 41 is replaced by:

7 Xxmodel2 —x test2.smx —b c

The template for invokingcnodel 2 is:

xnmodel 2 -x <snxfile> -b <bl ock>



111
The-x <snxfi |l e> option suppliesxnodel 2 with the . snx file which lists production rules

and timestamp files for each block, while the <bl ock> option specifies which block to simu-
late. Each production rule for the specified block is runhwlite correspondingxec. t s file used

to get execution times from the previous simulation run facteproduction rule. The correspond-
ingi ndex. t s file is used byxnodel 2 to figure out which ports a particular production rule run
output data to. Théndex. t s file stores the index of the output conjunction that each rfua o

production rule output to.

Thexnodel 2 tool is essentially a more complicated version of tmodel edge communication
simulator discussed earlier in Chapter 3. Recall #rabdel is used to simulate communication
over an edge by inputting a singteut . t s timing trace file, applying a constant delay (e.g.sh
and outputting a singlavl . t s timing trace file. Thexnodel 2 tool is more complicated, and
can be used as a substitute for CR simulations. The basiatopenf thexnodel 2 is that it reads
avl . t s timing trace files for input ports on a CR, applies an executime delay, and writes
i n.ts andout . t s timing trace files. If a testpoint is used as an input port foixaEval block,
there are navl . t s times that need to be consideredayodel 2. It triggers and starts running

production rules whenever it is done executing the prevpyaduction rule run.

5.2.2 Using Analytic Distribution Models

Thexnodel 2 tool can also use analytic distributions to model a CR’srigyperformance. When
reading arexec. t s file, xnmodel 2 reads the trace file header to check if the user wants to use an
analytic distribution to model the execution time. If an lgtia distribution is suppliedxnodel 2
generates a random value from the distribution for eachymtizh rule run and uses that as the

execution time.

Currently, only a normal distribution is supported for theeeution time analytic modeling. Two
header optionsirean andst ddev, can be set to values by the user to cawsedel 2 to use
a normal distribution to model execution times. For exammanodel blockc’s execution time
with a normal distribution with a mean of 1s and standard ateam of 0.001s, the header of the

top_c_rul el exec.ts can be modified to the following:
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\#XTSFile
mean=1
stdev=0.001
end

The header of at s file should always be 512 bytes long. The easiest way for usarsodify a

. t s header is to edit the file in insert mode, taking care to makethe header file has the keyword

end as the last word.
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Chapter 6

Benchmarks

This chapter presents results gathered from running X-8itdn&Eval on sample X-Applications.
The first section presents results gathered from simulatiryanalyzing a version of theest 1
application that has been used as an illustrative exampdeghout this thesis. The second section
presents the VERITAS application, a real world scientifiplegation that has been developed using

the Auto-Pipe toolset.

6.1 Thet est 1 Example Application

Inthet est 1 application, eaclENERATE block generates a single 32-bit unsigned number. These
individual numbers are passed through various blocks tutak the average. To reduce the inter-
block data movement overhead associated with X Languageraien code, arrays of 32-bit num-
bers are generated and processed rather than individudaeramFor the results presented in this
section, arrays of size 1000 were used. Each generate ook ione million times, resulting in a
total of one millionarrays of averages (or equivalently one billiomdividual averages) being cal-
culated. The est 1 application blocks are the same as before, \gitm1 andgen?2 feeding into
sum sumfeeding intohal f , and finallyhal f feeding intost or e. The only difference now is

that arrays of numbers are passed around rather than individimbers.

We will consider the problem of mapping this array versiortteft est 1 application to a four-

processor SMP (Symmetric Multi-Processing) system. Thasaphysical system used to test out
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deployments was an AMD Athlon 64 X2 4400+ system with fourespilMB L2 cache and 8GB of

system memory. A simple graphical representation of thieiecture is shown in Figure 6.1, where
four processors are connected to each other by common shemetbry. The figure also shows

the first mapping we will consider, where the entire appiirais mapped to a single processor,

proc[1].
sum |—>| half |—>| store |
gen2 £ proc[2]
proc[1] QE) processor
|
processor -03
IS
L
2]
proc[3] proc[4]
processor processor

Figure 6.1: A single-processor mappingtast 1

A simulation was initially run with no testpoints added, lwith cumulative statistics collection
active. Note that the X-Sim simulation for this mapping isigly running the compiled binary
natively on the target machine, and thus corresponds irectunning the actual physical deploy-
ment. Times for both the complete simulation run, as welbaste complete physical deployment
run, are thus the same value. The total measured time to euerttire application to completion
in this one-processor mapping was 267.5 seconds. Sincative machine 1-processor simulation
corresponds directly to the deployment binary, simulatialidation (i.e., whether simulation run

times reflect actual deployment run times) is not required.

Figure 6.2 shows the cumulative execution time for eachihlgathered from the built-in statistics
collection, over the entire run of theest 1 application. These values represent the total amount of
time spent in each block to process all million arrays (of@tand numbers each) over the entire

application run.
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Figure 6.2: Total processing time per blockiiast 1

As a next experiment, testpoints were inserted at the stdread of the execution of the&t or e
block. These testpoints provide very detailed data abogtwthe block started and ended process-
ing each array of numbers. For example, the first 6 execuiioe traces (i.e., processing for six

successive arrays) for tis¢ or e block are shown below:
171.%s, 132.%s, 135.1us, 132.3s, 149.8s, 133.%s

An inspection of all the execution times shows that the fixstation took the longest, 178. The
rest of the execution times are in the range/1825Q:s. The mean of all the execution time traces
is 135us. It is possible that the reason that the first execution tgrtégher than all subsequent

times is thatst or e block incurs a small penalty associated with accessing &ofilhe first time.

The distribution of execution times that was shown in Fighigeshows that thet or e block takes
roughly half of the total application run time (i.e., 138/2867.5s). To improve performance, the
t est 1 application was re-mapped to two processors with onlysther e block mapped to the

second processor, as shown in Figure 6.3.

X-Sim was used to simulate this mapping, with the shared mgifink modeled with a zero delay
communication link. This simulation gave a complete agtian running time of 138.3s. Note that
in this case, a single processor was used to first simulatutga onpr oc[ 1] , then to simulate

the communication (zero delay) betwepnoc[ 1] andpr oc[ 2], and finally to simulate the
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Figure 6.3: A two-processor mappingtoést 1

execution orpr oc[ 2] . The X-Sim simulation thus predicts that the new dual-pssoe mapping

will result in a speedup of 1.938 (i.e., 267.5s/138.3s) over the single-processor mapping.

To validate these simulation results, the new mapping of &t 1 application was deployed on
the previously described AMD SMP. Two processors werezetiliin this 2-processor mapping,
with actual shared memory the communication mechanisnerdttan the simplified zero-delay
communication model system that was employed by X-Sim. Rugniiis application took 143.3s
with both processors running in parallel, showing a speeafup.87x (267.5s / 143.3s). Thus,
the predicted time given by X-Sim (138.6s) was 3.5% off frdva &ctual deployed two-processor
mapping (143.3s). Application running time results for #imulation and deployed runs for both

mappings is shown in Figure 6.4.

The 2-processor mapping, wiit or e on one processor and everything else on another processor,
thus shows an almost2speedup over the 1-processor mapping. Without splittinthagt or e
block, it is not possible to get higher speedups using 3 oroégssor mappings. This is because
the st or e block takes up almost half the processing, and in any dig&t processing it will
stay the bottleneck, thus limiting the speedup to about Rore distributed mappings and varied
architectures will be explored in the next section, whereiansific application is the target for

performance optimization.
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Figure 6.4: Run times for 1-processor and 2-process@t 1 mappings

6.2 The VERITAS Application

We now move on to simulating and analyzing the VERITAS [22}lagation, a gamma ray event
parametrization application from the field of astrophysitse acronym VERITAS stands for Very
Energetic Radiation Imaging Telescope Array System. Higgrgy gamma rays are emitted from a
variety of extraterrestrial sources, including pulsampesnova explosions, and supermassive black
holes. The gamma rays strike the Earth’s atmosphere andgedherenkov radiation, electromag-
netic shockwaves in the blue through ultraviolet portiothaf spectrum. This radiation is recorded
in the form of arrays of pixels by ground-based telescopesigAificant amount of processing must
be done on the raw signals to produce meaningful data thatigbts can use. In a real-time de-
ployed system, data from the telescopes is streamed thamdjprocessed on the fly. In an off-line
version of the system, data is read from files and processbis. ig the version of the VERITAS
application that is considered in this section. A simplerespntation of the major blocks in the

VERITAS application is shown in Figure 6.5.

In this simplified representation of the VERITAS applicatithe first block, thé-i | eRead block,
reads telescope measurements from files on disk. Data isipeghintoEvent s, where each
Event consists of 499 paralldPi xel s, where eactPi xel is the signal output from a single
photon detector in a telescope detector array. Timing nreasnts presented in this section are
for application runs done with 500Bvent s. The next block after th&i | eRead block is the

Splitter block, which splits eaclievent up into its constituenPi xel s. TheSplitter
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Figure 6.5: The VERITAS application

block outputs a batch of Bi xel s atatime, sending orféi xel to the each of parallel downstream

Pi pe blocks. With 6Pi pes, theSpl i tt er block thus produces 84 separate sequential batches
(499/6=83.2) of &Pi xel s each. TheSpl i tt er block sends nulPi xel s on the last batch to
even out the number &i xel s initto 6. The number oPi pes is a customizable parameter, but

for now we will consider it to be fixed at 6.

After the Pi pe blocks have processed tRe xel values intoChar ge values, the data values are
streamed into &kr ger block. This block merges together each set of 499 chargefrpes
additional computations on the aggreg@tear ge values and creates a proces&sant . Finally,
the Qut put block records the results into a file on disk. THer ger block, like theSpl i tter
block, is smart enough to handle situations where the nuofiféirxel s (i.e., 499) does not divide
evenly into the number dPi pes (e.g., 6). Note that this block diagram is a highly simplified

representation of the actual VERITAS application, and gt@juld be referred to for a more detailed
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description of the application. On the left of the diagranthi@e stage-division of the VERITAS

application has been shown, along with percentages fordh@sp of processing time spent in each
stage. These numbers are gathered from running the ajiqticat a single processor, and serve to

illustrate the processing needs of different parts of thsiegtion.

On a single processor of the AMD Athlon system, the entire YIRS application run took 127.2s.
TheFi | eRead andSpl i tt er blocks are grouped under tii@ ont section, and accounted for
2.3% of the total running time. The middRg pes accounted for the bulk of the processing time,
taking up 95.0%. Th8ack section took 1.0% of the application running time, while tbmaining

1.7% of the running time was unaccounted for, taken up bygssiog outside the X-Language

blocks.
Processing Time
( lRaw Data for 1 Pixel
FFT
(46.0% ) FFT
Ny Real Part Imaginary Part
LowPass )
(13.2% ) LowPass LowPass
Real Part Imaginary Part
IFFT
(40.8 %) { IFFT

lCharge for 1 Pixel

Figure 6.6: APi pe block from the VERITAS application

From these percentages, we can see that the bulk of the pimugés done inside thBi pes sec-
tion. A more detailed view of i pe is shown in Figure 6.6. The first block in the pipe is €T
(Fast Fourier Transform) block, taking up 46.0% of the tditae spent in &i pe. The two par-
allel LowPass filter blocks take up 13.2% of thiéi pe’ s processing time, while the finhlIFFT
(Inverse FFT) block takes 40.8%. Note that once again, shassimplified view of the actual al-

gorithm. TheFFT andl FFT blocks shown in this diagram actually include some othecksddhat
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have been lumped along with the FFT and IFFT. These othekbladl be described later in this

section.

6.2.1 Partitioning the VERITAS Application

We now look at the problem of mapping the VERITAS applicatiora two processor system, and
consider both simulation and deployed results. From thelgigion of processing times, we know
that the bulk of processing time is taken up in ®iepe blocks. We will look at two approaches
to partitioning the VERITAS application to two processangg vertical and onehorizontal (Fig-
ure 6.7). In the vertical mapping, th& ont section and the threBi pe blocks on the left are
mapped to one processor, while Beck section and the thre@ pe blocks on the right are mapped
to the other processor. In the horizontal mapping, evemgtifitceding thd FFT blocks is mapped
to one processor (i.e., everything up to and includingltbefass blocks), while thel FFT and
downstream blocks are mapped to the other processor. Natt¢hn horizontal mapping could be
made more balanced by moving thewPass blocks frompr oc[ 2] to proc[ 1] . However,
these blocks have been mappedotooc| 2] for demonstrative purposes, making the horizontal

partitioning significantly more imbalanced than the vettjgartitioning.

proc[2] proc(2]
map2a: Vertical Partition map2b: Horizontal Partition

Figure 6.7: Vertical and Horizontal 2-Core Mappings

Figure 6.8 shows the results. The bars labetagg2a andnmap2b show the total application run
time measured from X-Sim simulations as well as deploymetiise two mappings. Also shown in

this figure is the running time for running the 1-processoppiag, as well as 3-processor mappings
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that are described later. There are two main things to naote Ade first is that the simulation times

are within 5% of the corresponding times measured on thei4pnatessor deployed application.

Also of note is that the vertical and horizontal mappingsralatively close to each other, with times
of 70.2s and 75.4s. The vertical 2-processor mapping isfadiier than the horizontal 2-processor
mapping, due to the fact that it is a more balanced partitgf the processing costs. Note that in
the figure, speedups (1.81for nap2a and 1.6% for map2b) over the 1-processor mapping are

shown on the y-axis rather than absolute times.
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Figure 6.8: VERITAS speedups on 2 and 3 processors
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Figure 6.9: Vertical and Horizontal 3-Core Mappings

The next mapping problem was to run the VERITAS applicatiarttoee processors. Once again,
two mappings were evaluated, one vertical and one horizontaese mappings are shown in

Figure 6.9. In the vertical mapping, twei pe blocks are mapped to each processor, while the
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Front block is additionally mapped tpr oc[ 1] and theBack block is additionally mapped

to proc[ 3] . In the horizontal 3-processor mapping, thewPass blocks are the only things
mapped t@r oc[ 2] . Everything upstream of tHeowPas's blocks is mapped tpr oc[ 1] , while

everything downstream is mappedpooc| 3] .

The vertical mapping is a relatively balanced partitioniiigne horizontal mapping, mapping how-
ever, is not very balanced. This is because the partPass) of thePi pe blocks mapped to the
second processor is not as significant a portion of totalgesing as th&FT and| FFT blocks.
Results from the 3-processor mappings, in terms of speedgrsthe 1-processor mapping, are
shown on the bars labelethp3a andmap3b in Figure 6.8. Once again the times from running
the X-Sim simulations of the two mappings are within 5% of tinees gathered from running the

deployed mappings.

The vertical three-processor mapping shows ax2speedup over the single-processor mapping,
while the horizontal three-processor mapping only show®a Zpeedup. This difference can be

attributed to the difference in balancing the processiegl loetween the two mappings.

So far we have been running simulations where the commumicbandwidth is effectively infinite,
with zero communication delay on edges. We will now consitises where the communication

bandwidth is limited, and the effect this has on differenppiags.

6.2.2 Communication Bandwidth Modeling

Recall that communication modeling in X-Sim is done opea edgebasis, with a fixed communi-

cation delay per transfer on that edge. To simulate a IRrdatenect Resource) bandwidth, the total
bandwidth on that IR must be split up among the different edbat are mapped to that IR. Each
edge is allocated a fixed bandwidth proportional to the arhofidata transferred over that edge,
compared to the total amount of data transferred over akedgapped to that IR. For example, if
an IR (Interconnect Resource) has a 1Gbps fixed bandwiddrcitgpand two edges carrying equal
amounts of data are mapped to this IR, then each edge istatb680Mbps bandwidth. If one edge

carries four times as much data as the other, then the batidalidcated to the first edge would be
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800Mbps, while the bandwidth allocated to the other edgelavoe 200Mbps. The total amount of

data transferred over each edge can be determined eithardmalytic calculation, or by examining

the size of the data trace files for each edge after running-8mXsimulation.

Once a bandwidth has been allocated to each edge mapped Ry dreldelay per data transfer
on each edge is calculated by dividing the amount of datsfeared on a push by the edge’s
bandwidth. For instance, if a push on a 200Mbps bandwidtle edgsists of 100 bytes, then the
communication delay on that edge is (100B / 200Mbps #9.4
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Figure 6.10: Effect of bandwidth on VERITAS running times

Figure 6.10 shows the running times gathered from simuiatiaf the different VERITAS map-
pings considered so far. For each mapping, the applicationimg time is mapped against the total
communication bandwidth on a shared IR. Shared memory viestigély an infinite-bandwidth
shared IR for VERITAS. This plot shows the effect of differsimulated shared IRs with different
communication bandwidths. Consider the data plots on thernght side of the plot. These repre-
sent application running times for each mapping when tte t@mmunication bandwidth is 1Gbps

(i.e., equal to the theoretical bandwidth on Gigabit Etkérn
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In this scenario, the communication bandwidth is high ehagt it is not a bottleneck. As would

be expected, the one-processor mappirap1, takes the longest time, 127.2s. Next slowest is the
horizontal two-processor mappingap2b, which takes 74.2s. The vertical two-processor mapping
map2a, with a more balanced partitioning of processing, takedtle liess time, 68.4s. Among
the three-processor mappings, the horizontal mappeng3b at 61.5s is only a little faster than
map2a. The vertical three-processor mappimgp3a is the fastest of all the mappings, with an

application running time of 46.4s.

It is worth noting at this point that processing by the Bkl block results in a very large expansion
of data. TheLowPass blocks operate on this expanded data, beford tRET blocks perform a
data reduction. Thus, the edges to and fromltbePass blocks are very high traffic compared to
any other edges. The horizontal two-processor mappmg2b, forces data going to tHeowPas s
blocks to travel over the communication mechanism, usingimied bandwidth. The horizontal
three-processor mappingap3b, maps both the edges going to and coming fromltbefass
blocks to the communication resource, and thus forces tasgcewuch data over the same limited

bandwidth.

As the communication bandwidth is decreased to 750Mbps,tlaenl to 500Mbps, we can see
that the running times for all of the mappings stay relayivebnstant. This is because at these
levels of communication bandwidth, the communication na@ém is not yet a bottleneck. As the
bandwidth is reduced to 250Mbps, the running timerfap3b increases, while the running times
for all the other mappings stays constant. This is becausenacinication bandwidth of 250Mbps

is a bottleneck fomap3b, but not for any of the other mappings.

When the bandwidth is reduced to 100Mbps, it becomes a hettlefor bothmap2b as well as
map3b. With twice as much traffic over the bottleneck communiaatiok, map3b has a running
time that is roughly twice the running time famp2b. The bandwidth is not a bottleneck for any

of the other mappings, and so their running times are sélsdime as before.

Even when the bandwidth is halved to 50Mbpap1, map2a, andmap3a have the same running

time as they did before, indicating that the communicatiok Is still not a bottleneck for these
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mappings. Meanwhileyap2b andrmap3b take twice as long to run the VERITAS application on

a bandwidth of 50Mbps as they did to run on a bandwidth on 1Q@vib

6.2.3 Performance Scaling with Multiple Processors

In the next experiment, we will see the X-Sim simulation fessérom mapping the VERITAS
application to 1, 2, 3, 4, 8, and 16-processor systems. Ipriagous section, we saw that a vertical
partitioning of the VERITAS blocks results in relatively laaced distribution of the processing
load. We will take a 162 pe version of VERITAS and map thei pe blocks evenly among the
processor resources. For example, the 4-processor mapgénigurPi pe blocks mapped to each
processor. For the 3-processor mapping, &iLpe version of the application was used with five

Pi pe blocks mapped to each processor.
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Figure 6.11: VERITAS performance scaling with number ofg@ssors

The results for simulation runs (in terms of speedups overltprocessor mapping) for each of
the multi-processor mappings are shown in Figure 6.11. ltewvn in this figure are the deployed
application run times for the 1 through 4-processor mappiramnd the ideal speedups for each

mapping. Results in the figure are shown as speedups ovesgtueéssor mapping.

The ideal speedup for each mapping is equal directly to timetxen of processors. For example,

the ideal speedup for a 4-processor system is 4. The graptsghat X-Sim predicts times that
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roughly follow the ideal speedups, with the difference frtima ideal increasing with the number

of processors. The likely cause for this is that Breont andBack sections are always mapped
to the first and last processors, and only Bigoe section processing is evenly distributed among
the different processors. Say the processindg-oant takesf seconds, while the processing on
aPi pe takesp seconds. For the 8-processor mappipgpc[ 1] has theFr ont section and 2

Pi pes mapped to it (and takeS+ 2p seconds). For the 16-processor mappprgoc| 1] has the
Front section and Pi pe mapped to it (and takes+ p seconds). The speedup (for oc[ 1] )
from 8-processor to 16-processor would thug pe-2p) /(f + p). Going a step back, the speedup
from 4-processor to 8-processor can similarly be calcdlatebe (f + 4p)/(f + 2p). Thus, the

speedup from 8-processor to 16-processor is less thand¢eegp from 4-processor to 8-processor.

A four-processor system was used to test out physical demdays of the VERITAS application
using shared memory as the communication mechanism. Asrsbgwhe graph, the 1 and 2-
processor deployments match the simulation predictidny tdosely. The deployed four-processor
application ran approximately 6% slower than the prediategim simulation. One possible reason
for this discrepancy is that in utilizing all 4 processorsitable on the deployment system, the
application is more likely to be interrupted by OS processegh need to run simultaneously.
Another reason for discrepancies is that shared memoryléstabhide its latency by allowing
computation to occur in parallel with memory accesses. lppimags where a processor must both
read from and write to memory, it is harder for shared memoride its delay, and this adds to

processing time.

The comparison of simulated and deployed times helps \elidaSim simulations of zero-delay
communications. The simulation times for the 8-processdr E6-processor systems, on the other
hand, show how X-Sim can be used to predict times for apmicauns on systems that are not

available currently.

6.2.4 Simulation of A Heterogeneous System

So far we have considered various multi-processor mapdmg¥ERITAS. In this section, we

will look at a mapping of VERITAS that is targeted to a hetemogous architecture consisting of
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processor and FPGA resources. In this section, we will u&inX{o analyze the effect of three

different factors on application performance, and how finégract with each other. The first factor
is communication bandwidth. We already saw in the previagien how, after a certain critical
level, communication bandwidth can strongly affect thdqrenance of an application. The second
factor we will consider is parallelization. We will see hdwetperformance of VERITAS can change
when it is configured with 1, 2 or Bi pes. The third and final factor immapping Mapping is one
aspect the user (and X-Opt once it has been developed) ciy @znge, and, as we shall see,

potentially dramatically improve the performance of anlaagion.

The heterogeneous architecture used as a target in thisrséctshown in Figure 6.12. In this
mapping, two processors and an FPGA are connected to eashastha PCI-X bus. In the de-
ployment system, the two processors are again AMD Athlon B4X00+ cores. The FPGA is a
Virtex 11 6000 running at 100MHz. The PCI-X bus is running 80MHz with width 64bits, giving

a theoretical maximum bandwidth of 800MBps.

proc[1] =PCI-X

processor
fpga

processor

Figure 6.12: Target heterogeneous architecture for VERITA

The driver used to communicate between the processors aftPlBA over the PCI-X are described
in [4]. In this paper, the authors report sustained througghpf 815MBps over a 133MHz PCI-X

bus while transferring a steady stream of data. The scaleé Yar the 100MHz PCI-X bus used in

the current setup is a throughput of 613MBps (815MBp$00MHz/133MH2z).
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Figure 6.13: Detailed view of a VERITABI pe

Before going into the details of a mapping done to this hgmneous architecture, it is neces-
sary to examine a VERITA®I pe in more detail. Figure 6.13 showsRa pe with the FFT and

| FFT blocks expanded out to show more detail. Hi€l block has been replaced byCanvert
Zer oPad, andCor eFFT block. Note that theCor eFFT does the bulk of the computation that
was done irFFT block. TheConvert andZer oPad blocks do not spend much time processing,
but they do result in data expansions. The data output frerdéi oPad block is a 16< expanded

version of the input into th€nvert block.

Similarly, thel FFT block from before has been replaced@yr el FFT andChopper blocks. In

this case, th&€hopper block does not spend a large amount of time processing cauparthe
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Cor el FFT block, but it does do a very significant data reduction. Thewmof data going out of

theChopper block is 96 timedessthan the amount of data entering it.

At the time of writing this thesis, hardware implementatiqne., VHDL or Verilog descriptions)
of the Convert and Chopper blocks were still in the process of development. As a result,
constraint was that these two blocks had to be mapped to gsoe The rest of the blocks in
VERITAS Pi pes however had hardware (specifically VHDL) implementatiowailable, so it was
possible to map them to an FPGA. The first mappmgpALl, is shown in Figure 6.14. VERITAS
has been configured to have oRepe. In this mapping, blockZer oPad throughCor el FFT
were mapped to thepga CR (Computational Resource). Two more mappimggA2 andmapA3

were also developed. These are simpRiZse and 3Pi pe versions ofrapAl. Figure 6.15 shows

mapA2.
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Figure 6.14:mapAl: 1-Pi pe VERITAS mapped to a heterogeneous architecture

First, a heterogeneous simulationnefpAl was run, with the PCI-X IR bandwidth set to 640MBps
(rounded from the maximum of 615MBps). X-Sim used nativecaken simulations fopr oc[ 1]

andpr oc[ 2] , and a ModelSim simulation for the FPGA. The first simulaties run with only



+—' '—+O.l7x

0.17x

P e e e e e e e e e e e e e G e e e e e e e e = e o e '
]

1x Front 1x i

| *—' '—* proc [1] 0

! Convert Convert ]

L - - - - - - - - - - - - - - - - - - - - - - - - - - *

| v 2X v 2X '

| ZeroPad ZeroPad |

' v 16x v 16x |

' CoreFFT CoreFFT ]
]

. . 10.7x . ]

' 10.7x v—l |—*10 7x *—' I—*10 7x foga :

] LowPass LowPass LowPass LowPass '

oo § ¢ 107X 107§y §  107x '

! CorelFFT CorelFFT ]

l- - - - - - - - - e - - - - - - - - - - - - - - - - - ‘

y16x 16X ]

Chopper Chopper ]

]

]

]

Figure 6.15:mapA2: 2-Pi pe VERITAS mapped to a heterogeneous architecture

a single event for the entire simulation. This was done texdlie ModelSim simulation for the
FPGA processing a single event took about 10 minutes. Wednial to do multiple X-Sim simu-
lations of thousands of events each, but the time requireagntbardware simulations is prohibitive
for such large experiments. Analytic model substitutiorswaed to speed up the simulation. Ex-
amining the output timestamps from the ModelSim simulasbowed that data was produced every
6.6us. This corresponded roughly to the fixed clock delay assstwaith thecor eFFT block, the
longest delay block inside the pipeline mapped to the FPGA.

A simulation ofmapAl was run with theZer oPad throughCor el FFT blocks mapped to pro-
cessorinstead of an FPGA, with the VERITAS application run on 5008res. This generated all
the trace data files that were used in subsequent simulaifahe heterogeneous system. A hetero-
geneous simulation was then run with the FPGA analyticalbdeted with a fixed execution time
of 6.6us. The X-Sim simulation yielded a time of 18.3s for the en{EERITAS application run of

5000 events for the heterogeneous system.
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As a comparison, the deployed system was run on the two moiceand a physical FPGA. This

deployed run gave a complete application run time of 96.3&miigher than given by the X-Sim
simulation (18.3s). (Note: The actual deployed applicaggperiment was for 15000 events, and

yielded a time of 289s. This time has been scaled back for B08fts.)

Recall, however, that the X-Sim simulation was run with a ommication bandwidth of 640MBps.
The actual driver used for communication over PCI-X are gaptimized for a steady stream of
large chunks of data. The X-Com generated code for the deglsystem, however, attempts to
send smaller chunks of data, along with a high overheambofmandor headerdata. This results
in a lot less sustained throughput. In fact, the sustainemighput fomapAl can be calculated by
dividing the total amount of data transferred over PCI-X28RMIB) by the total application run time
(96.3s). The result of the above calculation gives an affedtandwidth of 10.67MBps, compared
to the maximum possible streaming bandwidth of 613MBpsiciarlier.

The effective bandwidth is thus much less when using theedsyith small chunks of data with
lots of overhead data. It might be possible in the future tpriowe the effective communication
bandwidth, for example, by improving how the generated XdLeage code uses the driver, or by
sending larger chunks of data at a time. A series of X-Sim Eitimns were run to see the effect this
would have on the performance of thmpAl heterogeneous mapping of VERITAS. Simulations
were also run to determine the performance of tH& pe mappingmapA2 and 3Pi pe mapping
mapA3 under different communication bandwidth restrictionsgufe 6.16 shows the results from

these experiments.

For themapAl mapping, we can see linear improvements in effective badithwiesult in lin-
ear improvements in application performance. Once thetffebandwidth is increased to about
80MBps, the interconnect ceases to be a bottleneck, anditimeng time settles at around 18.3s.

Analytically, total processing time spent on the FPGA tlgioaut the whole application run is given
by:

execution timex number of executions

= 6.6uS x (499x5000) = 16.5s
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Figure 6.16: Performance afipAl, A2, A3 heterogeneous mappings

The running time given by the simulation (18.3s) is thus eltwsthe analytically derived minimum
application run time imposed by the FPGArmpALl (16.5s). The Virtex 11 6000 has the resources
to fit up to 3Pi pes. Since thePi pes are the bulk of processing in the VERITAS application, one
might want to speed up processing by running nRirpes in parallel on the FPGA. To reflect this,

mapA2 andnapA3 were developed.

As can be seen on the left side of the graph, the same comntionidzottleneck that applied

to mapALl still applies tomapA2 and mapA3, and these mappings get the same performance as
mapALl. In simulations ofmapA2 andmapA3 where the effective communication bandwidth lim-
itations were eased, communication ceased to be the etkefRecall that the new bottleneck for
mapAl had been the FPGA. FompA2, with twice as much processing power on the FPGA, the
new bottleneck ipr oc[ 2] instead. The total processing time faroc[ 2] was found to be 10.5s
from the X-Sim simulation, and this forms a lower bound fomfrauch time the whole application
run takes. The total application run time foapA2 was found to be 13.1s, not much higher than
the total time spent just gor oc[ 2] . In a bandwidth rich scenarioppA2 (13.1s) took less time

thanmapA1l (18.3s).
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The time taken byr oc[ 2] in mapA3 (15.4) was found by the simulation to actually be higher

than innmapA2 (10.5s), possibly due to the effect of more pipes on the [@ng times of the
Chopper blocks. When bandwidth was not a limiting factogpA3 (18.4s) thus wound up taking
about as much time ampAl. To summarize, the execution times and bottlenecks foriffexeht
scenarios are given in Table 6.1. Note that the resourcethatihighest utilization (i.e., processing

time) was determined to be the bottleneck.

Bandwidth = 640MB Bandwidth = 10.67MB

App. Run Time| Bottleneck || App. Run Time| Bottleneck
mapAl 18.3s FPGA 96.3s PCl - X
mapA2 13.1s proc[ 2] 96.5s PCl - X
mapA3 18.4s proc| 2] 96.7s PCl - X

Table 6.1: Summary of performance resultsfapAl, A2, A3

The most important thing to note is that all three mappindéesineavy performance penalties
when the effective bandwidth is low. There are two ways tormap their performance. One is to
improve the effective communication bandwidth, thus mgwuight along the performance curve
in Figure 6.16. Another method, explored now, is to makedbaise of the available effective

bandwidth by producing less traffic on the PCI-X bus.

Figure 6.17 shows an alternate mappimgpBl, of the VERITAS application configured with a
singlePi pe. In this mapping, th&€hopper block has been moved to the FPGA. Critically, this
mapsChopper 's output edge rather than its input edge on PCI-X. This catlse total amount of
traffic on the PCI-X IR (sum of data entering and exiting the5A) to be reduced by a factor of
8.3x (18x/2.17x). Once againpmapB2 andmapB3 are simply 2 and 3i pe versions ofrapBLl.
The results from simulating these mappings for differemhsnication bandwidths is shown in

Figure 6.18. For comparison, the simulation resultsf@pA2 are also included.

Immediately, we can see that all three new mappings have geddrmance even with limited
effective communication bandwidth. With 83ess data being transferred over the PCI-X link, the
mapB mappings are able to operate for most of the different effiectommunication bandwidths

without the communication link becoming a bottleneck.
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Figure 6.19: Performance apB1, B2, B3 heterogeneous mappings

A close-up of the bottom part of theapB performance graph is shown in Figure 6.19. The simula-
tion times frompr oc[ 2] showed thapr oc[ 2] consistently took about 5 seconds total processing
time throughout simulations of all theapB mappings. The total application run time thus is lower-
bound by 5 seconds. On the right side of Figure 6.19, wheraraamtation bandwidth is not a

limiting factor, mapB1, mapB2, andmapB3 have application run times of about 16.5s, 8.3s, and
5.5s respectively, relatively close to the total time sg@ntessing on the FPGA. Processing times

for the analytic model of the FPGA can be determined by theutations below:
mapBl FPGA time = 6.44sx499x 5000 = 16.5s

mapB2 FPGA time = 6.4:sx (499/2)x 5000 = 8.2s

mapB3 FPGA time = 6.6isx (499/3)x5000 = 5.5s

For mapB3, all threePi pes can run in parallel, so we only need to analyze one of them. The

execution time for @i pe is still determined by th€or eFFT’s latency (i.e, 6.fs). Only a third
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of the pixels per event (i.e., 499/3 pixels per event) areggeed by thi®i pe, and there are a total

of 5000 events.

An effective communication bandwidth of 10.67MBps, theugafrom the physical deployment of
mapAl, resulted in application running times of 16.5sf@apBl and 11.6s fomapB2 andnapB3.
This compares favorably with the times of about 96.5s fotteimap A mappings. Switching from
mapA to mapB and mapping th&€hopper block(s) to the FPGA brings substantial performance
benefits, mostly because much less data is transferred lowdinited effective communication
bandwidth on the PCI-X IR. A summary of the results from siatioins involvingmapB1, napB2,
and mapB3 are shown in Table 6.2 and can be compared to the resultsnpedspreviously in
Table 6.1.

Bandwidth = 640MB Bandwidth = 10.67MB

App. Run Time| Bottleneck|| App. Run Time| Bottleneck
mapBl 16.6s FPGA 16.5s FPGA
mapB2 8.3s FPGA 11.6s PCl - X
mapB3 5.5s FPGA 11.6s PCl - X

Table 6.2: Summary of performance resultsfapB1, B2, B3

Assuming the effective communication bandwidth stays fimes switching fronmapAl to mapA2
or mapA3 is not likely to significantly improve performance much. $wing frommapAl to
mapBl is likely to improve performance substantially, from 96t646.5s,f the effective commu-
nication bandwidth stays the samléis possible that the effective bandwidth fmapB1 might be
less since it transfers smaller sized data at a time acred3Git+ X bus thamapAl. However, even

if the effective bandwidth halves, a speedup avepAl can be expected.

Switching to 2Pi pes with mapB2 (11.6s) frommapBl (16.5s) may result in a slight speedup as
the bottleneck switches from the FPGA to the IR (again assgroonstant effective bandwidth).
However, adding a thir®i pe is unlikely to improve performance because the bottlensakoiv
the IR and not the FPGA. It follows that adding even mBrges in an attempt to parallelize the
VERITAS application, for instance by employing a larger FP§kich as the Virtex 5 LX330, is not

likely to improve performance because the FPGA is simplythetottleneck.
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So far, we have not made any mentionpsfoc[ 1] ’s processing time in any of the simulations.

This is because for all the simulatiors; oc[ 1] , with Fr ont always mapped to it, always took
about 5.0s to run. Thus, it was never a bottleneck in any ositmilations run so far. It does
however, represent a lower limit on how fast the mappings & ltonsidered so far can run. It
is interesting to note thatapB3, with 3 Pi pes, came close (5.5s) to this when unconstrained by
bandwidth limitations. Ther oc[ 1] run time is another limitation that argues against attemgpti

to map more than thrg@i pes to the FPGA.
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Figure 6.20: Comparison of processor-only and heterogenewppings

As a final comparison, Figure 6.20 shows the run times founthf® 0-800Mbits/s range for map-
pings targeted to processor-only architecturesp(l, nap2a, map3a), as well as for mappings
targeted to heterogeneous architectures using both pasesnd an FPGAGpA2, mapB2). FP-
GAs have the advantage that computations such as FFTs camberdich faster on them than on
general purpose processors. The main issue with using Fi38snake sure that the communi-
cation bandwidth does not become a bottleneck. This can be bip adopting smarter mappings
(e.g.,mapB2 instead ofmapA2), as well as by increasing the amount of effective commtigica

bandwidth available.
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Note thateffectivecommunication bandwidth has been an important concepidgiaut the simula-

tion and analysis of the VERITAS application. This is a reegie assumption when the bandwidth
of the IR is the main factor affecting its performance. Hoarewther factors can affect the commu-
nication link's performance too. For example, there mighathigh per-transfer overhead associated
with a particular IR. To model this, a fixed overhead delaymamadded to the delay for a simulated
transfer over an edge. In cases where this per-transfeheaéris high, better performance can be
gained by reducing the total number of transfers done, dvilse itotal amount of data transferred
stays the same. For the VERITAS application, this could esed by modifying the algorithm so
that multiplePi xel elements are grouped together before being transferredtw/BCl - X link.
Discovering performance characteristics of particules t&quires additional experimentation with

deployed applications on the physical IRs.

Throughout discussions in this section, we have seen hawrfasuch as effective communication

bandwidth, application parallelization, and mapping cksi affect the performance that can be
expected from different mappings of an application. Sinindpdifferent scenarios and analyzing

the results can help the user, and in the future X-Opt, makdigent decisions in optimizing high

performance streaming applications such as VERITAS.
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Chapter 7

Summary

7.1 Conclusion

The Auto-Pipe toolset is useful for developing streamincalpal applications that are mapped to
heterogeneous architectures. Within this toolset, X-Siavides a mechanism to run simulations
and gather results. It automates the task of simulatingrdifit parts of the application in a federated
manner, creating full data and timing traces of applicagmacutions where specified. Data traces
can be inspected to debug the application. Timing trace®earsed to analyze the performance of

the application.

X-Eval provides a mechanism to analyze timing traces géegray an X-Sim simulation run. It
generates a timeline visualization that allows the userasmthe relative timing of various opera-
tions in the application. Additionally, X-Eval providesramary performance metrics like average

execution time and average waiting time for blocks and cdatmnal resources.

X-Sim makes use of various technigues to speed up simusticeful where many successive sim-
ulations must be run, as well as where individual simulatioms are lengthy. This thesis presented
various test cases to demonstrate the use of X-Sim and XuEsahulating and analyzing stream-

ing applications. It also presented validation of reswifisere possible, against physically deployed

applications.
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7.2 Contributions and Implementation Status

Contributions presented in this thesis include:

X-Sim, a federated simulation tool that conveniently arfitieintly simulates streaming ap-

plications mapped to heterogeneous architectures

X-Eval, an analysis tool that can be used to analyze timgstayanerated by X-Sim

simulation speedup techniques

two sample applications,est 1 and VERITAS, with detailed simulation, analysis, and vali-

dation

X-Sim is operational and has been extensively used by nmiltipers successfully. Validation of
native execution simulations has been carried out for lafmications (e.g. VERITAS) on Sym-
metric Multi Processing (SMP) systems using shared menvafidation needs to be done for other

target systems.

Testpoints are currently only supported forimplementations of blocks. Support for testpoints

should also be added fHDL implementations.

X-Eval is operational and has been used to generate tinsedimavell as execution time metrics for
various applications. The analytic modeling of computaloresources currently only works for
one input edge and one output edge. The analytic modelindsriede updated to support multiple

input and output edges.

7.3 Future Work

Support for the simulation of additional resources, e.g.Goaphics Processing Units (GPUs) and
Network Processors (NPs), need to be added to X-Sim as theserces are added to the Auto-Pipe

framework.
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Currently X-Sim runs each federate simulator in isolati@ading all the required data and times-

tamps from trace files at the beginning of simulation, andimgiall the generated data and times-
tamps to trace files at the end of simulation. X-Sim kesdpimput and output data and timestamps in
memory while running the simulation, so that file access do¢siffect the native execution perfor-

mance. This has obvious drawbacks in terms of working memeapyirements. Techniques should
be investigated on how to get around finite memory resoufe@sexample, one possible technique
is to ‘pause’ an internal simulation clock, dump out all theput data and timestamps collected
so far, and then resume the simulation. That particulamigcie has the drawback that file-access

mid-simulation can alter disk and chip cache, and thus &ffecnative execution performance.

X-Opt needs to be developed more concretely. This will hépdown the exact requirements in
the automated optimization step, and thus guide futurenmements and development directions for
X-Eval.

The user must currently manually write the semantics filé ihased as an input by X-Eval. A
modified version of X-Dep should be developed that genemtgseleton semantics file based on

the X Language description of the application.

The current communication model is a fixed delay per edge madiere the fixed delay must be
assigned by the user manually. This can be streamlined bgtarsywhere the user simply assigns
a fixed bandwidth to an Interconnect Resource (IR), and X-&itomatically figures out the delay
associated with each transfer on each edge on that reso(®en can run an initial simulation to
find out the total traffic on each edge, and allocate bandwgdbportional to traffic to each edge.
The delay on an edge can then be calculated by dividing tleedia transfer by the allocated
bandwidth.

A library of communication performance models must be hufitwith rigorous experimentation
with X Language applications on different physical comneation links. This will allow commu-
nication simulation in X-Sim to be done with empirical numbthat have been validated, and thus
allow more accurate performance results to be generatexpfidication mappings to a wide variety

of architectures.
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