
WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

X-SIM AND X-EVAL:

TOOLS FOR SIMULATION AND ANALYSIS OF HETEROGENEOUS PIPELINED

ARCHITECTURES

by

Saurabh Gayen

Prepared under the direction of Professor Mark A. Franklin

A thesis presented to the School of Engineering and Applied Science

Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

May 2008

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

X-SIM AND X-EVAL:

TOOLS FOR SIMULATION AND ANALYSIS OF HETEROGENEOUS PIPELINED

ARCHITECTURES

by

Saurabh Gayen

ADVISOR: Professor Mark A. Franklin

May 2008

Saint Louis, Missouri

Heterogeneous computing systems consisting of multiple platform types (e.g., general purpose pro-
cessors, FPGAs etc.) are increasingly being used to achievehigher performance and lower costs
than can be obtained with homogeneous systems (e.g., processor clusters). Different platforms have
different languages and simulators associated with them. Auto-Pipe has been developed as a toolset
to reduce the complexity inherent in both the performance analysis and in the deployment of an
application to a diverse resource set. In Auto-Pipe, applications are expressed using the data flow
coordination languageX, which describes the application in terms of interactions between functional
blocks.

As part of the Auto-Pipe system, X-Sim has been developed as afederated distributed simulation
system that can be used to conveniently and efficiently simulate applications. X-Eval has been
developed as a post simulation analysis tool, as part of an effort to optimize the performance of the
application.

This thesis presents an overview of the Auto-Pipe system, descriptions of X-Sim and X-Eval, and
sample applications to illustrate the Auto-Pipe development cycle with an emphasis on the simula-
tion and analysis aspects.

Contents

List of Tables . iv

List of Figures . v

Acknowledgments . ix

1 Introduction . 1

1.1 Background . 2

1.2 Motivation .. 5

1.3 X-Sim and X-Eval in the Auto-Pipe Design Flow 7

1.4 Related Work .10

1.5 Overview of Thesis .. . 15

2 The Auto-Pipe System. 16

2.1 X: A Language for Describing Target Applications and Architectures 16

2.2 X-Com: Compiling Heterogeneous Applications 24

2.2.1 C API and implementations for X blocks 28

2.2.2 VHDL block implementations .. . 35

2.2.3 Compilation of Deployable Executables 36

2.3 X-Sim: Simulating Applications and Collecting Traces 37

2.4 X-Eval: Analyzing Simulation Timing Traces from X-Sim 39

2.5 X-Opt: Performance Optimization 40

3 Simulation using X-Sim . 41

3.1 An Example X-Sim Simulation Run 42

3.2 Tutorial for Setting up a Simulation using X-Sim 46

3.2.1 User Modifications to Files 47

3.2.2 Running X-Dep to Create an X-Sim Makefile 54

3.2.3 Running X-Sim . 54

3.3 Simulation Trace Files 56

3.3.1 Trace File Formats .58

3.3.2 Reconstructing a Simulation Run from Traces 60

ii

3.4 Limitations of X-Sim 63

4 Analysis using X-Eval . 68

4.1 Trace Visualization 69

4.2 An Example X-Eval Performance Analysis 73

4.3 Production Rules in X-Eval 81

4.3.1 An Informal Approach .81

4.3.2 A Formal Approach . 84

4.3.3 Determining Production Rule Records from X-Sim Traces 89

4.3.4 Restrictions on X-Eval Modeling 91

4.3.5 Generating Performance Metrics and Models 96

4.4 Tutorial for Analyzing an Application using X-Eval 97

5 Simulation Speedup Techniques . 101

5.1 Simulating CRs in Parallel 102

5.2 Substituting CR Simulations 104

5.2.1 Using Trace-Based Models .. . 105

5.2.2 Using Analytic Distribution Models 111

6 Benchmarks . 113

6.1 Thetest1 Example Application . 113

6.2 The VERITAS Application 117

6.2.1 Partitioning the VERITAS Application 120

6.2.2 Communication Bandwidth Modeling 122

6.2.3 Performance Scaling with Multiple Processors 125

6.2.4 Simulation of A Heterogeneous System 126

7 Summary . 139

7.1 Conclusion .139

7.2 Contributions and Implementation Status 140

7.3 Future Work .140

References . 142

Vita . 144

iii

List of Tables

3.1 Performance results fortest1 . 63

4.1 Summary of performance results fortest1 . 80

6.1 Summary of performance results formapA1,A2,A3 133

6.2 Summary of performance results formapB1,B2,B3 136

iv

List of Figures

1.1 Sample dataflow graph .. . 2

1.2 Sample processing architecture 3

1.3 Sample mapping .4

1.4 Alternate sample mapping 5

1.5 Design flow under Auto-Pipe 7

1.6 Traces recorded for sample mapping 9

1.7 Augmented design flow under Auto-Pipe 10

1.8 An HLA simulation system 11

2.1 Algorithm dataflow for exampletest1 . 17

2.2 X Language code for theGENERATE block . 17

2.3 X Language code for theSUM block . 18

2.4 test1_algo.x: Sample algorithm description 19

2.5 Processing architecture for exampletest1 . 20

2.6 X Language platform declarations for exampletest1 21

2.7 X Language linktype declarations for exampletest1 22

2.8 X Language topology description for exampletest1 22

2.9 Mapping for exampletest1 . 24

2.10 X-Com design flow .. 25

2.11 test1_arch.x: Sample architecture description 26

2.12 test1_map.x: Initial sample mapping description 27

2.13 An alternate mapping for exampletest1 . 27

2.14 test1_map2.x: Alternate sample mapping description 28

2.15 X Language code for theSUM block (same as Figure 2.3) 29

2.16 C API forall X blocks . 30

2.17 C implementation for theSUM block . 31

2.18 go function forGENERATE block . 33

2.19 Push function forSUM block . 34

2.20 VHDL implementation skeleton forSUM block 35

2.21 Architecture body for VHDL implementation of theSUM block 36

2.22 test1_simarch.x: Sample simulation architecture description 38

v

2.23 Trace capture points fortest1 . 38

2.24 Trace capture points forfpga CR . 39

3.1 Traces gathered for sampletest1 mapping . 41

3.2 Simulation ofproc[1] . 43

3.3 Simulation of communication betweenproc[1] andfpga 44

3.4 Simulation offpga . 45

3.5 Simulation of communication betweenfpga andproc[2] 45

3.6 Simulation ofproc[2] . 46

3.7 Design Flow for X-Sim .. . 46

3.8 Mapping for exampletest1 . 47

3.9 Original physical deployment targets for exampletest1 48

3.10 Simulation platforms for exampletest1 . 48

3.11 Default trace files fortest1 (i.e. withouttpt.ts traces) 49

3.12 X Language description ofGENERATE block with a testpoint 50

3.13 Header file forGENERATE block with a testpoint 51

3.14 go function forGENERATE block with a testpoint 52

3.15 X Language description ofSTORE block with testpoints 52

3.16 Header file forSTORE block with testpoints . 53

3.17 push function forSTORE with testpoints . 53

3.18 Simulation Makefile fortest1 . 55

3.19 Simulation traces forproc[1] . 58

3.20 Header for timing trace filetop_gen1_y0_out.ts 59

3.21 Timestamps for timing trace filetop_gen1_y0_out.ts 60

3.22 Simulation traces for communication fromproc[1] to fpga 60

3.23 Simulation traces forfpga . 61

3.24 Simulation traces for communication fromfpga to proc[2] 62

3.25 Simulation traces forproc[2] . 62

3.26 Cyclical mapping for exampletest1 . 65

4.1 Traces recorded for exampletest1 (Same as Figure 2.23) 68

4.2 Timeline generated fortest1 . 70

4.3 Timeline generated fortest1 (zoomed in version) 71

4.4 Timeline fortest1 with 0µsPCI delay . 74

4.5 Timeline for blockgen1 . 76

4.6 Timeline for blockgen2 . 77

4.7 Timeline for blocksum . 78

4.8 Timeline for blockhalf . 79

vi

4.9 Timeline for blockstore . 80

4.10 Simple X Language block mapped to a CR 81

4.11 Two simple X Language blocks mapped to a CR 82

4.12 X-Eval blockb . 85

4.13 Algorithm for X-Eval Record Generation Code 91

4.14 An X-Eval block with a long and short production rule execution path 93

4.15 Basic semantics file specification for exampletest1 97

4.16 Results summary for end-to-end analysis oftest1 98

4.17 Detailed semantics file for exampletest1 . 99

4.18 Results summary fortest1 analysis . 99

5.1 First mapping of example applicationtest2 . 101

5.2 Simulation Makefile for first mapping oftest2 103

5.3 Semantics file for exampletest2 . 105

5.4 Timeline for blockc (First mapping oftest2) 106

5.5 Second mapping for applicationtest2 . 106

5.6 Simulation Makefile for second mapping oftest2 107

5.7 avl.ts times for blockc (Second mapping oftest2) 109

5.8 Using execution time traces for blockc (Second mapping oftest2) 109

6.1 A single-processor mapping oftest1 . 114

6.2 Total processing time per block intest1 . 115

6.3 A two-processor mapping oftest1 . 116

6.4 Run times for 1-processor and 2-processortest1 mappings 117

6.5 The VERITAS application 118

6.6 APipe block from the VERITAS application . 119

6.7 Vertical and Horizontal 2-Core Mappings 120

6.8 VERITAS speedups on 2 and 3 processors 121

6.9 Vertical and Horizontal 3-Core Mappings 121

6.10 Effect of bandwidth on VERITAS running times 123

6.11 VERITAS performance scaling with number of processors. 125

6.12 Target heterogeneous architecture for VERITAS 127

6.13 Detailed view of a VERITASPipe . 128

6.14 mapA1: 1-Pipe VERITAS mapped to a heterogeneous architecture 129

6.15 mapA2: 2-Pipe VERITAS mapped to a heterogeneous architecture 130

6.16 Performance ofmapA1,A2,A3 heterogeneous mappings 132

6.17 mapB1: An alternate 1-Pipe VERITAS heterogeneous mapping 134

6.18 Performance ofmapA2,B1,B2,B3 heterogeneous mappings 134

vii

6.19 Performance ofmapB1,B2,B3 heterogeneous mappings 135

6.20 Comparison of processor-only and heterogeneous mappings 137

viii

Acknowledgments

I would like to thank members of the Storage Based Supercomputing (SBS) group for providing an
excellent framework within which to develop the Auto-Pipe toolset. In particular, I would like to
thank my advisor, Mark Franklin, and Roger Chamberlain for their guidance and help in developing
X-Sim and X-Eval, and in writing this thesis. A special mention also goes out to Eric Tyson, with
whom I’ve spent countless hours designing, discussing, anddeveloping the Auto-Pipe toolset.

I would also like to express my gratitude to my friends and family for their support and encourage-
ment during the pursuit of my degree.

Finally, thanks to the National Science Foundation, who through grant CCF-0427794, have funded
the research done in the SBS group.

Saurabh Gayen

Washington University in Saint Louis
May 2008

ix

1

Chapter 1

Introduction

This thesis presents X-Sim and X-Eval, tools for simulationand analysis of applications within the

Auto-Pipe [9, 20] framework. Auto-Pipe is a development environment that enables high perfor-

mance applications, particularly streaming applications, to be developed for a diverse set of target

computational platforms and connection topologies.

Within this environment, X-Sim provides a mechanism to simulate the entire application, both for

correctness checking as well as for performance profiling. It produces a series of traces that record

events that happened during the simulation. X-Eval serves as a post-simulation analysis tool that

uses these traces to calculate performance measurements and create performance models of system

elements. A tool planned for the future, tentatively named X-Opt, will use results and models

generated by X-Sim and X-Eval to create more optimal mappings of the application to the target

processing architecture.

This introductory chapter describes the background of highperformance streaming problems and

how Auto-Pipe was developed to aid the development process.The motivation for simulation and

performance analysis within this framework is investigated, and the goals for X-Sim and X-Eval

within Auto-Pipe are described. Related work to both X-Sim and X-Eval is discussed and compared.

Finally, the outline for the rest of the thesis is presented.

2

1.1 Background

Heterogeneous (or hybrid) processing architectures consisting of a multitude of different platform

types (e.g., general-purpose processors, FPGAs, chip multiprocessors) are often the target for high-

performance applications1. This is generally motivated by a desire to leverage the unique strengths

of each platform so that higher performance (or lower cost for the same performance) can be

achieved. Developing applications to run on such a diverse set of platforms, however, is difficult.

Target applications that we consider are predominantly streaming scientific computation applica-

tions. These applications typically involve a large amountof data flowing sequentially through a

pipeline of computational stages, with each stage performing an incremental computation. For ex-

ample, an application currently being developed using the Auto-Pipe system is VERITAS [22], the

Very Energetic Radiation Imaging Telescope Array System. VERITAS is an astrophysics project

where data gathered from an array of telescopes is streamed through a processing architecture to

analyze it. The data is generated by sensing Cherenkov radiation produced by gamma rays striking

the atmosphere.

Streaming scientific applications like VERITAS can be represented using an acyclic dataflow graph.

Figure 1.1 shows a dataflow graph for a simple example streaming application (not VERITAS) that

serves as an illustrative example.

gen1

gen2

mul
 sqr
 out

Generate

Generate

Multiply
 Square
 Output

e1

e2

e3
 e4

Figure 1.1: Sample dataflow graph

The algorithm represented by this dataflow graph consists offive tasks, shown in the graph asblocks.

A taskmay represent any computational process, from as simple as an addition to as arbitrarily com-

plex as required. Ablock is the representation of a computational task in a dataflow graph. Blocks

1Background text is similar to text in [10].

3

are connected to each other byedges. Edgesare dataflow graph representations of communication

channels between tasks. They can be thought of as infinite FIFOs. The two blocks on the left,gen1

andgen2, representdata sourcesbecause they have no incoming edges.Data sourcesare blocks

that produce data without getting an input from other blocksin the dataflow graph. Sample data

generation methods include reading a file or database, reading a sensor, or using a random number

generator. Data from the two generating blocks are sent overedgese1 ande2 to themul (multiply)

block. After being processed by themul block, data is streamed through thesqr (square root) and

theout blocks. Theout block represents adata sink, a block which has one or more input ports but

no output ports. Results can be stored by the sink block in data files or a database, or simply be

output to screen. The presented dataflow graph is acyclic because there is no path by which data

can re-enter a block it has already left. Many high performance scientific computations can either

be represented by such an acyclic dataflow graph, or their data intensive computation part can be

reduced to such a representation.

Processor1

Processor2

Processor

FPGA1
PCI
 Bus

E
th

e
rn

e
t

L
A

N

Figure 1.2: Sample processing architecture

Let us now consider a sample processing architecture that the given example application can be

deployed to. Figure 1.2 shows three processors connected toeach other using an Ethernet LAN.

The first processor also has an FPGA (Field Programmable GateArray) linked to it using a PCI bus.

4

A general processing architecture consists of multiplecomputational resources(CRs) connected

together. A CR is a device that can execute tasks given by an application description. Examples of

CRs include different types of general purpose processors (GPPs), field programmable gate arrays

(FPGAs), digital signal processors (DSPs), network processors (NPs), graphical processing units

(GPUs), as well as others. Support for GPPs and FPGAs is already built into Auto-Pipe. The Auto-

Pipe system is extensible so that in the future other CRs can also be supported. In the processing

architecture given in Figure 1.2, the instantiated CRs are three Intel x86 processors and one Virtex

2 FPGA.

The CRs in a processing architecture are connected usinginterconnect resources(IRs). An IR is

a communication mechanism between two CRs. For example, in Figure 1.2, the Ethernet LAN

connecting the processors, and the PCI bus connecting the first processor to an FPGA are examples

of IRs.

E
th

e
rn

e
t

L
A

N

gen1

Processor3

Processor2

Processor1
 FPGA

gen2

mul
 sqr
 out

PCI
 Bus

Figure 1.3: Sample mapping

Mappingan algorithm to an architecture is the process of assigning each block to a CR, and each

application edge to an IR. Consider the problem of mapping the algorithm in Figure 1.1 to the

architecture in Figure 1.2. A possible mapping is presentedin Figure 1.3.

5

In this mapping, the twogen blocks and themul block are mapped to one processor. Data from

themul block passes over the PCI bus to the FPGA, where thesqr andout blocks are mapped.

With this mapping, Auto-Pipe generates a single executableto be deployed onProcessor1, and

a single bit file to be deployed on the FPGA.

E
th

e
rn

e
t

L
A

N

gen1

Processor3

Processor2

Processor1
 FPGA

gen2

mul
 sqr
 out

PCI
 Bus

Figure 1.4: Alternate sample mapping

An alternate mapping is shown in Figure 1.4. In this mapping,the twogen blocks have been moved

to other processors. This new mapping represents a more equal distribution of blocks to CRs, and

exploits computational parallelism present in the algorithm. If the communication delay over the

Ethernet IR is not too high, this mapping may have higher performance than that of Figure 1.3.

1.2 Motivation

Coordinating the multiple development languages and design environments associated with very

different computational resources is awkward and error-prone2. Implementing and evaluating dif-

ferent mappings to optimize the performance of applications is a time consuming, complex task.

2Motivation text is similar to text in [10]

6

While simulation is an essential tool in the development methodology of some individual platforms

(e.g., FPGAs), simulating a complete hybrid system is complicated by the need to coordinate dis-

parate compilers and simulators, often with very differentinterfaces, options, and fidelities. In

addition, implementing communication mechanisms to deliver data between different devices also

increases development time.

Auto-Pipe, including X-Sim and X-Eval, were developed to address these issues. Applications are

expressed in Auto-Pipe through use of a data flow coordination language calledX, which describes

the interactions of functional blocks that comprise the application. The functional blocks themselves

are expressed in the native language(s) associated with thehardware platforms on which they are

to be deployed. For example, an FFT block to be deployed on an FPGA could be authored in

a hardware description language (HDL), such as VHDL or Verilog, while a file I/O block to be

deployed on a general-purpose processor might be authored in C. Data communication between

blocks deployed on distinct platforms is automatically provided by the system, removing the need

for the application developer to manually address this requirement.

X-Sim is the simulation component within Auto-Pipe. It usesplatform-specific native simulation

tools and direct execution capabilities to simulate the entire hybrid system. This helps in establishing

functional correctness and gathering system-wide performance information.

Key features of X-Sim are:

• Integration into the Auto-Pipe design flow.

• Integration of multiple, potentially very different simulators into a single federated simulation.

• Automation of the system simulation by coordinating individual simulator runs.

• Collection of performance data associated with resources and tasks.

• Accelerating simulations by taking advantage of various simulation speedup techniques (see

Chapter 5)

7

Beyond simulation, the Auto-Pipe system also supports the deployment of the application onto a

physical hybrid system for execution, and in the future willsupport automated application perfor-

mance optimization.

1.3 X-Sim and X-Eval in the Auto-Pipe Design Flow

Auto-Pipe is a performance-oriented development environment for hybrid systems. Components of

Auto-Pipe include an X language compiler called X-Com, the X-Sim federated simulation system,

and the X-Eval analysis tool. These components form the standard design flow shown in Figure 1.5.

X-
Com

gcc
,
vcom

X-
Sim

correct?

X-
Eval

good

perf
?

Deploy

.x

X Language

Library

Files

.x

X Language

Application

Description

.c, .
 vhd

Implementations

yes

yes

Revise

App
. &
 Impls
.

Revise

Mapping

.c, .
vhd

Library

Implementations

Figure 1.5: Design flow under Auto-Pipe

8

The human icon represents steps that are done manually, and boxes represent automated tools pro-

vided as part of Auto-Pipe for application development. Diamonds represent a choice that needs to

be made, with yes and no answers leading to different next steps.

The design flow given in the figure starts on the top, with X Language files created by a user. In

these files, the user describes the application algorithm, the target processing architecture, and an

initial mapping of the algorithm to the architecture. TheseX Language files, along with various

X libraries to manage communication and profiling, are compiled by X-Com to generate platform-

specific source C and VHDL files. In turn, these X-Com generated files are combined with user-

created C and VHDL implementation files, and compiled by platform-specific compilers (gcc and

vcom) to create deployable executables for each CR.

In the development of any heterogeneous application, simulation is an essential tool. For example,

FPGA designs are regularly simulated prior to deployment onto the physical chip. In the Auto-Pipe

infrastructure, X-Sim simulates the entire application, automatically taking care of coordination

between multiple simulators that are used to simulate different target CRs.

X-Sim produces a set oftracesthat provide a full history of all resource level events. These traces are

recorded at edges mapped to IRs (Interconnect Resources), and at the start and end of processing of

source and sink blocks. For example, Figure 1.6 shows where traces are recorded in the application

introduced earlier.

Data trace files, represented by ‘D’ files in the figure, store the data that was transferred over a cor-

responding edge. Timestamp trace files, represented by ‘T’ files in the figure, store the exact times

at which the transfers occurred. Both data and timestamp files are recorded for each edge in the

dataflow graph. The data files can be used to do a functional check of the simulation, in addition to

aiding debugging efforts. The timestamp files can be used to generate a history of execution times

for each block that has both input edges as well as output edges. By executing simulations within the

Auto-Pipe infrastructure, X-Sim runs individual block simulations in context, meaning their inputs

are more readily representative of the actual data to be present on the deployed system. The sim-

ulation executions test a block’s individual correctness as well as the correctness of its interactions

with other blocks. To allow timing analysis to be done for source and sink blocks, timestamps are

9

E
th

e
rn

e
t

L
A

N

gen1

Processor3

Processor2

Processor1

FPGA

gen2

mul
 sqr
 out

PCI
 Bus

D

T

T

T

T

D

T

D

T

D

T

D

T

D

T

Figure 1.6: Traces recorded for sample mapping

also stored to record when source blocksstartedexecuting, and when sink blocksendedexecuting.

Additional details of X-Sim’s mechanism, including traces, are provided in Chapter 3.

Output from execution of the application simulation may be examined by the user to determine if

the whole application executes correctly. If errors occur,the user can use data traces collected from

the simulation run to narrow down problem areas and focus debugging efforts on the malfunctioning

blocks. Once correctness has been established, the user canuse X-Eval to analyze the performance

of the application. For each block in the dataflow graph, X-Eval reads the input and output times-

tamp trace files. By subtracting the input times from the output times, execution times for each

block can be calculated. How the analysis for different types of individual blocks is done, and how

performance analysis is done for the application as a whole is described in more detail in Chapter 4.

The results of performance simulation may be used to investigate the implications of alternative

mappings of blocks to computational resources, or alternatively to tune individual block implemen-

tations. A proposed tool for this has tentatively been namedX-Opt. The augmented Auto-Pipe

design flow including this new tool is shown in Figure 1.7.

10

X-
Com

gcc
,
vcom

X-
Sim

correct?

X-
Eval

Deploy

.c, .
 vhd

Implementations

yes

Revise

App
. &
 Impls
.

Revise

Mapping

.c, .
vhd

Library

Implementations

X-Opt

.x

X Language

Library

Files

.x

X Language

Application

Description

Figure 1.7: Augmented design flow under Auto-Pipe

Note that the difference in this design flow from the previousflow is that manual optimization has

been replaced by X-Opt, an automated performance optimization tool. It is planned that X-Opt

will use results from X-Eval to analyze the performance of individual blocks within the application,

and will be able to determine more optimal mappings of blocksto resources. Additional details on

X-Opt can be found in Section 2.6.

1.4 Related Work

X-Sim is a federated simulation system designed to model streaming applications mapped to a

hybrid processing architecture. We will consider work related to X-Sim in three fields:

11

• federated simulation systems

• hybrid architecture targeted application development systems

• streaming application development systems

A federatedsimulation system is one in which multiple simulators, called federatesimulators, run

to simulate a single system. These federate simulators can be in different simulation languages,

and even be of very different fidelities. Such systems are called heterogeneousfederated simulation

systems, and X-Sim is an example of such a system.

A popular standard for parallel federated simulation is theHigh Level Architecture (HLA) [5, 6, 14]

developed by the Defense Modeling and Simulation Office [8].The HLA is a general purpose

architecture for coordinating a distributed set of simulators spread across a variety of computing

platforms. Figure 1.8 shows the general structure of a HLA compliant federated simulation system.

Real Time Infrastructure

Simulator 1
 Simulator 2
 Simulator 3

Figure 1.8: An HLA simulation system

Autonomous, heterogeneous federate simulations run in parallel with each other. These heteroge-

neous simulators need to be able to communicate with each other, but do not share a common native

communication interface. HLA enforces an Interface Specification that federate Simulators must

adhere to. By conforming to this Interface Specification, federate simulators can interact, through

an underlying Run Time Infrastructure (RTI) [3] simulationbackplane, with each other. The RTI is

responsible for:

• construction and destruction of shared data objects

• time synchronization of simulation operation between federates

• coordinating access to shared data objects

12

X-Sim is similar to the HLA/RTI distributed federated simulation architecture. A target processing

architecture includes many different CRs that need to be simulated. If the architecture is a hetero-

geneous mix, different types of simulators are needed to simulate the different components. For

example, a native execution model can be used to simulate an application component mapped to a

general purpose processor, while a ModelSim [15] simulation can be used to simulate a different

component mapped to an FPGA. The equivalent to the RTI for X-Sim is a system of timestamp and

data trace files.

The trace files produced by blocks mapped to all resources have a uniform format. This allows

simulators for different CRs to be able to seamlessly communicate with each other. Auto-Pipe is

an extensible system, designed to allow more CRs to be supported in the future. X-Sim is similarly

extensible. A developer adding support for another CR type to Auto-Pipe must also add the trace

generation code for the simulator associated with the new CRto X-Sim. This will allow the new

simulator to communicate correctly with all the other federate simulators.

Let us now consider work related to X-Sim from a different perspective, looking at application

development systems targeted towards hybrid, or heterogeneous, processing architectures.

The first system considered is Ptolemy II. Ptolemy II is “a setof Java packages supporting hetero-

geneous, concurrent modeling and design” [7]. It is a part ofUC Berkeley’s Ptolemy project [18],

which studies modeling, simulation, and design of concurrent computational systems, focusing on

assembly of heterogeneous components. Ptolemy II has many of the same goals as X-Sim, par-

ticularly the analysis of heterogeneous processing architectures. However, there are also some key

differences between the two systems. Ptolemy II is focused on the modeling of heterogeneous sys-

tems, with little attention given to actual deployment on a real processing architecture. In Ptolemy

II, modeling is approached from a top-downanalytic perspective. The whole application is first

designed by representing different tasks (or blocks) by analytic models. More detailed functional

implementations for the blocks are written only later. In contrast, X-Sim uses a bottom-up perfor-

mance modeling approach where implementations are fully developed first before being profiled to

create analytic models. The main reason for this differenceis the different targets for the two de-

sign tools. The Ptolemy II system is targeted towards embedded systems, wherelatencyresults are

13

often crucial to the operation of an application. By designing a system from the beginning with re-

quired timing models, latency requirements can be satisfied. In contrast, X-Sim is targeted towards

streaming applications, usually with large data processing requirements, wherethroughput is the

most critical performance metric. Latency requirements may be considered later using performance

modeling and revised mapping facilities. This allows ease of implementation and deployment to

be given a higher priority, appropriate for a system like Auto-Pipe where ease of use for end-user

scientists and engineers is an important goal.

LabView [12] is a popular proprietary heterogeneous application development environment from

National Instruments [17]. The main feature of LabView thatdistinguishes it from other similar

systems is that LabView has a graphical language “G” that is used to describe the application. G

allows users to create graphical representations of tasks and link them by drawing wires. This

makes the system very popular with scientists and engineerswho do not have much background in

conventional programming. Rudimentary functional simulation is supported in LabView, but there

is no extensive mechanism to profile the timing performance of blocks.

We now shift the focus to streaming application development. GLU (Granular LUcid) [13] is an ap-

plication development system for granular data-parallel programming, including for streaming ap-

plications, targeted towards general purpose computers. It uses a high level programming language

called Lucid [2] to express implicitly parallel relationships between sequential functions (or tasks)

that are implemented in C. Lucid does not simply structurally represent the edges between blocks

like X does. Instead, it uses functional relations to express data dependencies between user-defined

C functions. GLU is able to express functionally more complex relationships between blocks, but

requires significantly more user effort in porting over an existing application to the GLU frame-

work. Functional level debugging is provided by GLU, but only at the level of traces that verify the

data dependencies between blocks. In terms of a dataflow graph, these traces can be used to check

whether the data being produced on an edge by an upstream block matches the data being consumed

by a downstream block. In Auto-Pipe, this level of functional checking is inherently provided by

the X-Com compiler.

14

In addition to functional debugging, GLU also provides a mechanism for performance profiling of

the application. Compiling GLU source code creates one or moregeneratorexecutables, with each

generator executable having one or moreworker executables assigned to it. Generator executables

are in charge of interpreting the dataflow relationships between blocks and running worker executa-

bles at the right time with the right data. Worker executables include the actual implementations

of the dataflow graph blocks. GLU provides performance metrics for each generator and worker

executable, including values for total runtime, total implementation execution time, and idle time.

In addition to performance analysis, GLU is capable of dynamic load management as well as static

load distributions, and of providing performance metrics for each generator and worker executable.

X-Sim and X-Eval combine to provide a profiling mechanism forapplications written under X,

while X-Opt will provide the ability to determine an optimalstatic load distribution over the differ-

ent available CRs. In GLU’s case, the CRs are all GPPs, each capable of running any block because

each block is a C implementation. This lets worker loads be dynamically distributed among CRs.

In Auto-Pipe, the CRs are more heterogeneous, so work cannoteasily be dynamically reallocated.

The emphasis in Auto-Pipe is thus on determining the optimalstatic allocation of work to CRs (i.e.

mapping the application to the heterogeneous architecture).

StreamIt [19] and StreamC [1] are two other high level languages that have been developed to

facilitate the development of streaming applications on multi-core processors. StreamIt is platform

independent but has primarily been built to support the RAW processor [21] developed at MIT. It

has a legal Java syntax, and is used to represent the relationship between tasks, called ‘filters’ in

this system. The simulator for the system is btl [16], a cycle-accurate simulator specific to the RAW

processor. StreamC [1] was developed in conjunction with the Stanford Imagine processor, and is

specifically aimed to this target. Two simulators are available for the Imagine processor. Idebug

is a functional simulator that uses the Visual Studio debugging environment and is used to debug

Imagine applications during development. ISim, on the other hand, is a cycle-accurate simulator for

the Imagine Processor. It is used for performance profiling,and like Idebug, is a platform specific

simulator.

Being a federated simulation language for streaming application, all the simulators mentioned for

other streaming languages are appropriate targets for being run as federate simulators within X-Sim.

15

For example, a possible application might have an MIT RAW processor stream data to an Imagine

processor. X-Sim can provide the means to run a federated simulation where simulators for the

two different processors are run at the right times and with the right data to simulate running of the

complete heterogeneous application.

1.5 Overview of Thesis

This thesis presents X-Sim and X-Eval, the simulation and analysis parts of the Auto-Pipe de-

sign environment. Chapter 2 presents the broader Auto-Pipesystem, describing the different tools

available to the developer. Chapter 3 presents X-Sim, describing its underlying theory as well as

execution mechanism. Chapter 4 looks at X-Eval, describinghow resultant traces from X-Sim runs

are analyzed to understand the performance of an application. In Chapter 5, we look at various

techniques that are used to speed up simulation runs. Chapter 6 looks at some sample applications

to analyze both application performance as well as simulation running times. Finally, Chapter 7

summarizes the current state of X-Sim and X-Eval, and describes the future work planned for these

tools.

16

Chapter 2

The Auto-Pipe System

The goal of this thesis is to present X-Sim and X-Eval. However, to get a good understanding of

these simulation and analysis tools, it is important to understand the broader Auto-Pipe system and

see how these two tools fit into the bigger picture.

The goal of the Auto-Pipe system is to take a description of analgorithm and a target architecture

and to produce a deployable system that has high performance. This chapter will take a sample

dataflow and processing architecture and use it to describe the different components of Auto-Pipe.

2.1 X: A Language for Describing Target Applications and Architec-

tures

The X-Language forms the basis for the whole Auto-Pipe system. It is a coordination language

that is used to describe the dataflow of an algorithm, the targeted processing architecture, and the

mapping of the algorithm blocks to processing resources.

Consider the exampletest1 algorithm whose dataflow is presented in Figure 2.1. Two datasource

blocksgen1 andgen2, are shown on the left side of the dataflow. These are instances of the

GENERATE block, a type of block that performs the function of generating numbers and sending

them to an output port. At the dataflow interface level, eachGENERATEblock has a single outputy0

17

gen1

gen2

sum
 half
 store

GENERATE

GENERATE

SUM
 HALF
 STORE

e1

e2

e3
 e4

y0

y0

y0

x0

x1

x0
 y0
 x0

Figure 2.1: Algorithm dataflow for exampletest1

which is of typeFLOAT32. Figure 2.2 shows the interface and the X description of theGENERATE

block.

GENERATE

y0

block GENERATE {

output FLOAT32 y0;
};

Figure 2.2: X Language code for theGENERATE block

Blocks are the basic components that build up an applicationalgorithm. They represent a single

task within the algorithm. A block is named by a user-chosen identifier, in this caseGENERATE. A

block specification also has a list of input and outputports that indicate the types of data input and

output from the block. In the case of theGENERATE block, there is only a single output porty0

of typeFLOAT32. This means that data produced by aGENERATE block on itsy0 port is of type

FLOAT32.

X supports multiple types of data, with each of them conforming to the corresponding IEEE stan-

dard. The main types are:

• UNSIGNED8, UNSIGNED16, UNSIGNED32, UNSIGNED64

• SIGNED8, SIGNED16, SIGNED32, SIGNED64

• FLOAT32, FLOAT64, FLOAT128

• STRING

18

The X-Level description of the block only gives a structuraldescription of the block. For example,

for theGENERATE example, we know that the block produces aFLOAT32 on its single output port

y0. The X code does not specify how thatFLOAT32 is produced, or what it means semantically.

The actual functioning of the block is given by itsimplementationsource code that is written in a

platform specific language such as C or VHDL. For theGENERATE block, the implementation code

determines how data is produced on they0 port. Implementation files will be considered in the next

section, Section 2.2.

Consider another block, theSUM block, shown in Figure 2.3.

SUM

y0

x0

x1

block SUM {
input FLOAT32 x0, x1;
output FLOAT32 y0;

};

Figure 2.3: X Language code for theSUM block

This block has two inputsx0 andx1, and a single outputy0. In the case of theSUM block, the

implementation determines how data that is consumed on the two input ports is processed to produce

output on the single output port.

In this way, all the blocks in the dataflow for an algorithm aredefined using the X Language. In

addition to block definitions, X also provides a mechanism toinstantiate blocks and connect them

to each other to form a dataflow graph.

Figure 2.4 shows the X Language description of the entire algorithm shown in Figure 2.1. Block

definitions ofHALF andSTORE follow the same pattern as that described forGENERATE andSUM.

Thetop block does not have any inputs or outputs, and represents thewhole application. Within

top, both the blocks required for the algorithm and their dataflow interconnections are specified.

First, all the blocks in the application are instantiated. For example, line 23 creates two instances of

theGENERATE block.

23 GENERATE gen1, gen2;

19

1 block GENERATE { //generate a number
2 output FLOAT32 y0;
3 };
4

5 block SUM { //add two numbers
6 input FLOAT32 x0, x1;
7 output FLOAT32 y0;
8 };
9

10 block HALF { //divide a number by 2
11 input FLOAT32 x0;
12 output FLOAT32 y0;
13 };
14

15 block STORE { //save the results
16 input FLOAT32 x0;
17 };
18

19 block top { //top level dataflow description
20 //no inputs or outputs for top block
21

22 //block instances:
23 GENERATE gen1, gen2;
24 SUM sum;
25 HALF half;
26 STORE store;
27

28 //edges
29 e1: gen1.y0−> sum.x0;
30 e2: gen2.y0−> sum.x1;
31 e3: sum.y0−> half.x0;
32 e4: half.y0−> store.x0;
33 };
34

35 usetop;

Figure 2.4:test1_algo.x: Sample algorithm description

20

Once all the blocks for the dataflow have been instantiated, dataflow connections between the ports

of the blocks are made. This is done by placing an arrow-> between a block’s output port and

another block’s input port. For example, line 29 makes a connection (labelede1) betweengen1’s

output porty0 andsum’s input portx0.

29 e1: gen1.y0−> sum.x0;

Let us now consider a target architecture on which the algorithm is to be deployed, shown in Fig-

ure 2.5, consisting of three processors connected to each other via Ethernet LAN. Two of the pro-

cessors are additionally linked to an FPGA over a PCI bus.

fpga

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

processor

processor

processor

FPGA

Figure 2.5: Processing architecture for exampletest1

Each separate node in a processing architecture is called acomputational resource (CR). In this

example, there are four CRs, three processors and one FPGA. Each CR is an instance of aplatform.

Platforms are classes that represent the languages that canbe used to implement an X block on a

real world device. A CR instantiates a platform, giving definite values to platform configuration

options such as whether MMX is supported (for Pentium platforms), which part number is being

used (for an FPGA card) etc. Figure 2.6 shows the platform declarations for the given example.

21

1 //library code defines base HDL and C platforms
2 #include "std.x"
3

4 //−−−FPGA platform definition−−−

5 platform HDL;
6 platform HDL_Virtex4:HDL {
7 config STRING part;//FPGA part name
8 };
9

10 //−−−GPP platform definition−−−

11 platform C;
12 platform C_x86:C{
13 config UNSIGNED16freq=1600;//default frequency in MHz
14 };
15 platform C_Pentium4:C_x86{
16 config STRING hasMMX = "yes";
17 };

Figure 2.6: X Language platform declarations for exampletest1

Base platforms such asHDL andC are defined inside the X library filestd.x. Platforms can be

extended by other platforms, as shown in Figure 2.6 line 6 whereHDL_Virtex4 is declared to be

a subclass ofHDL. Platforms can haveconfigsdefined inside their bodies, which give configuration

options for the particular platform. In the case ofHDL_Virtex4, thepart config lets the X

compiler X-Com know which part to use when the implementation is synthesized.

If no default value is given for a config, as is the case for thepart config, the user must provide

a value when instantiating the platform. Contrast this withthehasMMX config where the default

value"yes" is given. The user does not need to provide a value forhasMMX when instantiating a

C_Pentium4. The default value"yes" will automatically be assigned to the config.

Linktypesare classes used to define the interconnections between CRs.Linktypes are instantiated by

Interconnect Resources (IRs), similar to how platforms areinstantiated by Computational Resources

(IRs). Figure 2.7 shows how linktypes are declared for thetest1 example. Similar to platforms,

linktypes too can be organized in hierarchies. In this example, bus_pci is a subclass of thebus

linktype.

22

1 //library code defines base bus and switch linktypes
2 #include "std.x"
3

4 //−−−PCI bus declaration−−−

5 linktype bus;
6 linktype bus_pci:bus{
7 config UNSIGNED16freq=66, width=32;
8 };
9

10 //−−−Ethernet LAN declaration−−−

11 linktype switch;
12 linktype switch_ether:switch{
13 configbandwidth=1000;//bandwidth in Mbps
14 };

Figure 2.7: X Language linktype declarations for exampletest1

Once all the required platforms and linktypes are declared,they must be instantiated using CRs (for

platforms) and IRs (for linktypes). Additionally, the topology of the processing architecture must

also be described, as shown in Figure 2.8.

1 //−−−CR declarations−−−

2 resourcefpga is HDL_Virtex4(part="XC4V8000");
3 resourceproc[3] is C_Pentium4{
4 //these frequencies override the default of 1600MHz
5 (freq=3200), (freq=3200), (freq=2800)
6 };
7

8 //−−−IR declarations−−

9 resourceLAN is switch_ether(
10 { proc[1], proc[2], proc[3] }
11 //default bandwidth=1000 used
12);
13 resourcePCI is bus_pci{
14 { proc[1], proc[2], fpga}
15 };

Figure 2.8: X Language topology description for exampletest1

On line 2,fpga is declared as a CR instance of theHDL_Virtex4 platform, with the config

option part set to the name of the particular FPGA device. Line 3 shows the declaration of a whole

array of CRs. Three processors are declared here, all of platform typeC_Pentium4, and their

config option frequencies are given in a list.

23

The IRs for the example are also presented in this code. This is where the topology of the target

hardware architecture is described. Line 10 of the X code declares the IRLAN to be an instance of

the platformswitch_ether, and assigns the threeprocs declared earlier to be nodes on this

IR.

10 resourceLAN is switch_ether(
11 { proc[1], proc[2], proc[3] }
12 //default bandwidth=1000 config for LAN used
13);

Similarly, line 14 declaresproc[1], proc[2], andfpga to be nodes on thePCI IR, which in

turn is an instance of thebus_pci linktype.

14 resourcePCI is bus_pci{
15 { proc[1], proc[2], fpga}
16 //default freq=66 and width=32 configs for bus_pci used
17 };

So far, we have looked at X language descriptions of the algorithm dataflow, as well as the de-

scription of the targeted processing architecture. Now letus look at how the X language is used

to describe mappings of dataflow blocks onto the processing architecture for the exampletest1.

Consider the mapping shown in Figure 2.9.

In this mapping, the twoGENERATE blocks,gen1 andgen2, are mapped toproc[1]. Data

from these blocks is transferred over PCI to thefpga CR where it is summed together, and then

transferred back over PCI toproc[2].

The mapping of blocks to CRs and edges to IRs is done simply by using the X Language keyword

map as shown in the code snippet in Figure 2.9. Note that line 5, which maps dataflow edges

to thePCI IR, could be omitted from the code and the X-Com compiler would be able to infer

that mapping. This is because there is only one possible IR,PCI, that that can transfer data from

proc[1] to fpga, or fromfpga to proc[2].

In this section we showed how the X language is used to describe the algorithm for an application,

the target processing architecture, and the mapping of blocks and edges to CRs and IRs. We will

now consider X-Com, the Auto-Pipe tool that compiles X language code to executables.

24

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

fpga

gen1

gen2

sum

half

store

e1

e2

e3

e4

1 map { top.gen1, top.gen2 }to proc[1];
2 map { top.sum } to fpga;
3 map { top.half, top.store }to proc[2];
4

5 map { top.e1, top.e2, top.e3 }to PCI;

Figure 2.9: Mapping for exampletest1

2.2 X-Com: Compiling Heterogeneous Applications

X-Com is the compiler developed in conjunction with the X Language. Figure 2.10, modified from

a figure in [20], shows the design flow of applications developed using X-Com.

X-Com takes in a list of X Language files that define the application. The command line call to run

the X-Com executablexcom is given below:

xcom source1.x source2.x source3.x ...

These input files are parsed by X-Com in order (e.g.source1.x followed by source2.x

followed bysource3.x, and so on). Collectively, these X Language source code filesrepresent

25

Finish

Revise algorithm for correctness

X Language

Block implementations

X-Com

.c

.c

.vhd

gcc

gcc

vcom

Run

Run

Run

Correct?

no

yes

Compile

Real Device

Bindings

Resource

Mappings

Processing

Architecture

Algorithm

D
e
p

lo
y

User

Code
User

Code
User

Code

User

Code
User

Code
Lib.

Code

Figure 2.10: X-Com design flow

the application algorithm, processing architecture, mapping, and architecture device bindings. X-

Com applies the C pre-processor to each source file before parsing, which allows an X Language

file to include another X Language file using the#include directive. This allows for a cleaner

file organization, and allows the user to avoid writing a longflat file for the entire application.

Another big benefit is that X Language files can be organized tobe modular, allowing different

architectures and mappings to be switched out simply by including a different file. Consider the ex-

ample X application that was shown in Figure 2.9. Separate X Language files can be used to describe

the algorithm, the architecture, and the mapping.test1_algo.x (Figure 2.4),test1_arch.x

(Figure 2.11), andtest1_mapping.x (Figure 2.12) give the X Language descriptions of these

parts of the application.

In test1_algo.x (Figure 2.4), the block types used intest1 are defined in lines 1–17. The top

level blocktop is then defined in lines 18–33 to describe the structure of thealgorithm dataflow.

test1_arch.x (Figure 2.11) describes the processing architecture for thetest1 example. Line

1 of the file is a#include statement that includesstd.x, an X Language library file. This

file contains definitions for the standard CRsHDL andC, and IRsbus andswitch. These base

resources are then extended to define resources specific to this X application,HDL_Virtex4 on

line 5,C_x86 on line 11,C_Pentium4 on line 14,bus_pci on line 20, andswitch_ether

on line 26. Finally, the topology of the architecture is given at the bottom of thetest1_arch.x

file.

26

1 #include "std.x"
2

3 //−−−FPGA platform definition−−−

4 platform HDL;
5 platform HDL_Virtex4:HDL {
6 config STRING part;//FPGA part name
7 };
8

9 //−−−GPP platform definition−−−

10 platform C;
11 platform C_x86:C{
12 config UNSIGNED16freq; //frequency in MHz
13 };
14 platform C_Pentium4:C_x86{
15 config STRING hasMMX = "yes";
16 };
17

18 //−−−PCI bus declaration−−−

19 linktype bus;
20 linktype bus_pci:bus{
21 config UNSIGNED16freq=66, width=32;
22 };
23

24 //−−−Ethernet LAN declaration−−−

25 linktype switch;
26 linktype switch_ether:switch{
27 configbandwidth 1000;//bandwidth in Mbps
28 };
29

30 //−−−CR declarations−−−

31 resourcefpga is HDL_Virtex4(part="FXC4V8000");
32 resourceproc[4] is C_Pentium4{
33 (freq=3400), (freq=3400), (freq=2800)
34 };
35

36 //−−−IR declarations−−

37 resourceLAN is switch_ether(
38 { proc[1], proc[2], proc[3]}
39);
40

41 resourcePCI is bus_pci{
42 { proc[1], proc[2], fpga}
43 };

Figure 2.11:test1_arch.x: Sample architecture description

27

Now that the application algorithm and processing architecture have been described in two X Lan-

guage files, the mapping of the algorithm blocks to architecture resources can be done in a third file,

test1_map.x (Figure 2.12).

1 #include test1_algo.x
2 #include test1_arch.x
3

4 map { top.gen1, top.gen2 }to proc[1];
5 map { top.sum } to fpga;
6 map { top.half, top.store }to proc[2];

Figure 2.12:test1_map.x: Initial sample mapping description

Note that this file includes the two previous X Language files,test1_algo.xandtest1_arch.x,

on Lines 1 and 2. If an alternate mapping was required with thesame algorithm and architecture, the

only file that would need to be changed would be the mapping file. Consider the alternate mapping

shown in Figure 2.13.

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

fpga

gen1

gen2

sum

half

store

Figure 2.13: An alternate mapping for exampletest1

28

In this mapping, thestore block has been moved fromproc[2] to proc[3] to more evenly

distribute the workload. The only change required to implement this new mapping would be to

substitute filetest1_map.x by the filetest1_map2.x given in Figure 2.14.

1 #include test1_algo.x
2 #include test1_arch.x
3

4 map { top.gen1, top.gen2 }to proc[1];
5 map { top.sum } to fpga;
6 map { top.half } to proc[2];
7 map { top.store } to proc[3];

Figure 2.14:test1_map2.x: Alternate sample mapping description

Note that edge mappings have been excluded in both the given mapping X Language files. In all

cases, there was only a single possible IR option for edges tobe mapped to. X-Com is able to figure

out such implicit mappings of edges.

Going back to the X-Com design flow diagram (Figure 2.10) at the beginning of this section, let us

consider the block implementation files shown at the top. These implementation files provide the

functionality for the X Language specified blocks. Currently there are two major implementations

for blocks: C implementations and VHDL implementations. Weshall consider the APIs for both

these languages.

2.2.1 C API and implementations for X blocks

To illustrate the implementation of a block implemented in C, let us take theSUM block from the

test1 example. The block level diagram for theSUM block and its corresponding X Language

description are repeated in Figure 2.15.

From this description we know that theSUM block takes in twoFLOAT32s, and outputs one

FLOAT32. The C implementation for this block must match this block description. Figure 2.16

gives the generalized API for ALL X blocks, while Figure 2.17gives the implementation skeleton

for theSUM block.

29

SUM

y0

x0

x1

block SUM {
input FLOAT32 x0, x1;
output FLOAT32 y0;

};

Figure 2.15: X Language code for theSUM block (same as Figure 2.3)

The C API for ALL X blocks consists of one data structure and four functions. It is important to

note here that the data structure and four functions are onlydeclared once for every type of block. In

ourtest1 example, there are twoGENERATE block instancesgen1 andgen2. To signify these

blocks, two instances of the data structureX_GENERATE_data are created. These data structures

are then passed into the four functions shown before to “callthe function” ongen1 or gen2. In

the case ofSUM, there is only a single instance (calledsum) in our example.

The data structure (Figure 2.17), in this caseX_SUM_data for theSUM block, contains a clock to

internally keep an aggregate of total time spent in running ablock. This can be used to collect basic

performance measurements. Its use is replaced in this thesis by X-Sim trace collection and X-Eval

analysis which provide more detailed performance measurements, as will be seen in later chapters.

Also contained in the data structure are pointers to the ports of the block, and a bit portmask that

informs the block of whether data is available at each of its input ports. Finally, the data structure

for an X block also contains pointers to asend function and arelease function. These functions

are generated by X-Com during compilation, and are used internally to send data downstream and

to release upstream data respectively. Use of thesend andrelease functions is illustrated later

when theX_SUM_push function is considered.

Each of the implementation functions is now considered in turn. The first such function included

in the C API for an X block is theinit function. This function is called at the beginning of an X

application run.

29 void X_SUM_init(struct X_SUM_data∗d) {}

As shown in this code snippet, no initialization work is required for aSUM block. Other blocks may

require some initialization work. For example, the initialization code for aGENERATE block might

30

1 //library file contains definitions for Xclock_t and portmask_t
2 #include "X.h"
3

4 struct X_<blockname>_data {
5 // internal clock for performance measurement
6 Xclock_t clock;
7

8 // pointer to send function for sending data to an output port
9 void (∗send)(int);

10

11 // pointer to release function for releasing data on an inputport
12 void (∗release)(int ,char);
13

14 // bitmask (array of chars) with info about data on input ports
15 // each bit corresponds to an input port
16 // 00000010 means x1 has data and x0 does not
17 // 1 char for up to 8 ports, so e.g. use portmask[3] for 18 inputports
18 portmask_t portmask[<number of port/8>];
19

20 //one line per port
21 <datatype>∗<port>;
22

23 //add any internal state data that needs to be kept track of
24 //for e.g. GENERATE might have a counter variable stored here
25 };
26

27 //−−− implementation functions for the X block−−−//
28 // initialization function called on startup
29 void X_<blockname>_init(struct X_<blockname>_data∗) { ... }
30

31 // destructor function called on termination
32 void X_<blockname>_destroy(struct X_<blockname>_data∗) { ... }
33

34 // push function called when data is received on a port
35 void X_<blockname>_push(struct X_<blockname>_data∗) { ... }
36

37 // go function for blocks that are sources of data
38 int X_<blockname>_go(struct X_<blockname>_data∗) { ... }

Figure 2.16: C API forall X blocks

31

1 //library file contains definitions for Xclock_t and portmask_t
2 #include "std.x"
3

4 struct X_SUM_data {
5 // internal clock for performance measurement
6 Xclock_t clock;
7

8 // pointer to send function for sending data to an output port
9 void (∗send)(int);

10

11 // pointer to release function for releasing data on an inputport
12 void (∗release)(int ,char);
13

14 // bitmask (array of chars) with info about data on input ports
15 // each bit corresponds to an input port
16 // 00000010 means x1 has data and x0 does not
17 portmask_t portmask[1];
18

19 //list of ports
20 FLOAT32∗iport0; // input port x0
21 FLOAT32∗iport1; // input port x1
22 FLOAT32∗oport0; // output port y0
23

24 //no internal variables required for SUM block
25 };
26

27 //−−− implementation functions for SUM block−−−//
28 // initialization function called on startup
29 void X_SUM_init(struct X_SUM_data∗) {}
30

31 // destructor function called on termination
32 void X_SUM_destroy(struct X_SUM_data∗) {}
33

34 // push function called when data is received on a port
35 void X_SUM_push(struct X_SUM_data∗) {
36 ...
54

55 }
56

57 // go function for blocks that are sources of data
58 int X_SUM_go(struct X_SUM_data∗) {
59 return 1;
60 }

Figure 2.17: C implementation for theSUM block

32

seed the random number generator and initialize the count variable to 3, as shown in the following

code. The count variable keeps track of how many numbers still need to be generated.

1 void X_GENERATE_init(struct X_GENERATE_data∗d) {
2 srand(time(NULL));
3 count = 3;
4 }

Note that for the implementation of aGENERATEblock to work correctly,stdlib.handtime.h

would need to be included for the Csrand() andtime() functions respectively. Since there are

two GENERATE blocks, the data structure pointers for bothgen1 andgen2 would be passed into

the global functionX_GENERATE_init.

In addition to the initialization function, ago function (line 58 of Figure 2.17) is also included in

the C API, mainly as a way for data sources to create data and send it into the rest of the application.

When a C binary is created and run for a processor, it calls thego functions of all the X blocks on

that processor in a round robin schedule. For example, ifgen1,gen2, andsumwere all mapped to

proc[1], the binary for that processor could call thego functions for the blocks in the following

order:gen1, gen2, sum, gen1, gen2, sum, gen1 etc. However, each block is kept on the round

robin schedule only until itsgo function returns a 1, at which point it is excluded from the schedule.

A SUM block returns a 1 the first time itsgo function is called, as shown below.

58 int X_SUM_go(struct X_SUM_data∗d) {
59 return 1;
60 }

On the other hand, aGENERATE block would keep generating a random number and sending it

downstreamcount times, as shown in the code in Figure 2.18. After generating the last random

number, aGENERATE block would return a 1 to signify that it should not be called anymore. The

count variable was set to 3 inX_GENERATE_init, soX_GENERATE_go will generate three

random numbers. Thego function for aGENERATE block is shown in Figure 2.18.

In this case, the order of calling thego functions in the schedule would be:gen1, gen2, sum,

gen1, gen2, gen1, gen2 etc. The schedule would callsum once, andgen1 andgen2 three

times each.

33

1 int X_GENERATE_go(struct X_GENERATE_data∗d) {
2 if (d−>count <= 0){//check if more numbers need to be generated
3 return 1;
4 }
5

6 //allocate memory
7 d−>oport0 = gmalloc(sizeof(FLOAT32));
8

9 //generate random number on output port y0
10 ∗(d−>oport0) = 10∗rand();
11

12 //send the data on oport0
13 send(0);
14

15 //update the count
16 d−>count−−;
17

18 if (d−>count == 0){//check if this was the last number
19 return 1;
20 }
21

22 //return 0 to signify that this go function should still be called
23 return 0;
24 }

Figure 2.18:go function forGENERATE block

Another function included in the C API is thepush function. The push function in the C API of an

X block is called whenever a new piece of data arrives at any ofits input ports. The implementation

code can then check the bitmask given by its portmask to see which input ports have data ready for

processing. If all the data the block needs is ready, the block can process the input data and send it

over its output ports using thesend function. Once it has consumed the input data, it can use the

release function to clear itsportmask, and additionally free input data memory if required.

Figure 2.19 shows the push function forSUM.

When multipleSUM blocks are present, there is a global push function for all SUM blocks, with

the pointerd specifying which block instantiation the push function is being called on. In example

test1 there is only one SUM block, sod can only point tosum. For the functionX_GENERATE_push

(not shown here), the pointer argumentd can point to eithergen1 or togen2.

34

35 void X_SUM_push(struct X_SUM_data∗d) {
36

37 //return data ready at both input ports x0 and x1
38 if (checkPortsUpTo(d−>portmask,1)){
39

40 //y0 points to same data as x0
41 d−>oport0 = d−>iport0;
42

43 //data at y0 = data at x0 + data at x1
44 ∗(d−>oport0) =∗(d−>iport0) +∗(d−>iport1);
45

46 //clear portmask bit for x0 but don’t deallocate its memory
47 release(0,0);
48

49 //clear portmask bit for x1 and deallocate its memory
50 release(1,1);
51

52 //send the data on oport0
53 send(0);
54 }
55 }

Figure 2.19: Push function forSUM block

For this discussion, recall thatiport0 corresponds to input portx0, iport1 corresponds to input

port x1, andoport0 corresponds to output porty0. Line 38 checks whether data is available on

both the input portsoport0 andoport1. Line 40 sets the data pointer fory0 to the pointer for

x0. On line 47,release(0,0) dequeues a data element from the FIFO for portx0, but does

not free the memory for that data element because that memoryis being used for porty0. The first

0 refers to the 0th port (x0), and the second0 tells release to not deallocate memory. On line 50,

release(1,1)dequeues an element from thex1 port FIFO and deallocates the memory. Finally,

the data on porty0 is sent downstream on line 53.

The final C API function for all X blocks is the destructor function. This function is called for each

block at the very end of an X application. Once again, in the case of theSUM block, the body of

this function is empty, but other blocks might need end of execution operations to perform such as

deallocating memory, closing files, etc.

32 void X_SUM_destroy(struct X_SUM_data∗d) {}

35

2.2.2 VHDL block implementations

The other major implementation language currently supported by X-Com is VHDL. The skeleton

VHDL API for the SUM block is given in Figure 2.20.

1 entity X_SUM is
2 port (
3 clk : in std_logic;
4 rst : in std_logic;
5

6 −−input port x0
7 input_x0 :in X_unsigned32;
8 avail_x0 :in std_logic;
9 read_x0 :out std_logic;

10

11 −−input port x1
12 input_x1 :in X_unsigned32;
13 avail_x1 :in std_logic;
14 read_x1 :out std_logic;
15

16 −−output port y0
17 output_y0 :out X_unsigned32;
18 write_y0 :out std_logic;
19);
20 endX_SUM;
21

22 architecture archof X_SUM is
23 ...
29

30 end architecture arch;

Figure 2.20: VHDL implementation skeleton forSUM block

The code generation for HDL blocks automatically inserts FIFOs between blocks to manage data

transfer. This allows any block to “pull” data from upstreamFIFOs whenever it wants as long as data

is available from upstream blocks and “push” data to downstream FIFOs whenever data produced

by the block itself is ready.

Let us examine how the interfaces to input and output ports toFIFOs work. Consider first the input

port x0, the code for which is given on lines 7–10.input_x0 is the data line for the upstream

FIFO for portx0. It is set to the first available data in the FIFO, and undefinedwhen no data is

36

available.avail_x0 goes high when data is available in the upstream FIFO.read_x0 tells the

upstream FIFO that this X block has consumed the first available piece of data. It causes the FIFO

to discard the first data item and move to the next one if any more data is in the queue.

Consider now the output porty0, given on lines 17–19.output_y0 is the output data line from

the X block. The X block assertswrite_y0 high when it wants to write the data onoutput_y0

to the downstream FIFO.

The code for the internal architecture of the VHDL block is given in Figure 2.21, illustrating how

the input and output ports are used.

22 architecture archof X_SUM is
23 signal all_rdy : std_logic;
24 begin
25 all_rdy <= avail_x0and avail_x1;
26 read_x0 <= all_rdy;
27 read_x1 <= all_rdy;
28 output_y0 <= unsigned(input_x0) + unsigned(input_x1);
29 write_y0 <= all_rdy;
30 end architecture arch;

Figure 2.21: Architecture body for VHDL implementation of theSUM block

all_rdy is an internal signal, similar to theportmask variable from the C API, that is used to

keep track of when all the required data is ready at input ports. Once this signal goes high, theSUM

X block writes the sum of the two inputs to the downstream FIFO, and “reads” from the upstream

FIFOs, letting them know that it has used the first pieces of data from both of them.

2.2.3 Compilation of Deployable Executables

We have shown how the input to X-Com is a set of user-created X Language files, supplemented by

library files, that fully describes the application. From these inputs, X-Com creates a source file for

each of the targeted CRs in the CR’s specific language. In the next stage of compilation, CR specific

compilers are used; the GNU C Compiler [11] for processor CR targets and the ModelSim [15] HDL

37

compiler for FPGA CR targets. These compilers take in X-Com generated source files and user-

defined implementation files to create deployable executables for the targeted CRs. Library files that

contain platform specific definitions and functions are alsofed into the platform specific compilers.

The whole process of compiling X Language code into CR-specific code, and then compiling the

generated CR-specific code and user-defined implementationcode into deployable executables is

managed by a manually generated Makefile. Future work includes automating the creation of this

compilation flow controlling Makefile.

2.3 X-Sim: Simulating Applications and Collecting Traces

When targeting a complex hybrid architecture, it is useful to run a simulation run first. Hardware

implementations are simulated in ModelSim [15], an HDL simulation and verification tool, while

software implementations may be simply run natively on a development processor. A trace file

based system is used as the interconnect resource (IR) between all the simulation CRs.

To set up the simulation, the algorithm description filetest1_algo.x, presented earlier in Fig-

ure 2.4, is used since the algorithm does not change when running a simulation. The target archi-

tecture, however, does change as shown in Figure 2.22.

Hardware implementations are now targeted toVHDLSim, a CR that represents ModelSim. The

definition for VHDLSim is given in the library filestd.x. Software implementations are now

targeted toC, the base C language platform defined instd.x. Both of the IRs are declared to

be of typeFileIO. FileIO is the simulation trace file communication mechanism. It is de-

fined in the library filefileio.x. Since the CR and IR names are the same as before, the

mapping filetest1_map.x shown previously in Figure 2.12 can still be used, with the only

difference being that the alternate architecture filetest1_simarch.x will be included instead

of test1_arch.x. Additional details forVHDLSim andC platforms and theFileIO linktype

are given in Chapter 3.

38

1 #include "std.x"
2 #include "fileio.x"
3

4 //definition for VHDLSim and C CR platforms given in includedfile std.x
5 //definition for FileIO IR platform given in included file fileio.x
6

7 //−−−CR declarations−−−

8 resourcefpga is VHDLSim;
9 resourceproc[3] is C{

10 (freq=3400), (freq=3400), (freq=2800)
11 };
12

13 //−−IR declarations−−−

14 resourceLAN is FileIO (
15 { proc[1], proc[2], proc[3]}
16);
17 resourcePCI is FileIO (
18 { proc[1], proc[2], fpga}
19);

Figure 2.22:test1_simarch.x: Sample simulation architecture description

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

fpga

gen1

gen2

sum

half

store

T

T

D

T

D

T

D

T

T

D

T

D

T

D

T

T
 T

T

T

T

Figure 2.23: Trace capture points fortest1

39

After running the simulation, trace files are generated thatstore details of communication between

CRs as well as the start of execution of data source blocks andthe end of execution of data sink

blocks. For example, the data and timing trace files stored for the test1 example is shown in

Figure 2.23. ‘D’ files in the figure represent data trace files,and ‘T’ files represent timing trace files.

Data trace files can be examined by the user to check if they have the correct values. Once correct-

ness has been established from the data trace files, the timing trace files are passed to X-Eval for

performance analysis of the application. Refer to Chapter 3for additional details on both data and

timing trace files, as well as for more details about the mechanism of an X-Sim simulation run.

2.4 X-Eval: Analyzing Simulation Timing Traces from X-Sim

fpga

sum

D

T

D

T

proc
[1]

proc
[2]

proc
[3]

PCI

T

D

T

T

Figure 2.24: Trace capture points forfpga CR

Timing trace files are used by X-Eval to characterize the performance of CRs. Consider thefpga

CR with theSUM block mapped to it, shown in Figure 2.24. TheSUM block has two input ports

x0 andx1, and one output porty0. Timing trace files have been captured for each of these ports.

X-Eval subtracts the input times from the output times to figure out the execution times for the CR.

This history of execution times is then used to generate performance metrics such as the mean and

variance of execution times. Further analytic modeling forspecific CRs as well as for the entire

40

system can be done. This will be examined in more detailed in Chapter 4, along with more details

of trace analysis methods and performance characterization.

2.5 X-Opt: Performance Optimization

The analytic models generated by X-Eval can be used by X-Opt to analyze the performance of the

entire system, and to identify system bottlenecks with the goal of creating more optimal mappings

of the algorithm to the processing architecture. X-Opt has not been developed yet, so currently these

mappings are generated manually. Mappings created manually or by X-Opt must be re-evaluated

to determine performance behavior. X-Sim allows rapid evaluation of re-mappings by speeding up

simulations using various techniques. One technique is to simulate independent CRs in parallel.

Another is to use analytic models or trace timing data from previous simulation runs as a substi-

tute for re-simulating a CR. Rapid re-simulation techniques allow re-mappings to be simulated and

evaluated much faster, allowing X-Opt or the user to rapidlytry out a large number of mappings.

Simulation speedup techniques are discussed in more detailin Chapter 5.

41

Chapter 3

Simulation using X-Sim

Thus far, we have described Auto-Pipe as a holistic application development system, explaining

how X-Sim and X-Eval fit into the wider system. This chapter delves in more detail into the X-Sim

simulation tool, using exampletest1 (Figure 3.1) introduced in the previous chapter to illustrate

various aspects of this tool.

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

fpga

gen1

gen2

sum

half

store

T

T

D

T

D

T

D

T

T

D

T

D

T

D

T

T
 T

T

tpt.ts

tpt.ts

tpt.ts

T

T

tpt.ts

tpt.ts

out.ts
 out.ts

out.dat
 out.dat

avl.ts
 avl.ts

avl.dat
 avl.dat

in.ts
 in.ts

out.ts

out.dat

avl.ts

avl.dat

in.ts

map { top.gen1, top.gen2 }to proc[1];
map { top.sum } to fpga;
map { top.half, top.store }to proc[2];

Figure 3.1: Traces gathered for sampletest1 mapping

42

The first section presents a step-by-step description of howX-Sim simulates the example mapping.

The next section describes usage of the X-Sim tool, presenting a tutorial for how to set up an X-Sim

simulation for an application developed under the Auto-Pipe system. The final section discusses the

trace files generated by X-Sim.

3.1 An Example X-Sim Simulation Run

This section presents the X-Sim simulation run for thetest1 example. Figure 3.1 shows the traces

that are created at the end of the entire simulation run. Notethat the timing trace files on the left

markedtpt.ts aretestpoint timing trace files, generated only when the user specifies that

they want trace data to be captured for those specific points in the algorithm. All the other trace files

are generated by default because they store traces for communication that happens on algorithm

edges mapped to interconnect resources (IRs). Details of how to capture arbitrarytestpoint

traces are given in the next section.

For the giventest1 mapping, three different computation resources (CRs) mustbe simulated,

proc[1], fpga, andproc[2]. Under X-Sim, a separate simulation is used for each CR. In this

case X-Sim integrates the three simulations into a single federated simulation. Theproc[1] and

proc[2] CRs are both instances of the platformC, which represents a general purpose processor

(GPP), whilefpga is an instance of the platformfpga, a physical FPGA chip. To simulate a GPP,

X-Sim may use anative executionmodel; that is, the deployable binary is run directly on the target

GPP. Execution of the program on the native GPP in effect actsas a simulation.

If the target GPP (called thephysical target CR) is unavailable, then a similar GPP (called the

simulation target CR) can be used to replace the target GPP in the simulation. For example, a

simulation target Pentium 4 with a 2.8GHz frequency might beused to simulate a physical target

Pentium 4 with a 3.2GHz frequency. Functionally the simulation matches the end deployment

exactly. Scaling the performance results (e.g., timing, latencies) can be done to roughly account for

the difference in frequencies of the simulation and target machines.

43

ModelSim [15] is used to simulate the FPGA chip. It acts as thesimulation target to the physical tar-

get FPGA chip. ModelSim is a function and timing model simulator for hardware designs authored

in various HDLs (Hardware Description Languages), including VHDL and Verilog. It is primarily

a GUI based simulation environment, using wave diagrams of signals to allow functional and tim-

ing debugging of hardware modules. However, in addition to the GUI, ModelSim also provides a

command line interface. X-Sim generates scripts that uses the non-GUI text-based interface to run

ModelSim.

X-Sim simulates the Interconnect Resources (IRs)LAN andPCI by modeling them with a file

system based communication mechanism,FileIO. Any message sent on a target IR gets simulated

by a write to a trace file, and correspondingly a message receipt from an IR gets simulated by a read

from a trace file. Examples and details of trace files are givenat the end of this chapter.

PCI

L
A

N

proc
[1]

gen1

gen2

T

T

D

T

D

T
top_
gen1
src
tpt.ts

top_
gen2
src
tpt.ts

top_
gen1
_
y0
_
out.dat

top_
gen1
_
y0
_
out.ts

top_
gen1
_
y0
_
out.dat

top_
gen2
_
y0
_
out.ts

Figure 3.2: Simulation ofproc[1]

For the given mapping being simulated, X-Sim does a series offederated simulations. Refer to

Figure 3.2, which shows the first simulation done by X-Sim, where a complete native-execution

simulation ofproc[1] is run. The timing traces on the left end of theGENERATE blocks store

a complete history of the starting times for the execution ofthese blocks. Thesetestpoint

traces are recorded at points specified by the user. The data and timing traces on the right end of

theGENERATE blocks store all the data writes done to thePCI IR by gen1 andgen2 on their

outputs. These output time traces are calledout.ts timestamps. It is important to note here that

the shown federate simulation is runto completion, so the trace files created store a complete record

of timings and data produced over the entire simulation duration for this CR. The simulation for

proc[1] must be finished and a complete record of output traces must begenerated before the

following simulations can be done.

44

The main reason to record the user-definedtpt.ts timing traces is to gather timing data for points

in the algorithm that do not correspond to edges mapped to an IR. In this case, gathering the timing

traces at the beginning of theGENERATE blocks allows the simulation to record start times for

executions of theproc[1] CR. By looking at thetpt.ts andout.ts timing traces recorded

for proc[1], X-Eval can later reconstruct a history of the execution times for the CR. Currently

no mechanism is provided for recording anydatavalues at the arbitrary testpoints. Data recording

is not necessary for timing analysis, which is the main purpose of the testpointing feature. However,

it may be a useful debugging feature that can be incorporatedin a future version of X-Sim.

fpga

proc
[1]

PCI

sum

D

T

D

T

L
A

N

gen1

gen2

D

T

D

T

top_
gen1
_
y0
_
out.ts

top_sum_
x0
_
avl.dat

top_
gen1
_
y0
_
out.dat

top_
gen2
_
y0
_
out.ts

top_
gen2
_
y0
_
out.dat
 top_sum_
x0
_
avl.ts

top_sum_
x1
_
avl.dat

top_sum_
x1
_
avl.ts

Figure 3.3: Simulation of communication betweenproc[1] andfpga

After the simulation forproc[1], the communication modeling tool X-Model is used. X-Model

reads the output (out.ts) timing trace files generated in the previous simulation step, adds a

modeled communication delay to the times, and generates theavl.ts timing traces on the right

of Figure 3.3. These timing traces represent the times data became available to the downstream CR

fpga.

Complete traces of data and the times the data was available to fpga are now available for the

third simulation step. ModelSim is now used to simulatefpga (see Figure 3.4). X-Sim reads the

avl.ts timestamps to determine when it is allowed to read data from the input data traces. When

ModelSim reads in the data, it stores the data input and associated times (in.ts) in a set of timing

traces files (Figure 3.4). It is possible for thein.ts andavl.ts times for a piece of data to be

45

different if the data becomes available to be read, but the FPGA is busy processing a previous piece

of data and thus cannot input the data that is available. In effect, the data that is available is kept

in an input queue until the FPGA brings it in for processing. The difference between thein.ts

andavl.ts times is thus the queue waiting time for a piece of data. Afterprocessing, ModelSim

writes data and timing trace files on the output offpga in the trace files labeledout.dat and

out.ts.

PCI

fpga

sum

D

T

D

T

D

T

top_sum_
x1
_
avl.dat

T

T

top_sum_
y0
_
out.dat

top_sum_
x1
_
avl.ts

top_sum_
x0
_
avl.dat

top_sum_
x0
_
avl.ts

top_sum_
x0
_
in.ts

top_sum_
x1
_
in.ts

top_sum_
y0
_
out.ts

Figure 3.4: Simulation offpga

At this point, X-Model is used to simulate communication of data fromfpga to proc[2], similar

to its use in Step 2 of the X-Sim simulation. Figure 3.5 shows this process. The data and timing

(including a communication model delay) are placed in theavl.ts timestamp files for use by the

simulation forproc[2].

proc
[2]

fpga

sum

half

store
 D

T

D

T

top_sum_
y0
_
out.ts

top_half_
x0
_
avl.ts

top_half_
x0
_
avl.dat

top_sum_
y0
_
out.dat

Figure 3.5: Simulation of communication betweenfpga andproc[2]

In the final step of the system simulation, as shown in Figure 3.6, a native execution simulation is

done to simulate the operation of CRproc[2]. Timing trace files within.ts timestamps are

again generated, as well astpt.ts timestamps. The next section details how to set up and run the

X-Sim simulation example shown here.

46

LAN
 PCI

proc
[2]

half

store

D

T

T

top_half_
x0
_
avl.dat

top_half_
x0
_
in.ts

top_store_sink_
tpt.ts

T

T
 top_store_src_
tpt.ts

top_half_src_
tpt.ts

T

top_half_
x0
_
avl.ts

Figure 3.6: Simulation ofproc[2]

3.2 Tutorial for Setting up a Simulation using X-Sim

User Modifies Files

Section 3.2.1

Application Mapped to

Physical Target

Application Mapped to

Simulation Target

Run X-
Dep

Section 3.2.2

Simulation
 Makefile

Run X-
Sim

Section 3.2.3

.
mk

Simulation Trace Files

.
ts
, .dt

.x

.c,

.
vhd

.c,

.
vhd
.x

.c,

.
vhd

.c,

.
vhd

Application Mapped to

Simulation Target
.x

.c,

.
vhd

.c,

.
vhd

Figure 3.7: Design Flow for X-Sim

Figure 3.7 shows the high level steps involved in setting up asimulation for an application developed

under Auto-Pipe. The input set of X Language files representsthe description of an algorithm

and a physical target architecture, as well as the mapping ofthe algorithm to the architecture. A

physicaltarget architecture in this context means an architecture that is comprised exclusively of

real world devices such as general purpose processors and FPGA chips. This can be contrasted

47

with a simulatedtarget architecture, which can include simulation targetssuch as ModelSim. The

first step of the X-Sim design flow consists of modifying the X Language files to change the target

architecture to a simulated one.

The second step uses the X-Dep tool to generate a Makefile which automates the running of X-Sim.

As mentioned in the previous chapter, X-Dep is used to deployto either a physical or simulation

target. In the context of X-Sim, X-Dep is used to deploy the algorithm to a the simulation target. The

Makefile created by X-Dep coordinates the running of the federated X-Sim simulation by keeping

track of the dependencies between the different simulators.

In the third and final step of the X-Sim flow, the generated Makefile is used with the ’make’ to

actually run the X-Sim simulation and generate trace data and timing files. We will continue to

use the same mapping fortest1 that we have been using throughout this chapter. The following

sections describe the individual steps of the X-Sim flow in more detail.

3.2.1 User Modifications to Files

map { top.gen1, top.gen2 }to proc[1];
map { top.sum } to fpga;
map { top.half, top.store }to proc[2];

Figure 3.8: Mapping for exampletest1

The X Language statements mapping blocks to CRs for our example is given in Figure 3.8. When

deploying to a physical (i.e., non-simulation) target architecture,proc[1] andproc[2] are both

instances of the platformC, which represents a general purpose processor, whilefpga is an instance

of the platformfpga, a physical FPGA chip. The IRs linking theproc andfpga CRs areLAN,

an instance of theswitch_ether linktype, andPCI, an instance of thebus_pci linktype. The

original physical platforms are shown in Figure 3.9.

Under X-Sim, a separate federated simulator is used to simulate each CR, so in this case X-Sim

would use three simulators (one each forfpga, proc[1], and proc[2]). This is shown in Figure 3.10.

GPPs in X-Sim are simulated natively, so the platform forproc[1] andproc[2] remain the

48

//−−−CR declarations−−−

resourcefpga is HDL_Virtex4(part="XC4V8000");
resourceproc[3] is C_Pentium4{

(freq=3400), (freq=3400), (freq=2800)
};

//−−−IR declarations−−

resourceLAN is switch_ether(
{ proc[1], proc[2], proc[3] }

);
resourcePCI is bus_pci{

{ proc[1], proc[2], fpga}
};

Figure 3.9:Original physical deployment targets for exampletest1

//−−−CR declarations−−−

resourcefpga is VHDLSim; //simulates HDL_Virtex4
resourceproc[3] is C_Pentium4{

(freq=3400, xsim="true"),
(freq=3400, xsim="true"),
(freq=2800, xsim="true")

};

//−−−IR declarations−−

resourceLAN is FileIO(//simulates switch_ether
{ proc[1], proc[2], proc[3] }

);
resourcePCI is FileIO{ //simulates bus_pci

{ proc[1], proc[2], fpga}
};

Figure 3.10: Simulation platforms for exampletest1

49

same,C_Pentium4. The difference in theC_Pentium4 simulation target CR is that thexsim

option is set to"true". This turns on C language macros for testpoints that are described later

in this section. When deployment is done to a simulation target and thexsim option is set to

"true", the testpoint macros evaluate to a set of commands that cause X-Sim to recordtpt.ts

timing traces. When deployment is done instead to a physicaltarget and thexsim option is set to

"false", the macros evaluate to blank statements (i.e., the macro issimply compiled out). Note

that the default setting for thexsim option isfalse.

An FPGA platform is simulated by a ModelSim simulation underX-Sim. To specify this, the

platform HDL_Virtex4 is switched toVHDLSim, the X-Language platform corresponding to

the ModelSim simulator. Similarly, the physical platformsswitch_ether andbus_pci are

replaced by the communication simulation platformFileIO.

By making these changes to the X Language files, the application has now been configured to run a

simulation. In the default configuration, X-Sim captures data and timing trace files at all ports that

send or receive data over the simulation IR (Interconnect Resource)FileIO. For our example, the

automatically generated trace files are shown in Figure 3.11.

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

fpga

gen1

gen2

sum

half

out

D

T

D

T

D

T

D

T

D

T
D

T

Figure 3.11:Default trace files fortest1 (i.e. withouttpt.ts traces)

50

1 block GENERATE { //generate a number
2 misc {
3 testpoint "src";
4 filepath "temp/Xfileio";
5 };
6 output FLOAT32 y0;
7 };

Figure 3.12: X Language description ofGENERATE block with a testpoint

In addition to the default traces that focus on the inputs andoutputs of CRs, X-Sim also supports

the ability to record traces at arbitrary points in blocks mapped to processors. To achieve this,

testpoints are added to blocks. For example, to add a testpoint namedsrc to theGENERATE block,

the X Language code for the block would get lines 2-4 added to it, as shown in Figure 3.12. The

main features on those lines is the specification of"src" as the name of the testpoint, and the

specification of"temp/Xfileio"as the directory where trace files forGENERATE block will be

stored. Testpoints are implemented under the X Language by making use of themisc feature of X

Language blocks. Themisc is a convenient feature of the X Language that allows additional block

properties to be added on easily, in this case the testpoint property. To add more testpoints to the

GENERATE block, simply add another line inside themisc code section that defines an additional

testpoint. The timestamps for the new testpoint will be stored in a separate timing trace file inside

the filepath directory. By adding the testpoint to the X Language specification, the X-Compiler

knows to generate a function calledtpoint that implements the ability to record timing traces for

testpoints. Note that the generated code is not shown here.

The second change the user needs to do is to add a macro to the implementation header file for the

block. Figure 3.13 shows the header file for theGENERATE block with the added testpoint macro

on line 7. When compilation is done with an added-DXSIM option, this macro evaluates to a

declaration of a pointer to thetpoint function.

The user is now able to record timestamps on the testpoint wherever they wish inside the implemen-

tation code. This is shown in Figure 3.14. Line 6 in this figureshows the user recording a timestamp

on testpoint "src" before starting to generate a number. When thexsim option for the CR is set to

51

1 #include "X.h"
2

3 struct X_GENERATE_data {
4 Xclock_t clock;
5 void (∗send)(int);
6 void (∗release)(int ,char);
7 TPOINTFUNC;
8 portmask_t portmask[1];
9

10 FLOAT32∗oport0;//output port y0
11

12 int count;//number of random numbers to generate
13 };
14

15 void X_GENERATE_init(struct X_genU32_data∗d);
16 void X_GENERATE_destroy(struct X_genU32_data∗d);
17 int X_GENERATE_push(int p, struct X_genU32_data∗d);
18 int X_GENERATE_go(struct X_genU32_data∗d);

Figure 3.13: Header file forGENERATE block with a testpoint

"true", theTPOINT("src") macro evaluates to a call to thetpoint function with the"src"

testpoint name.

In a similar manner to the"src" testpoint for theGENERATE block, two testpoints"src" and

"sink" were added to theSTORE block. These testpoints record the start and end of processing

for this block. Note that the testpoint"src" for a STORE block is completely separate from

the testpoint"src" for a GENERATE block, similar to how they0 port for aSUM is completely

separate from they0 port for aGENERATE block. The block definition for the testpointedSTORE

block is given in Figure 3.15, the header file is given in Figure 3.16, and the C implementation code

is given in Figure 3.17.

Using testpoints allows the additionaltpt.ts traces shown in Figure 3.1 to be recorded along

with the default traces that get recorded for ports on IRs. Using the testpointing feature thus allows

timestamps to be stored at any point in the C implementation code. This is necessary to be able

to obtain start and end of processingtpt.ts timestamps, which in turn are required to be able to

do performance analysis of resources containing source andsink blocks. Additionally, testpointing

allows more in-depth timing results to be gathered for any point in block execution the user wants

52

1 int X_GENERATE_go(struct X_GENERATE_data∗d) {
2 if (d−>count <= 0){//check if more numbers need to be generated
3 return 1;
4 } else{
5 //record a timestamp for testpoint "src" here
6 TPOINT("src");
7 }
8

9 //allocate memory
10 d−>oport0 = gmalloc(sizeof(FLOAT32));
11

12 //generate random number on output port y0
13 ∗(d−>oport0) = rand() % 10 + 1;
14

15 //send the data on oport0
16 send(0);
17

18 //update the count
19 d−>count−−;
20

21 if (d−>count < 0){ //check if this was the last number
22 return 1;
23 }
24

25 //return 0 to signify that this go function should still be called
26 return 0;
27 }

Figure 3.14:go function forGENERATE block with a testpoint

1 block STORE { //generate a number
2 misc {
3 testpoint "src";
4 testpoint "sink";
5 filepath "temp/Xfileio";
6 };
7 input FLOAT32 x0;
8 };

Figure 3.15: X Language description ofSTORE block with testpoints

53

1 #include "X.h"
2

3 struct X_STORE_data {
4 Xclock_t clock;
5 void (∗send)(int);
6 void (∗release)(int ,char);
7 TPOINTFUNC;
8 portmask_t portmask[1];
9

10 FLOAT32∗iport0; //port x0
11 };
12

13 void X_STORE_init(struct X_STORE_data∗d);
14 void X_STORE_destroy(struct X_STORE_data∗d);
15 int X_STORE_push(int p, struct X_STORE_data∗d);
16 int X_STORE_go(struct X_STORE_data∗d);

Figure 3.16: Header file forSTORE block with testpoints

void X_STORE_push(struct X_STORE_data∗d){
//store a timestamp for start of execution
TPOINT("src");

//set result to value on input port
float result =∗d−>iport0;

//print result to a file
fprintf(pfile,"Result%f\n",result);

//release port and free associated memory
release(0,1);

//store a timestamp for end of execution
TPOINT("sink");

}

Figure 3.17:push function forSTORE with testpoints

54

to timestamp. Testpointing is currently only implemented for C implementations. A future revision

of X-Sim will include support for testpointing inside VHDL implementations.

3.2.2 Running X-Dep to Create an X-Sim Makefile

After the user has modified the original X language and implementation input files, the next step is

to create a Makefile that can be used to run the simulation. Thetool used to automatically generate

the Makefile is called X-Dep. X-Dep is run simply by calling the X-Dep binary with the name of

the top level X Language file, and piping the result into a Makefile. For example, the following line

writes the simulation Makefilesim.mk for the X application given bytest1.x.

xdep test1.x > sim.mk

X-Dep uses the application description given in the X Language to analyze the dependency order of

the resources. For example, for thetest1 example, X-Dep will analyze the application to figure

out that the order of simulation executions should be to firstrunproc[1], then to run X-Model to

simulate communication fromproc[1] to fpga, then to run the ModelSim simulation forfpga

and so on. The main parts of the Makefile generated by running X-Dep are shown in Figure 3.18.

The comments at the start of the Makefile identify which X Language file was used.Xsystem.mk

is an included file that contains the definition forFILEIOPATH, a variable that indicates where

trace files are stored. The.perf files are used to keep track of which simulations have already

been done. For example, after the first simulation forproc[1] is done, the fileproc_1_.perf

is generated to indicate that the first simulation has been completed.

3.2.3 Running X-Sim

Once the simulation Makefile has been created by X-Dep, all that remains is to actually run the

X-Sim simulation. This is achieved by simply running the command “make simulate”. When

this command is run, the simulation Makefile finds that it needs three.perf files. These files form

55

1 simulate: proc_1_ . p e r f fpga . p e r f proc_2_ . p e r f
2 echo S i m u l a t i on done .
3

4

5 proc_1_.perf:
6 proc_1_ >& proc_1_ . ou t
7 echo Done > proc_1_ . p e r f
8

9

10 fpga.perf: proc_1_ . p e r f
11 xmodel − i top_gen1_y0_ou t . t s −1 f r e q =3.4 e9 \
12 −o top_sum_x0_av l . t s −2 f r e q =1e9
13 mv top_gen1_y0_out . da t top_sum_x0_in . da t
14 xmodel − i top_gen2_y0_ou t . t s −1 f r e q =3.4 e9 \
15 −o top_sum_x1_av l . t s −2 f r e q =1e9
16 mv top_gen2_y1_out . da t top_sum_x1_in . da t
17 vsim −c SimModule −do " run ; q u i t −f "
18 echo Done > fpga . p e r f
19

20

21 proc_2_.perf: fpga . p e r f
22 xmodel − i top_sum_y0_out . t s −1 f r e q =1e9 \
23 −o t o p _ h a l f _ x 0 _ a v l . t s −2 f r e q =3.4 e9
24 mv top_sum_y0_out . da t t o p _ h a l f _ x 0 _ i n . da t
25 proc_2_ >& proc_2_ . ou t
26 echo Done > proc_2_ . p e r f
27

28

29 clean:
30 rm proc_1_ . ou t proc_1_ . p e r f
31 rm fpga . p e r f
32 rm proc_2_ . ou t proc_2_ . p e r f

Figure 3.18: Simulation Makefile fortest1

56

a dependency order that causesproc_1_.perf to be generated first, by executingproc_1_ to

run the simulation forproc[1].

The second.perf file in the dependency order isfpga.perf. For each of the application edges

leading intofpga, xmodel is run to simulate communication over these edges and generate the

requiredavl.ts files. The data files are simply moved over to make them ready for the ModelSim

run. After the input files are ready, the ModelSim command line callvsim is used to simulate the

FPGA.

Finally, the last simulation forproc[2] is run after the input files have been readied. The command

make clean removes the output and.perf files from the simulations.

If an application has two resources that can be run in parallel, then the Makefile reflects this paral-

lelism by only expressing the required dependency order andnothing more. For example, if there

was a mapping where data was produced inproc[1] and then data went out to two output blocks,

one inproc[2] and one inproc[3], then it is possible to run the two processor simulations

in parallel. The simulation forproc[1] must still be run first. However, after that the simu-

lations forproc[2] andproc[3] can be run in parallel because they only depend on the file

proc_1_.perf created by the simulation forproc[1]. Running simulations in parallel and

other techniques for simulation speedup will be examined inChapter 5.

3.3 Simulation Trace Files

In this section, we will describe the timing and data trace files generated in an X-Sim run. There

are four types of timing trace files:avl.ts, in.ts, out.ts, andtpt.ts. Timestamps inside

the first three types of trace files directly correspond to data recorded in data trace files.avl.ts

timestamps correspond to the times that data becameavailableat the input port of a block.in.ts

timestamps correspond to when data wasconsumedat an input port.out.ts timestamps, as one

might expect, correspond to when data was output from an output port. In contrast to these types

of timing trace files,tpt.ts timestamps are not directly associated with a data port, nordo they

57

correspond directly to any ports. Instead,tpt.ts timing trace files store timestamps at points

specified by the userinside the implementation using macros as was explained in the previous

section. The naming convention for timing trace files follows the template:

<block>_<port|testpoint>_<type>.ts

For example, the timing trace filetop_gen1_y0_out.ts hasout.ts traces for they0 port of

blocktop.gen1. The filetop_gen1_src_tpt.ts, on the other hand, hastpt.ts traces for

thesrc testpoint of blocktop.gen1.

The template<block> refers to the full name of a block instance (e.g.,top_gen1). The<type>

refers to the type of the port:avl,in,out, ortpt. <port|testpoint> refers to the port (e.g.,

GENERATE’s output porty0) or, in the case oftpt.ts timestamps, the name of the testpoint.

Data files have the following naming convention:

<block>_<port>_<type>.dat

The templates<block> and<port> are the same as for timestamp files. Note that a data file

can never have a testpoint instead of a port in the name because data traces are not recorded for

testpoints inside a function. The<type> refers to whether data was recorded coming into or going

out of a port. An output port has aout.ts and aout.dat file associated with it. An input

port has aavl.ts, in.ts and ain.dat file associated with it. A testpoint has atpt.ts file

associated with it.

During the X-Sim simulation of our example mapping,proc[1] is the first resource simulated.

The simulation ofproc[1] produces the trace files shown in Figure 3.19.GENERATE blocks

were only set to run three times for brevity. The time traces shown here use made up numbers

for illustration purposes only, and were not recorded from actual simulations. Actual timing trace

results from X-Sim simulations are presented in later chapters.

Thetop_gen1_src_tpt.ts file stores timestamps gathered from theTIMESTAMP() call in

gen1’s go function. Thetop_gen1_y0_out.ts file stores timestamps for when the data in the

58

LAN
 PCI

proc
[1]

gen1

gen2

top_
gen2
src
tpt.ts

5
u
s

18us

28
u
s

top_
gen1
src
tpt.ts

0
u
s

11us

23
u
s

 top_
gen1
_
y0
_
out.ts

5us

17us

28
u
s

top_
gen1
_
y0
_
out.dat

6.41

3.22

9.75

 top_
gen2
_
y0
_
out.ts

11
u
s

23
u
s

33
u
s

top_
gen2
_
y0
_
out.dat

8.13

1.96

7.39

Figure 3.19: Simulation traces forproc[1]

top_gen1_y0_out.dat file was output fromgen1’s porty0. The other three files parallel the

same functions as described, this time for blockgen2.

3.3.1 Trace File Formats

We will now describe the formats in which data and timestampsare stored in trace files. Data trace

files have a straightforward format, storing data directly in binary (rather than ASCII) form. The

top_gen1_y0_out.dat file, for example, containsFLOAT32 data values, each of which is

stored as a 32-bit binary value.

Timing trace files have a slightly more complex format. Timestamps are stored as 64-bit unsigned

binary values. In processor simulations, the system clock for the simulation targetis directly

recorded as timestamp values. Recall that the simulation target is the native processor that is avail-

able for running the simulation on. It may be the same as or different from the finalphysical target

processor. When the system clock timestamps are combined with knowledge of thesimulation

target processor’s clock frequency and the initial system clock time, the simulation times can be

accurately calculated. The first 512 bytes of timing trace files are reserved for a header stored in hu-

man readable ASCII format. The header for filetop_gen1_y0_out.ts is shown in Figure 3.20.

The first line identifies this files as an X timestamp trace file.The second line stores the simulation

processor’s clock frequency, which as an example is shown tobe 3.2GHz. The third line stores the

compile time of the binary being executed in the simulation,purely for additional information for a

user. The fourth line stores the offset in clock ticks. The offset is the system clock recorded at the

59

start of simulation. Note that once again these numbers are synthetic, and that the offset is set as a

nice round number to make calculations easier to follow.

\#XTSFile
freq=3200000000
\#compile_time=10:36:14
offset=1000000000000000
end

Figure 3.20: Header for timing trace filetop_gen1_y0_out.ts

As an example, if the first timestamp in the trace file was 1000000016000000, then the simulation

time would be calculated as given below:

(timestamp - offset) / frequency

= (1000000016000000-1000000000000000) / 3.2GHz = 5us

This calculation tells us that 5µs after the simulation started running, thegen1 block output the first

random number on itsy0 port. In the case of ModelSim simulations, the default frequency stored

in timing trace files is 1GHz, because ModelSim simulations are run using ns as the base time

resolution. Since timing trace headers are in ASCII, they can be viewed directly, using commands

such ashead.

To view the binary timestamps in the body of a file, a binary viewing tool such ashexdump (hex-

adecimal dump for UNIX) orod (octal dump for cygwin) must be used. For example, the command

given below will print out all the binary timestamps in a file.

od -j512 -t d8 -w8 top_gen1_y0_out.ts

The-j512 option skips the first 512 bytes of the file (the header). The-t d8 tells od that the

timestamps are 8 bytes long numbers that should be printed out in decimal format. The-w8 option

causesod to print out 8 bytes (one timestamp) per line. The output fromthe command is given in

Figure 3.21. The left column values are offset values insidethe timestamp file in octal format (512,

520, 528, 536). The right column values are the recorded system clock values. Simulation times

can be calculated by subtracting the offset clock value (1e15) and then dividing these values by the

60

clock frequency (3.2GHz). These calculations give the values 5µs, 17µs, and 28µs, matching the

values that were shown in Figure 3.19.

0001000 1000000000016000
0001010 1000000000054400
0001020 1000000000089600
0001030

Figure 3.21: Timestamps for timing trace filetop_gen1_y0_out.ts

3.3.2 Reconstructing a Simulation Run from Traces

This section shows how a simulation run can be reconstructedusing the traces generated by a sample

X-Sim simulation run, starting with theproc[1] simulation traces given previously in Figure 3.19

At simulation time 0µs, the binary forproc[1] started executing by callinggo on blockgen1.

Thego function then generated the float data value 6.41 at time 5µs. In the binary’s round robin

schedule,gen2’s go function was called next. That function generated 8.13 at 11µs. The round

robin scheduler then went back and calledgen1’s go function again, and so on.

After proc[1], the communication of data fromproc[1] to fpga overPCI is simulated. As-

suming that X-Model uses a simple constant 5µs delay to model the communication delay, the

traces recorded are given in Figure 3.22. X-Model simply adds 5µs toout.ts times to get the

correspondingavl.ts times.out.dat files are copied over to createavl.dat files.

PCI

proc
[1]

top_
gen1
_
y0
_
out.ts

5
u
s

17us

28
u
s

top_
gen1
_
y0
_
out.dat

6.41

3.22

9.75

top_
gen2
_
y0
_
out.ts

11
u
s

23
u
s

33
u
s

top_
gen2
_
y0
_
out.dat

8.13

1.96

7.39

top_sum_
x0
_
avl.ts

10us

22
u
s

33
u
s

top_sum_
x0
_
in.dat

6.41

3.22

9.75

top_sum_
x1
_
avl.ts

16
u
s

28
u
s

38
u
s

top_sum_
x1
_
in.dat

8.13

1.96

7.39

fpga

Figure 3.22: Simulation traces for communication fromproc[1] to fpga

61

top_sum_
x1
_
avl.ts

16us

28
u
s

38
u
s

top_sum_
x1
_
in.dat

8.13

1.96

7.39

top_sum_
x1
_
in.ts

16us

28
u
s

38
u
s

 top_sum_
x0
_
avl.ts

10
u
s

22
u
s

33
u
s

top_sum_
x0
_
in.dat

6.41

3.22

9.75

 top_sum_
x0
_
in.ts

10
u
s

22
u
s

33
u
s

top_sum_
y0
_
out.ts

17
u
s

29
u
s

39
u
s

top_sum_
y0
_
out.dat

7.27

2.59

8.53

PCI

fpga

sum

Figure 3.23: Simulation traces forfpga

The next simulation is offpga. The trace files for this simulation are given in Figure 3.23.The

avl.ts andin.dat files were set up by the previous simulation. The first piece ofdata to

become available was the float 6.41 on portsum.x0 at time 10µs. Since the ModelSim simulation

was not busy doing any previous processing, it was able to input the data at that time, making 10µs

the firstin.ts time for sum.x0. Then the simulation had to wait till time 16µs for the data on

portsum.x1 to become available, at which time the float 8.13 was input into the module. At time

17µs, the simulation finished calculating the sum and output thevalue 7.27 on portsum.y. The

simulation then waited till time 22µs so it could input data on portsum.x0. It further waited till

time 28µs to input data on portsum.x0. Calculation of the second sum was complete at time 29µs.

Calculation of the third sum was done in a similar manner to the first two, and was completed at

time 39µs. The simulation of data transfer fromfpga overPCI to proc[2] is again modeled by

a constant 5µs delay, and is shown in Figure 3.24.

Finally, the simulation forproc[2] is run, generating the traces shown in Figure 3.25. Note that

no data is gathered by X-Sim for the testpoint at the end of thestore block. Thestore block, or

anysinkblock, for an application presumably always either recordsits output data in an output file,

prints it out to screen. The user can examine the output file generated by the application to check for

correctness. This is independent of the trace recording done by X-Sim. Future work may include

the ability to record additional data traces at testpoints,which would allow data to be recorded at

the end of sink blocks, as well as any other arbitrary points.

62

PCI

LA
N

proc
[2]

fpga

sum

half

out

top_sum_
y0
_
out.ts

17
u
s

29
u
s

39
u
s

top_sum_
y0
_
out.dat

7.27

2.59

8.53

top_half_
x0
_
avl.ts

22
u
s

34
u
s

44
u
s

top_half_
x0
_
in.dat

7.27

2.59

8.53

Figure 3.24: Simulation traces for communication fromfpga to proc[2]

LA
N

PCI

proc
[2]

half

store

 top_half_
x0
_
avl.ts

22
u
s

34
u
s

44
u
s

top_half_
x0
_
in.dat

7.27

2.59

8.53

 top_half_
x0
_
in.ts

22
u
s

42
u
s

63
u
s

 top_store_sink_
tpt.ts

42
u
s

63
u
s

83
u
s

 top_half_
sink
_
tpt.ts

26
u
s

46
u
s

67
u
s
 top_store_
src
_
tpt.ts

26
u
s

46
u
s

67
u
s

Figure 3.25: Simulation traces forproc[2]

63

The simulation ofproc[2] is interesting because it shows blocking occurring. The first piece of

data is input as soon as it appears, at simulation time 22µs. Processing of this data then took 20µs,

resulting in the creation of atpt.ts timestamp at 42µs. Although data was available athalf’s

input port at time 34µs, it is only input into the CR at time 42µs because the CR was busy processing

an earlier piece of data. Similarly, the third piece of data on the input port is queued from time 44µs

till 63µs before it could be processed. Simulation of theproc[2] CR, and of the entire X-Sim

simulation, ends at simulation time 83µs.

Resource Block/Edge data1 data2 data3 Mean

proc[1] gen1 wait time 0µs 0µs 0µs 0µs
exec. time 5µs 6µs 5µs 5.33µs

gen2 wait time 0µs 0µs 0µs 0µs
exec. time 6µs 5µs 5µs 5.33µs

PCI gen1.y0 -> sum.x0 wait time 0µs 0µs 0µs 0µs
exec. time 5µs 5µs 5µs 5µs

gen2.y0 -> sum.x1 wait time 0µs 0µs 0µs 0µs
exec. time 5µs 5µs 5µs 5µs

fpga sum wait time 0µs 0µs 0µs 0µs
exec. time 1µs 1µs 1µs 1µs

PCI sum.y0 -> half.x0 wait time 0µs 0µs 0µs 0µs
exec. time 5µs 5µs 5µs 5µs

proc[2] half wait time 0µs 8µs 19µs 9µs
exec. time 4µs 4µs 4µs 4µs

store wait time 0µs 0µs 0µs 0µs
exec. time 16µs 17µs 16µs 16.33µs

Table 3.1: Performance results fortest1

Table 3.1 shows a summary of all the timing results from traces collected for ourtest1 example.

These results can be gathered by using X-Eval, as will be shown in the next chapter.

3.4 Limitations of X-Sim

This section talks about limitations on application mappings that can be simulated using X-Sim. As

explained before, X-Sim is a federated simulation system where individual simulations for each CR

64

are run in the correct dependency order. For example, for themapping that we have been looking at

for ourtest1 example (e.g. Figure 3.1), the simulations are run in the following order:

• proc[1]

• communication of data fromproc[1] to fpga

• fpga

• communication of data fromfpga to proc[2]

• proc[2]

The native execution simulation forproc[1] is run to completion, generating complete output data

and timing traces for portsgen1.y0 andgen2.y0. None of the blocks mapped toproc[1] need

data from blocks mapped to other CRs, so the simulation forproc[1] can be the first to run. The

sum block mapped tofpga is dependent on data produced byproc[1] and communicated over

PCI. Thus, both the simulations forproc[1] and for the communication of data fromproc[1]

to fpga must be done, before the simulation forfpga can be run.

Let us now consider the mapping shown in Figure 3.26. In this mapping,gen1 andgen2 are

mapped toproc[1], andsum is mapped tofpga as before. However, thehalf andstore

blocks are now mapped toproc[1] instead of toproc[2]. In this mapping, the simulation for

proc[1] cannot be run to completion because thehalf block needs data from thesum block.

Output data and timing traces for thesum block are only created once the simulation forfpga has

been run. Thus, the simulation forproc[1] is dependent on the simulation forfpga. However,

thesum block (which is mapped tofpga) needs data from thegen1 andgen2 blocks (which are

mapped toproc[1]), so the simulation forfpga is dependent on the simulation forproc[1].

There are thus cyclical dependencies between the simulations of CRsproc[1] andfpga. Al-

though the given mapping is possible to implement using the XLanguage, its simulation is not

supported by X-Sim.

If a mapping can result in cyclical dependencies, then the current X-Sim design is not able to

simulate it. The simulation for a CR needs to have a complete record of all the traces it is dependent

65

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

fpga

gen1

gen2

sum

half

store

T

T

D

T

D

T

D

T

T

D

T

D

T

D

T

T
 T

T

T

T

Figure 3.26: Cyclical mapping for exampletest1

on before it can start running. A cyclical dependency between two CRs results in a situation where

both CRs are waiting for the other to be run so that they have all the required traces.

A possible future way to overcome this limitation is to run multiple simulations in parallel, feeding

data to each other via pipes. For example, the simulationsproc[1] andfpga can be run in

parallel, withgen1 andgen2 producing data onproc[1], sum operating on that data onfpga,

andhalf using the summed data onproc[1], all simultaneously. With parallel simulations that

feed data to each other simultaneously, a simulation can pause execution when it is waiting for data

from other simulations. A mapping that would, in real life, not cause any deadlocks would not cause

any deadlocks for the simulation either. The ability to run cyclically dependent simulations will be

added in a future version of X-Sim.

66

A related limitation of X-Sim is the simulation of IRs does not accurately model communication

delays if cyclical dependencies occur. Cyclical dependencies in IRs are often caused by multiple

edges sharing a common IR. For example, data entering thefpgaCR has to first be simulated being

transferred over thePCI IR. Thefpga CR simulation is thus dependent on thePCI IR simulation.

However, data exiting thefpgaCR also has to be simulated being transferred over thePCI IR. The

PCI IR simulation is thus dependent on thefpga CR simulation. Once again, we see a cyclical

dependency, this time between the simulations forPCI andfpga. Cyclical dependencies between

IR simulations and other simulations are particularly common in mappings, because often the same

IR links multiple CRs together.

To solve this problem, X-Sim simulates each edge in isolation. For example, the two input edges

into fpga and the output edge out offpga are all independently simulated. The two input edge

simulations are done before thefpga simulation, while the output edge simulations is done after

thefpga simulation. The downside to this independent edge simulation approach is that it does

not take into account the effect of IR sharing between multiple edges. For a single edge simulation,

the communication simulator is smart enough to queue data transfers while applying latency delays,

and make sure that multiple data elements cannot be transferred over the same medium at the same

time. However, multiple edges are simulated independently, so the communication simulator can-

not account for data being transferred over the same medium simultaneously overdifferentedges.

Because of this problem, communication latency over an IR ismodeled well, but bandwidth sharing

between multiple edges is not.

This may be a serious issue in applications where multiple edges mapped to the same IR and one

or more edges take up a significant portion of the IR’s bandwidth. In such cases, the traffic on a

high traffic edge can significantly affect the performance oftraffic on other edges. The long-term

solution to this problem is, again, to implement the abilityto run simulations in parallel. All the

edges mapped to a single IR are mapped by a single communication simulator. This communication

simulator is run in parallel to the simulations for all CRs, so that cyclical dependencies can be

taken into account. The ability to model the performance of multiple edges mapped to a single IR

is already available, in the form of thexmodel2 tool. Combining this multiple-edge simulator

with the ability (in a future X-Sim version) to run multiple simulators in parallel will allow the

67

performance of IRs to be more accurately modeled. Thexmodel2 tool will be explained in more

detail in Chapter 5.

In this chapter, we described how X-Sim can be used to create acomprehensive trace record of

the operation of an algorithm mapped to a hybrid target architecture. In the next chapter, we will

describe how X-Eval can use the generated trace files to analyze the algorithm and mapping, and to

provide insight to the user to help optimize the application.

68

Chapter 4

Analysis using X-Eval

After a simulation run is done, an extensive set of data and timestamp traces are available that

capture a history of the federated simulation execution. Traces are recorded at all algorithm edges

that are mapped to interconnect resources (IRs), as well as at any explicitly marked trace testpoints.

The mapping of exampletest1 reproduced in Figure 4.1 will again be used as an illustrative

example.

PCI

L
A

N

proc
[1]

proc
[2]

proc
[3]

fpga

gen1

gen2

sum

half

store

T

T

D

T

D

T

D

T

T

D

T

D

T

D

T

T
 T

T

T

T

Figure 4.1: Traces recorded for exampletest1 (Same as Figure 2.23)

69

This chapter tackles the problem of how to do performance analysis on simulation traces. The

first section in this chapter, Trace Visualization, shows how X-Eval can generate a graphical event

timeline that shows a visual representation of all the events recorded in X-Sim trace files. The next

section shows X-Eval being run to analyze thetest1 application. The third section, Production

Rules in X-Eval, describes howproduction rulescan be used to characterize the operation of blocks

and allow performance metrics for blocks to be calculated. Finally, the last section gives a tutorial

on how a user can run X-Eval on their application to generate performance results.

4.1 Trace Visualization

Traces are stored in binary in a number of different trace files, with one trace file recorded for each

port. While binary dump tools provide an instant mechanism to view the raw data in trace files, they

do not provide a convenient method to understand system widesimulation trace results. As part of

the analysis tool-set, X-Eval can process all the trace filesrecorded by X-Sim and combine these

traces into a single global event timeline. Initial prototypes of the timeline graph were developed in

cooperation with Greg Galloway, a student working with the SBS group.

An example of a timeline graph that is automatically generated by X-Eval is shown in Figure 4.2.

This timeline shows the traces generated for a simulation run oftest1. The same timeline zoomed

in on the first 100µs of the simulation run is shown in Figure 4.3. Note that for these timeline

graphs, thetest1 application simulation was configured to generated 100 values in each of the

two GENERATE blocks, rather than 3 values as before. This X-Eval generated graph shows all

the events that happened during the simulation on one combined timeline graph. Each line on this

timeline corresponds to the traces recorded in a different timestamp trace file. For example, the first

line displays all the traces that were recorded for the testpoint for the beginning of processing for

thegen1 block. The second line shows the traces recorded at the output of the same block. Lines

3 and 4 show the corresponding events for blockgen2. The next two lines show theavl.ts and

in.ts traces recorded at portx0 of blocksum. The rest of the lines display the remaining traces

gathered for the simulation run.

70

top_gen1_src_tpt.ts

top_gen1_y0_out.ts

top_gen2_src_tpt.ts

top_gen2_y0_out.ts

top_sum_x0_avl.ts

top_sum_x0_in.ts

top_sum_x1_avl.ts

top_sum_x1_in.ts

top_sum_y0_out.ts

top_half_x0_avl.ts

top_half_x0_in.ts

top_half_sink_tpt.ts

top_store_src_tpt.ts

top_store_sink_tpt.ts

 0 100 200 300 400 500 600

Time(us)

Timeline of test1 (5us Comm. Delay)

Figure 4.2: Timeline generated fortest1

71

top_gen1_src_tpt.ts

top_gen1_y0_out.ts

top_gen2_src_tpt.ts

top_gen2_y0_out.ts

top_sum_x0_avl.ts

top_sum_x0_in.ts

top_sum_x1_avl.ts

top_sum_x1_in.ts

top_sum_y0_out.ts

top_half_x0_avl.ts

top_half_x0_in.ts

top_half_sink_tpt.ts

top_store_src_tpt.ts

top_store_sink_tpt.ts

 0 20 40 60 80 100

Time(us)

Zoomed Timeline of test1 (5us Comm. Delay)

Figure 4.3: Timeline generated fortest1 (zoomed in version)

72

Let us now consider a sequential reading of the timeline, starting from the left and going across to

the right. The start of the simulation corresponds to the first gen1.src timestamp. This represents

the time that the CRproc[1] started running. After running for approximately 50µs,proc[1]

outputs a data value ongen1’s output port. The timeline shows that the next timestamp isrecorded

at gen2’s src testpoint, indicating that processing onproc[1] switches to thegen2 block.

Generation of the first number from blockgen2 happens very soon afterword. Processing switches

betweengen1 andgen2, as expected from the round robin scheduling implemented inthe X

Language. The shown timeline is for a simulation run where eachGENERATE block is configured

to output 100 elements before terminating. From the timeline, we can see that generation of the last

199 numbers fromproc[1] takes about 150µs, while the generation of just the first number alone

took about 50µs. This can be attributed to caching effects, because the first time number generation

function is called onproc[1] it must be loaded into cache from main memory. For all but the first

number, the instructions for number generation are presentin cache and thus runs much faster.

After data is produced on the output ports onproc[1], it must travel over thePCI IR. In our

simulation run, the communication delay model for thePCI IR is a 5µs delay per data element.

The first data ongen1.out is produced around the 50µs mark. The first data becomes avail-

able on the other side of the interconnect resource 5µs later, as shown on the timeline marked

top_sum_x0_avl.ts. Thereafter, data is produced ongen1’s output port in a steady stream.

The communication delay simulator X-Model has to wait the modeled 5µs to transfer each data

element before it can move to the next element. This constantdelay turns out to be a bottleneck,

as data that was produced within a period of 150µs is spread out over a period of 500µs. A simple

calculation shows that 100 data elements transferred over acommunication link with a fixed delay

model of 5µs must accrue a delay of at least 500µs, so the timeline shows that the simulation acted

in accordance with theoretical expectations, and that the communication link is a bottleneck for this

application.

Data on the output of thefpgaCR is produced almost as soon as data is available at the CR’s inputs.

Data elements at the input of theproc[2]CR’shalf block are available every 5µs, still reflecting

the bottleneck effect of delays caused by thePCI IR. Once again, we can see a caching effect in the

way that the first processing of thehalf block takes a lot longer than subsequent executions. The

73

last time for the entire simulation timeline can be found on the line markedprint.out, at about

simulation time 560µs.

A preliminary visual inspection and analysis of the generated timeline thus shows that the commu-

nication linkPCI is the bottleneck in the simulation. To test this theory, another simulation was run

with the same mapping and application, where the communication delay for thePCI IR is modeled

as a constant 0µs delay (Figure 4.4).

Total processing time for the simulation run has approximately been cut in half, from 560µs to

280µs, confirming our observation that communication delay overPCI was a critical bottleneck in

the system. This simple re-run of the simulation fortest1 shows how the X-Sim infrastructure,

along with simple trace visualization techniques, help users to understand application performance,

identify bottlenecks, and test out hypotheses.

In addition to visualization of X-Sim traces, X-Eval is alsocapable of more in-depth performance

analysis of applications developed under Auto-Pipe. The next section takes a look at how this is

done for thetest1 example application.

4.2 An Example X-Eval Performance Analysis

In this section, we will look at how X-Eval does performance analysis on each block of thetest1

example application. To keep things simple, we will use the same traces as were shown in the

simulation run described in Figures 3.19, 3.22, 3.23, 3.24,3.25. Recall that for that simulation run,

theGENERATE blocks were configured to generate 3 values each.

Consider the first blockgen1. The top_gen1_src_tpt.ts timestamp file, generated by

the user-defined testpointsrc, captures each time thegen1 started generating a number. The

top_gen1_y0_out.ts timestamp file, on the other hand, captures each time thegen1 finished

generating a number and output it on its output porty0. The time each number generation took for

74

top_gen1_src_tpt.ts

top_gen1_y0_out.ts

top_gen2_src_tpt.ts

top_gen2_y0_out.ts

top_sum_x0_avl.ts

top_sum_x0_in.ts

top_sum_x1_avl.ts

top_sum_x1_in.ts

top_sum_y0_out.ts

top_half_x0_avl.ts

top_half_x0_in.ts

top_half_sink_tpt.ts

top_store_src_tpt.ts

top_store_sink_tpt.ts

 0 100 200 300 400 500 600

Time(us)

Timeline of test1 (0us Comm. Delay)

Figure 4.4: Timeline fortest1 with 0µsPCI delay

75

block gen1 can thus be calculated by subtracting each outputtop_gen1_y0_out.ts times-

tamp from the corresponding testpointtop_gen1_src_tpt.ts timestamp. This relationship of

timestamps for blockgen1 can be represented by the followingproduction rule:

gen1.src → gen1.y0

X-Eval views blocks as entities that run production rules. Aproduction rule consists of two parts,

an input condition (on the left side of the→), and an output action (on the right side of the→).

The input condition specifies which timestamps cause the rule to be invoked, ortriggered. For

block gen1, a timestamp on thegen1.src testpoint triggersgen1’s production rule. On being

triggered, a production rule starts running. Ingen1’s case, the rule always starts running right

after being triggered, meaning that the waiting time (starttime - trigger time) is always zero for

this rule. After starting, a production rule runs for a certain amount of time (the execution time),

and then produces timestamps specified by the output action.For blockgen1, the production rule

produces a timestamp ongen1.y0. The execution time for a block’s production rule is calculated

by subtracting rule start from rule finish times. For the firsttime gen1’s production rule ran, we

find that the execution time was (5µs-0µs=) 5µs.

Figure 4.5 presents agen1 timeline which shows both X-Sim timing traces as well as X-Eval

block production rule timings. The top two timelines show the X-Sim timing traces from trace

files top_gen1_src_tpt.ts andtop_gen1_y0_out.ts. These correspond to the times

that were shown in Figure 3.19. The bottom three timelines represent the X-Eval production rule

timings for thegen1 block. The first timeline represents the time the productionrule was triggered.

For thegen1 block, the trigger time corresponds directly to the time recorded by thegen1.src

testpoint. The second timeline represents the time the production rule start running. For thegen1

block, this also corresponds directly to agen1.src timestamp. The third timeline represents

the time the production rule finished running. A time on this timeline corresponds directly to a

timestamp in thetop_gen1_y0_out.ts

The three times the production rule ran are shown with different symbols in the figure. The first

run is represented by a + symbol, the second run by a× symbol, and the third run by an∗ symbol.

Subtracting the production rule start time from the production rule trigger time gives production

76

top_gen1_src_tpt.ts

top_gen1_y0_out.ts

rule trigger

rule start

rule finish

 0 20 40 60 80

Time (µs)

gen1.src -> gen1.y0

first execution time = 5µs

1st execution
2nd execution
3rd execution

Figure 4.5: Timeline for blockgen1

rule waiting times that are zero for each run. Subtracting the production rule finish time from the

production rule start time gives the following production rule execution times for thegen1 block:

5µs, 6µs, and 5µs. The average execution time is 5.3µs. The execution times for blockgen1

correspond directly to the times calculated by subtractinggen1_src_tpt.ts timestamps from

gen1_y0_out.ts timestamps.

Block gen2, which operates similarly to blockgen1, has the following production rule:

gen2.src → gen2.y0

In this case, a timestamp on testpointgen2.src triggers blockgen2 to produce a timestamp on

output portgen2.y0. The timeline for blockgen2 is given in Figure 4.6. The execution times for

each production rule run for this block are all 5µs, so the average execution time is also 5µs. The

production rule waiting times are once again zero for each run.

77

top_gen2_src_tpt.ts

top_gen2_y0_out.ts

rule trigger

rule start

rule finish

 0 20 40 60 80

Time (µs)

gen2.src -> gen2.y0

first wait time = 0µs

first execution time = 6µs

1st execution run
2nd execution run
3rd execution run

Figure 4.6: Timeline for blockgen2

For both blocksgen1 andgen2, the production rule is a simple one-to-one rule. One timestamp

in a testpoint file triggers the production rule to produce one timestamp in an output port timestamp

file. Block sum provides a more interesting case. This block takes in a valueon each of its two

input portssum.x0 andsum.x1 , adds them, and outputs the result on its output portsum.y0.

The production rule for thesum block is given by:

sum.x0 and sum.x1 → sum.y0

The input condition for this rule is theand’ed combination, orconjunction, of the two input ports

sum.x0 andsum.x1. This means that the production rule will be triggered by thecombination

of one timestamp onsum.x0 and one timestamp onsum.x1. When both of these input values

become available (i.e. at the latter of the twoavl.ts timestamps) the production rule is triggered.

For example, the first value on portsum.x0 became available at simulation time 10µs, and the first

value on portsum.x1 became available at 16µs. Corresponding to the latter of these two times, the

78

production rule was triggered for the first time at 16µs. The time the production rule starts running

corresponds to the time when all triggering values have beeninput by the block (i.e. the latter of the

two in.ts timestamps). The latest triggering value (in this instance, the value on portsum.x1)

was input at time 16µs, so this is the start time for the first time the production rule ran.

The output action for the rule is simply the output portsum.y0. Thus, corresponding to the first

timestamp in the output timestamp file for portsum.y0, the first execution run for the production

rule finished at 17µs. The difference of the rule start and finish times, 1µs, gives the execution time

for the first production rule run. All three execution runs for block sum actually took 1µs, so the

average execution time for the block is also 1µs. These and subsequent timestamps and production

rule runs are shown in Figure 4.7.

top_sum_x0_avl.ts

top_sum_x0_in.ts

top_sum_x1_avl.ts

top_sum_x1_in.ts

top_sum_y0_out.ts

rule trigger

rule start

rule finish

 0 20 40 60 80

Time (µs)

sum.x0 and sum.x1 -> sum.y0

second wait time = 0µs

second execution time = 1µs

1st execution run
2nd execution run
3rd execution run

Figure 4.7: Timeline for blocksum

Thehalf block takes in a value on its input port, halves it, and outputs it on its output port. The

production rule for this block is:

79

half.x0 → half.y0

top_half_x0_avl.ts

top_half_x0_in.ts

top_half_sink_tpt.ts

rule trigger

rule start

rule finish

 0 20 40 60 80

Time (µs)

half.src -> half.sink

second wait time = 8µs

second execution time = 1µs

1st execution
2nd execution
3rd execution

Figure 4.8: Timeline for blockhalf

The timestamp and production rule timeline for blockhalf is given in Figure 4.8. The first value

arrived at porthalf.x0 at time 22µs. Thehalf block started processing that value right away,

and finished processing it at time 26µs, passing it on to thestore block. For thehalf block, the

next value arrived at its input port at time 34µs, but processing of this value could only start at time

42µs, indicating that this value had a waiting time of (42-34=) 8µs. The reason that thehalf could

not start processing the second value as soon as it was available was that thestore block, which is

mapped to the same CR, was busy processing the first value. Thewaiting times for the three values

for blockhalf are 0µs, 8µs, and 19µs, while the three execution times are all 4µs.

For thestore block, the production rule for blockstore is given by:

store.src → store.sink

80

top_store_src_tpt.ts

top_store_sink_tpt.ts

rule trigger

rule start

rule finish

 0 20 40 60 80

Time (µs)

store.src -> store.sink

wait times = 0µs, 0µs, 0µs

execution times = 16µs, 17µs, 16µs

1st execution
2nd execution
3rd execution

Figure 4.9: Timeline for blockstore

The timeline for this block is given in Figure 4.9. The waiting times for this block are all zero,

indicating that thestore block was able to process data as soon as it was provided by thehalf

block. The reason this happens is that when data is pushed onto porthalf.y0, it results in the

store block’s push function being called. Refer to [20] for more details of how binaries generated

from X Language applications run. The execution times for thestore block are 16µs, 17µs, and

16µs.

X-Eval Block Mean Wait Time Mean Exec. Time

gen1 0µs 5.33µs
gen2 0µs 5.33µs
sum 0µs 1µs
half 9µs 4µs
store 0µs 16.33µs

Table 4.1: Summary of performance results fortest1

81

Running X-Eval ontest1 with the given production rules generates all the individual waiting

and execution times that were presented in this section, andalso presented in a table format in the

previous chapter in Table 3.1. X-Eval also gives a short summary of the analysis results, presenting

the figures given in Table 4.1. The fact that data enteringproc[2] experiences waiting time

before being processed indicates that the performance ofproc[2] is a limiting factor intest1’s

overall performance. A possible optimization would be to pipeline thehalf andstore blocks

over separate processors. This re-mapping will be exploredin a later chapter. The next section,

meanwhile, provides an explanation of production rules that is not specific to thetest1 example.

4.3 Production Rules in X-Eval

4.3.1 An Informal Approach

Production rules can be used in X-Eval to capture the relationship between X-Sim traces for an

otherwise black-box X Language block. Consider the simple case where a single block is mapped

to a CR. This is shown in Figure 4.10. At the end of an X-Sim simulation, trace files are available

by default for each of the two input ports as well as for the output port. X-Eval needs to analyze the

traces to generate a history of execution and waiting times for the block.

CR1

block1

D

T

D

T
block1
_
x0
_
avl.ts

block1
_
x0
_
in.ts

T

block1
_
y0
_
out.ts
T

D

T

x0

x1

y0

block1
_
x1
_
in.ts

block1
_
x0
_
dat.ts

block1
_
x1
_
avl.ts

block1
_
x1
_
dat.ts

Figure 4.10: Simple X Language block mapped to a CR

82

Using production rules, a user can specify how X-Eval shouldanalyze the traces from the input and

output ports of a block. For instance, the above block could be a ‘sum’ block that consumes two

inputs and produces one output. It could also just as easily be a ‘pass through’ block that consumes

an input on either input and produces an output.

Production rules can be used to distinguish between these two relations of input to output traces. If

block1 is a ‘sum’ block, its production rule can be represented by:

block1.x0 and block1.x1 → block1.y0

According to this specification,block1 consumes one piece of data on both of its input portsx0

andx1 to produce a single piece of data on its output porty0. If block1 was a ‘pass through’

block instead of a ‘sum’ block, its production rule would instead be:

block1.x0 or block1.x1 → block1.y0

This specifies thatblock1 consumes a piece of data on either one of its input ports to produce a

piece of data on its output port.

CR1

block1

D

T

D

T
block1
_
x0
_
avl.ts

block1
_
x0
_
in.ts

T

T

D

T

x0

x1

y0
 block2
x0
 y0

block1
_
x0
_
avl.dat

block1
_
x1
_
avl.ts

block1
_
x1
_
avl.dat

block1
_
x1
_
in.ts

block2
_
y0
_
out.dat

block2
_
y0
_
out.ts

Figure 4.11: Two simple X Language blocks mapped to a CR

Consider the block mapping shown in Figure 4.11, where two X Language blocks are mapped to

CR1, and traces are only collected at the default points indicated in the figure. In this case, it is

83

possible to make X-Eval treat the combination of the two X Language blocks as a single X-Eval

block. If block1 is a ‘sum’ block whileblock2 is a simple ‘pass through’ block, the production

rule for the X-Eval block formed by the combination of the twoX Language blocks is given by:

block1.x0 and block1.x1 → block2.y0

If block1 is a ‘pass through’ block instead, then the combined production rule is:

block1.x0 or block1.x1 → block2.y0

The flexibility in defining an X-Eval block allows even multiple CRs to be grouped together in a

single X-Eval block. For example, consider again exampletest1 that was given in Figure 4.1.

Say that we want to find latency metrics for when a pair of numbers was first generated to when the

average of the two numbers was finally calculated. The time thatproc[1] first started generating

the two numbers is give by the timestamp recorded bygen1.src, and the time thatproc[2]

finally finished storing the result is given by the timestamp recorded bystore.sink. An end-to-

end latency analysis of thetest1 application can thus be done by the production rule:

gen1.src → store.sink

The entiretest1 can be considered to be a single X-Eval block, with the above production rule

defined for it. The execution time for a run of this X-Eval block will be calculated by subtracting a

store.sink timestamp from the correspondinggen1.src timestamp. Figure 4.15 in the next

section will provide additional details on treating the entire test1 application as a single X-Eval

block with a single production rule.

Users are also given the flexibility to define multiple production rules for a single X-Eval block.

For example, the user can choose to treat theproc[1] CR from thetest1 example as a single

combined X-Eval block with two production rules, one each for gen1 andgen2:

84

gen1.src → gen1.y0

gen2.src → gen2.y0

Another equally valid way for the user to specifyproc[1]’s operation is to combine the two

production rules into one:

gen1.src or gen2.src → gen1.y0 or gen2.y0

A lot of flexibility is provided to users so that they can tailor X-Eval to analyze their application

in the way that makes most sense to them. They can choose to do analysis per X Language block,

per CR, or for a combination of block groupings. The production rules simply provide a method to

express the semantic operation of otherwise black box X Language blocks. It is up to the user to

describe production rules that give meaningful and useful waiting time and execution time statistics.

The next section gives a formal description of X-Eval production rules, as well describing how pro-

duction rules are used internally by X-Eval to analyze an application. The final section, Section 4.4,

gives a tutorial with a concrete example of production rulesand X-Eval being used in analyzing the

test1 application.

4.3.2 A Formal Approach

Consider Figure 4.12, where a single X Language blockblk is mapped to a CR. This is theX-Eval

block, b, that we will use as an illustrative example in this section.

An X-Eval block can have multiple input and multiple outputports. An X-Eval block port corre-

sponds either to an X Language port, or to an X Language testpoint. Let p represent an arbitrary

X-Eval block input or output port. Thenep,i represents theith eventon port p (e.g.,eblk.x2,2 is the

second event on input portblk.x2). Events are eitherinput eventsor output events. An input

event corresponds to a piece of data arriving at and enteringan input X-Eval block port, and has

associated arrival and input times. An output event corresponds to a piece of data exiting an output

85

CR

blk

x0

x1

y0

x2

x3

y1

Figure 4.12: X-Eval blockb

X-Eval block port, and has an associated output time. Ifp is an input X-Eval block port, thenep,i is

an input event. Similarly, ifp is an output X-Eval block port instead, thenep,i is an output event.

The set of all input ports for an X-Eval blockb is represented byPb,in, and the set of all output ports

is represented byPb,out. For X-Eval blockb,

Pb,in = { blk.x0, blk.x1, blk.x2, blk.x3 }

Pb,out = { blk.y0, blk.y1 }

For brevity in this section, whenever a port term such asx0 is used without an associated block

name, assume that it refers to blockblk. Portx0 thus implicitly refers to portblk.x0.

A sequence of terms will now be introduced that will allow us to give a formal definition of a

production rule. Aport multiplenp represents the pairing of the portp and non-zero natural number

n. For example,2x0 represents the pairing of the number2 and the portx0. The termp by itself

can be used implicitly to mean the port multiple1p. A port multiplenp is said to besatisfiedby a

set of events when that set of events consists ofn events on the portp.

One or more port multiples combined usingands forms aconjunction, such as:

2x0 and x2

86

which consists of the two port multiples2x0 andx2 anded together. A conjunction is said to be

satisfiedby a set of events when that set of events satisfiesall the port multiples in that conjunction.

For example, the above conjunction is satisfied by 2 events onportx0 and 1 event on portx2. Note

that a port multiple by itself can be considered a conjunction with only a single port multiple in it

(e.g.x1 can be considered a conjunction).

A set of conjunctions combined usingors forms adisjunction, such as:

(2x0 and x2) or x1

The two conjunctions in the above disjunction are 1)2x0 and x2, and 2)x1. A disjunction is

said to besatisfiedby a set of events when that set of events satisfiesany of the conjunctions in

that disjunction. For example, the above disjunction is satisfied by either 1) 2 events onx0 and 1

event onx2, or 2) 1 event on x1. Note that here too, a conjunction by itself can be considered a

disjunction with a single conjunction in it. Thus,x1 can be considered to be a port, a port multiple

(1x1), a conjunction (consisting of a single port multiple), anda disjunction (consisting of a single

conjunction).

A restriction in defining conjunctions is that the ports mustbe eitherall input or all output ports.

For example, the following conjunction isillegal becausex0 is an input port whiley0 is an output

port:

2x0 and y0

A conjunction can either be an input conjunction with all input ports in it, or an output conjunction

with all output ports in it. Similarly, a disjunction is alsoeither an input disjunction with all input

ports in it, or an output disjunction with all output ports. Afurther restriction on disjunctions is that

one port can only appear in a single conjunction for a single disjunction. This restriction simplifies

the task of matching X-Sim traces to the correct X-Eval production rule, as will be discussed in

Section 4.3.3.

87

A production ruleq consists of an input disjunctiondq,in and an output disjunctiondq,out. The

production rule is represented by the expression:

dq,in → dq,out,

An example of a production rule is:

production ruleqb,1 : (2x0 and x2) or 2x1 → 2y0

A production ruleqb,j is fully represented by its X-Eval blockb and its indexj. For example,qb,j

corresponds to thejth production rule of blockb. Production ruleqb,j is triggered when a set of

events happens at X-Eval blockb’s input ports thatsatisfiesthe disjunctiondqb,j,in. A disjunction is

satisfied by a set of events whenanyof its conjunctions is satisfied by the event set. A conjunction,

in turn, is satisfied whenall of its port multiples are satisfied, and a port multiplenp is satisfied

when the set of events includes exactlyn input events on portp. When the first matching set of

input events is found for a production ruleq, they combine to form the firstinput record, rqb,1,in,1.

The lth set of events that triggeredq combine to form thelth input record, rqb,1,in,l. For example,

consider production ruleqb,1 given previously for the X-Eval block shown in Figure 4.12, along

with the following timeline of sequential input events.

input events :ex0,1, ex2,1, ex1,1, ex0,2, ex1,2

Note that the sequential order of input events is the same as the sequential order of the correspond-

ing in.ts timestamps. Eventex0,1 happened before eventex2,1, eventex2,1 happened before event

ex1,1, and so on. An X-Eval block evaluates each input event in sequence until it has encountered

a combination of events that triggers one of its production rules. The combination of input events

makes up an input record. On triggering a production rule, the events in the input record arecon-

sumed, and cannot trigger that rule again. For the given sample sequence of input events, the first

three events cannot trigger any production rule because they do not satisfy the input disjunction for

any rule. When the fourth eventex0,2 is considered in addition to the first three, a combination can

be formed that satisfies the input disjunction for production ruleqb,1. The input record formed is:

88

rqb,1,in,1 = (ex0,1, ex2,1, ex0,2)

This combination of events satisfies the first conjunction inqb,1’s input disjunction:

2x0 and x2

With the triggering of the production rule, these events areconsumed and cannot be used to trigger

any rule again. However, the eventex1,1 has not been consumed and is still available to form a rule

triggering combination. When the fifth input eventex1,2 is considered next by the blockb, it forms

a valid combination along withex1,1 to trigger production ruleqb,1. The input record formed in this

case is:

rqb,1,in,2 = (ex1,1, ex1,2)

This combination satisfies the second conjunction inqb,1’s input disjunction,2x1.

When triggered, a production ruleq produces a set of events satisfyingdq,out, by satisfyinganyof

the conjunctions indq,out. This set of events forms anoutput record, rq,out,l. The first triggering of

the production ruleqb,1 from our example sequence of input events produces the following output

record:

rqb,1,output,1 = (ey0,1, ey0,2)

The second triggering produces the following output record:

rqb,1,output,2 = (ey0,3, ey0,4)

These output records show up on the output ports of the X-Evalblock as the following sequence of

output events:

89

output events :ey0,1, ey0,2, ey0,3, ey0,4

The lth triggering of a ruleq corresponds to one input recordrq,input,l and one output record

rq,output,l. The execution timetq,l for the production rule run can be calculated from:

tq,l = tq,output,l - tq,input,l

tq,input,l, the lth record input timestamp for ruleq, is the latest timestamp from all the events in

rq,input,l. Similarly, thelth record output timestamptq,output,l is the latest timestamp from all the

events inrq,output,l. Once all the input and output records for a production rule are determined, the

distribution of its execution times can thus easily be calculated. The crucial problem of how to

determine which events make up each input and output record for each production rule is tackled in

the next section.

4.3.3 Determining Production Rule Records from X-Sim Traces

An X-Eval blockb can have multiple production rules, with the set of production rules represented

by Qb. The set of input and output ports are represented byPb,in and Pb,out respectively. The

sequentially ordered set of all events for portp is represented byEp. The ordered set of all events

for all input ports for blockb is represented byEb,in. Eb,out represents the corresponding set forb’s

output ports. The ordered sets of input and output records for production ruleq are represented by

Rq,in andRq,out respectively. The ordered sets combining input and output records forall production

rule for blockb are Rb,in and Rb,out. Production rules have the property that theypreserve order.

This means that the output events for thelth triggering of a ruleq cannot happen sequentiallyafter

any output events forq’s (l + 1)th triggering. Production rules run in the order they were triggered

in, on a FIFO (First In First Out) basis.

GivenQb, Pb,in, Pb,out, Eb,in, Eb,out, and the property of order preservation, we would like to be able

to deterministically findRb,in andRb,out.

90

Recall that in the previous section, we specified that two disjunctions can never have a port (input

or output) in common. This means that any two rules on a block always coverexclusivesets of

ports. A ruleq can only consume events on ports covered by its input disjunction, and only produce

events on ports covered by its output disjunction. No other rules can consume events on ruleq’s

input ports, nor produce events onq’s output ports. This leads to the important conclusion that

when formulating input and output records for a blockb, we can consider production ruleq and

its covered input and output ports in isolation without considering the operation of other rules

on the block.

Now, also consider the property that each conjunction within any disjunction also has an exclusive

set of ports (i.e., two conjunctions within a disjunction cannot share a port). This means that we can

consider each conjunction of a rule’s disjunction in isolation as well. For example, consider the rule

qb,1 presented before and reproduced below.

production ruleqb,1 : (2x0 and x2) or 2x1 → 2y0

When assigning input records for ruleqb,1, we need to look at two conjunctions. The first conjunc-

tion covers portsx0 and x2, while the second conjunction covers just the portx1. Conforming to

the port exclusivity principle, these conjunctions do not have any ports in common. When creating

input records from input events for ruleqb,1, we can thus look at the first conjunction first and create

all the records corresponding to it by just looking at the events on portsx0 andx1. After all the in-

put records for the first conjunction have been created, we can then consider the second conjunction

and create all the input records for it, only looking at events on portx1. Finally, all output records

for the single conjunction for ruleqb,1 can be created by looking at the events on porty0. When

creating records, a single conjunction is considered at a time.

A record always consists of thefirst input events that correspond to a particular conjunction. For an

input conjunction, the first input events to satisfy it form an input record and trigger a production

rule. For an output conjunction, all the output events from arule being triggered are guaranteed

to be produced before any output events produced by a later triggering because of the principle of

order preservation.

91

foreach (rule q in block b){
foreach (disjunction d in q){

foreach (conjunction c in d){

while (events left onc’s covered ports){
create emptyrecord r
foreach(portmultiple np in c){

addn events onp to r
}
storer

}

}
}

}

Figure 4.13: Algorithm for X-Eval Record Generation Code

Given our discussion of how input and output records can be generated by considering production

rule conjunctions in seclusion, the pseudo-code given in Figure 4.13 shows the algorithm imple-

mented inside X-Eval to create records for an X-Eval blockb. By describing blocks using produc-

tion rules, X-Eval can generate distributions of waiting and execution times for each “run” of the

block. This allows users to get an idea of performance of individual blocks inside the application.

Although most types of application blocks can be modeled andanalyzed using production rules,

there are some types of blocks that cannot directly be modeled by X-Eval. They are described in

the next section.

4.3.4 Restrictions on X-Eval Modeling

Block and production rule definitions given by the user tell X-Eval how to group together X-Sim

traces to form input and output records, and from that generate waiting and execution times. In

this section, we will look at what the main requirements and restrictions are in defining production

rules, and what types of blockscannotdirectly be modeled by X-Eval. A list of the restrictions

when specifying production rules is given below:

• disjunctions and conjunctions must be non-null

92

• blocks must preserve execution order of rules

• a port can only appear once inside a rule disjunction

• a port cannot be used in more than one rule specification

The first requirement is that disjunctions and conjunctionsmust be non-null. This means that rules

cannot be triggered by a null set of input events, nor can theyproduce a null set of output events

when triggered.This prevents, for example, filter blocks from being modeleddirectly (without

added testpoints) as an X-Eval block.Say a blockblk1 (no corresponding figure) takes in an

input value on its input portx0, and then depending on the value either passes on the value onto its

output porty0 or does not produce any data on its output port. One might wantto characterize this

production rule as:

blk1.x0 → blk1.y0 or ()

This is not a valid specification because the second output conjunction is null. The problem is that

X-Eval can figure out when the rule triggers, but has no X-Sim trace that can let it realize when

the rule executed but did not produce any data on they0 output port. To be able to model this

block as X-Eval block with production rules, it is necessaryfor the block to produce a trace when it

decides even tonot produce data on its output port. This can be achieved by adding a testpoint that

is timestamped wheneverblk1 filters out thex0 value. If the testpoint is namedfiltered, then

the correct production rule definition would be:

blk1.x0 → blk1.y0 or blk.filtered

Similarly if the blockblk1were a data generation block that only had a single port, the output port

y0, then one may want to characterize its production rule as:

() → blk1.y0

93

This definition is not valid because of the null input disjunction, and can be rectified by adding a

testpoint (e.g.,src, which is timestamped whenever the block starts generatinga number). The

corrected production rule definition would then be:

blk1.src → blk1.y0

This method was seen for thegen1 andgen2 blocks in ourtest1 example. A similar solution

exists for data sink blocks, like thestore block in thetest1 example.

The second restriction for production rules is that production rules preserve execution order. Sup-

pose a rule has two input records,r1 andr2, and two output recordsr3 andr4. The corresponding

times aret1, t2, t3, andt4, wheret1<t2 andt3<t4. The order preservation principle guarantees that

r1 triggered the rule to producer3, andr2 triggered the rule to producer4. Essentially it allows

sequentially corresponding input and output records to be paired together to calculate execution

times.

This restriction can be a problem when multiple X Language blocks are combined together to form

an X-Eval block. For example, consider the blockblk2 with one input portx0 and two output

portsy0 andy1, and the internal structure shown by Figure 4.14.

blk2

switch
x0

y1

y0

delay

Figure 4.14: An X-Eval block with a long and short productionrule execution path

The production rule forblk2 is given by:

blk2.x0 → blk2.y0 or blk2.y1

94

Data entering on portblk2.x0 is switched to either the first or second output ports of the internal

switch block. Data that travels through the second path mustgo through a second internal block

before being output on portblk2.y1, and will usually take longer to be output than data that

travels through the first path and is output on portblk2.y0.

Consider the following scenario. Data (corresponding to recordr1) entersblk2.x0, and is switched

along the second (bottom) path. As the first piece of data is being processed by the delay block,

another piece of data (recordr2) arrives at the switch block. The internal switch block and delay

block can run in parallel, for example if they are mapped to separate CRs, or if they are mapped to

a CR that can run blocks in parallel (e.g., an FPGA). As the first piece of data is being processed by

the delay block, the second piece of data is switched along the first (top) path. It exitsblk2.y0

(forming r3), while the first piece of data isstill being processed by the delay block. Finally, the first

piece of data finishes being processed by the delay block, andexitsblk2 from porty1 (forming

r4).

When X-Eval reads the X-Sim traces for this block (portsx0, y0 andy1), it will associater3 with

r1, andr4 with r2. This is the expected association according to the order preservation principle.

However, this is incorrect given the internal structure of block, and our given case scenario.

A solution to this problem is for the user to splitbl2k into two X-Eval blocks, with a testpoint

(e.g. a testpoint calledinternal) at the edge between the switch and delay) components. The

production rules for the two different X-Eval blocks are then given by:

blk2.x0 → blk2.y0 or blk2.internal

blk2.internal → blk2.y1

An alternative solution is to just be aware of this problem, but accept that output records may get

associated with the wrong input records. The number of inputand output records are still equal

so the right number of production rule runs will still be found. The individual execution times

calculated will be off, but theaverage(and total) execution time will stay the same because:

95

(t3-t1) + (t4-t2) = (t3-t2) + (t4-t1)

The third restriction for a production rule is that a port canonly appear once inside a disjunction.

Consider the case if blockblk3 has a single input portx0 and a single output porty0 (no corre-

sponding figure shown). The function the block provides is toinput a piece of data on portx0, and

then produce either one or two pieces of data on porty0. One may want to specify the production

rule for this block as:

blk3.x0 → blk3.y0 or 2blk3.y0

However, this violates the third restriction, because porty0 appears twice in the output disjunction.

Consider the case where two input pieces of data appear on port x0, andblk produces three input

pieces of data on porty0. There is no way for X-Eval to be able to figure out whether the second

output event was produced by the first rule execution or the second rule execution. This problem,

too, can be solved by adding a testpointdone that is timestamped by the block whenever it is done

executing, and produces one or two outputs ony0. The new production rule definition would then

simply be:

blk3.x0 → blk3.done

The final restriction on production rules is that a port cannot be used in more than one rule specifi-

cation. For the last block we considered, with either one or two outputs being produced for every

input, another way the user may have chosen to describe the operation of the block might have been

by specifying two rules:

blk3.x0 → blk3.y0

blk3.x0 → 2blk3.y0

This presents the same problem as before, and can also be solved the same way as before by adding

the testpointblk3.done and defining a single production rule for the block.

96

In conclusion, if production rules are specified and performaccording to the definitions given in the

previous section and restrictions given in this one, then input and output record lists can be created

for each rule. Using these record lists, performance numbers can be calculated for each X-Eval

block.

4.3.5 Generating Performance Metrics and Models

Once X-Eval blocks and production rules have been defined, performance metrics can be calculated

and analytic performance models can be created. First, the record generation algorithm presented

earlier is used to translate event lists into record lists for each production rule. The model for X-

Eval blocks is that one block consists of a set of input and output ports and a set of production

rules. When a combination of input events occurs that triggers a production rule, those input events

form an input record for that rule. On being triggered, a ruleproduces output events that satisfy

its output disjunction. These events form an output record.After a complete simulation run and

X-Eval analysis, a production rule has the same number of input and output records.

The difference between the time an output record is producedby a rule and the time that the rule

started running is defined as that rule’s execution time. Thelth execution time for ruleq, tq,l, is thus

given by the expression:

tq,l = tq,l,out - tq,l,in

wheretq,l,out is the time the last event of output recordrq,l,out was produced, andtq,l,in is the time

the last event of input recordrq,l,in was consumed. A complete history of the times it took to execute

a ruleq can thus easily be calculated once a complete input and output record trace is generated for

the production rule.

This trace of execution times can be used as a substitute for the actual simulation of a CR, when

a re-simulation of an entire application is done. Similarly, any variety of statistical results can be

calculated (e.g. mean, standard deviation, etc.) to parametrize any desired statistical model. The

use of traces and models a simulation speedup technique is described in more detail in the next

97

chapter. Before moving on to the next chapter, however, we provide a tutorial on how to use X-Eval

to analyze an application.

4.4 Tutorial for Analyzing an Application using X-Eval

Suppose the user would like to get end-to-end latency times for the exampletest1. Figure 4.15

shows a minimalsemanticsfile (.smx file) that causes X-Eval to calculate the required values.

1 block top
2 port gen1.srcin_port
3 eventapp_gen1_src_tpt.tsavl_event
4 eventapp_gen1_src_tpt.tsin_event
5 port store.sinkout_port
6 eventapp_store_sink_tpt.tsout_event
7 rule gen1.src−> store.sink

Figure 4.15: Basic semantics file specification for exampletest1

A semantics file declares all X-Eval blocks, all the ports andrules for these blocks, and a list of

X-Sim trace files where timestamps can be found for events that happened on the given ports. For

example, in the example semantics file, line 1 declares an X-Eval block calledtop. The next line

declares an input port on this block calledgen1.src. This corresponds to the testpointsrc on

thegen1 X Language block. X-Sim testpoints can be declared as X-Evalblock ports. However,

X-Eval block ports can be either input port or output ports, so testpoints must always be declared

as one type or the other when used as ports. Note that here, thetestpointgen1.src is used as an

input port. In the semantics file, all the X-Sim trace files associated with the X-Eval block port are

listed, along with what type of events the timestamps shouldbe treated as. In the case of a testpoint

being treated as an input port, the timestamps collected aretreated as both availability and input

times. Line 5 in the semantics file shows another testpoint,store.out, being used as an output

X-Eval block port. The X-Sim timestamp file for that testpoint is interpreted to provided output

times for events on that output port, as specified on line 6. Finally, line 7 defines the production rule

for the single X-Eval block as a simple single-input single-output trace relation.

X-Eval can be invoked by following command line call:

98

xeval -x test1.smx

A summary of results is printed to the output, and can be pipedinto a results file if desired. This

summary of results gives the average execution and waiting times for each production rule. For our

simple semantics file, the output summary given by running X-Eval is shown in Figure 4.16.

1 Block Rule Mean Wait Mean Exec
2 t op r u l e 1 0µs 51.33µs

Figure 4.16: Results summary for end-to-end analysis oftest1

In addition to the results summary, more detailed results files are created for each production

rule that record details from individual runs of the rule. The three files created for the produc-

tion rule given in our simple .smx file aretop_rule1_index.ts, top_rule1_exec.ts,

top_rule1_wait.ts. The first file,top_rule1_index.ts, records which conjunction in

the output action a production rule actually output to for each execution run. This value is used

in trace-driven simulation substitution, and its use will be explained in the next chapter. The sec-

ond file, top_rule1_exec.ts, records the execution time for each time the production rule

ran. Finally, thetop_rule1_wait.ts file records the waiting time for each time the rule ran.

The index file records values in 8-bit unsigneds, while the other two files record values in 64-bit

unsigneds. Execution and waiting times are recorded in nanoseconds for high precision.

For our example, the three values in the index file would all be1 because there is only one out-

put conjunction that produces output according to the production rule. The three execution times,

representing the end-to-end application latency, would be42µs, 52µs, and 60µs. The three waiting

times, which are not too useful for an end-to-end application analysis, are all zero.

The average latency to generate one output for the entire application is shown by X-Eval to be

51.33µs. As we saw in the last chapter, the total time to run the application and generate three

outputs was 83µs. If we had zero parallelism, the time to generate three outputs would have been

154µs. Parallelism in the application implementation has allowed the process to be sped up from

taking 154µs to only 83µs, a speed up of roughly twice when generating three outputs.

99

1 block gen1
2 port gen1.srcin_port
3 event top_gen1_src_tpt.tsavl_event
4 event top_gen1_src_tpt.tsin_event∗
5 port gen1.y0out_port
6 event top_gen1_y0_out.tsout_event∗
7 rule gen1.src−> gen1.y0
8 block gen2
9 port gen2.srcin_port

10 event top_gen2_src_tpt.tsavl_event
11 event top_gen2_src_tpt.tsin_event∗
12 port gen2.y0out_port
13 event top_gen2_y0_out.tsout_event∗
14 rule gen2.src−> gen2.y0
15 block sum
16 port sum.x0in_port
17 event top_sum_x0_avl.tsavl_event∗
18 event top_sum_x0_in.tsin_event∗
19 port sum.x1in_port
20 event top_sum_x1_avl.tsavl_event∗
21 event top_sum_x1_avl.tsin_event∗
22 port sum.y0out_port
23 event top_sum_y0_out.tsout_event∗
24 rule sum.x0 and sum.x1−> sum.y0
25 block proc2
26 port half.x0 in_port
27 event top_half_x0_avl.tsavl_event∗
28 event top_half_x0_in.tsin_event∗
29 port half.sinkout_port
30 event top_half_sink_tpt.tsout_event∗
31 port store.srcin_port
32 event top_store_src_tpt.tsavl_event
33 event top_store_src_tpt.tsin_event∗
34 port store.sinkout_port
35 event top_store_sink_tpt.tsout_event∗
36 rule half.x0−> store.sink

Figure 4.17: Detailed semantics file for exampletest1

1 Block Rule Mean Wait Mean Exec
2 gen1 r u l e 1 0µs 5 .33µs
3 gen2 r u l e 1 0µs 5 .33µs
4 sum r u l e 1 0µs 1µs
5 h a l f r u l e 1 9µs 4µs
6 s t o r e r u l e 1 0µs 16.33µs

Figure 4.18: Results summary fortest1 analysis

100

A more informative analysis of application performance canbe done by breaking up the application

into more X-Eval blocks, as shown in Figure 4.17. In this semantics file, each X Language block

corresponds to an X-Eval block. An asterisk at the end of a line that lists an X-Sim trace file tells

X-Eval that events from that file should be added to the auto-generated timeline plot.

Running X-Eval on this more complete semantics file gives theresults shown in Figure 4.18. We can

see from these results that data has to wait an average of 9µs before it can be processed by thehalf

block. Also, thestore block is exhibiting an average execution time of 16.33µs which is relatively

high compared to other blocks’ execution times. Given that thehalf andstore block share the

proc[2] CR, a possible next step would be to map thestore block to the unusedproc[3]

CR, and re-simulate and re-analyze the application. The next chapter, Simulation Speedup, shows

techniques for speeding up re-simulations of an X Language application.

101

Chapter 5

Simulation Speedup Techniques

After an application has been written and debugged using X-Com and X-Sim, the next step is to

optimize its performance. Optimizing the performance of the application consists of a cycle of re-

mapping the algorithm, re-simulating the new mapping, and re-analyzing the simulation traces, as

was shown in Figure 1.5 in Chapter 1.

By speeding up the re-simulations of applications, new mappings can be tried out faster, shortening

the development and performance optimization cycle. This advantage will become even more im-

portant when an automated X-Opt tool is developed, and the performance optimization cycle is able

to run multiple iterations in a short amount of time.

a

proc
[1]

b[1]

proc
[2]

y0

y1

y2

y3

src

x0
 y0

b[2]

proc
[3]

x0
 y0

b[3]

proc
[4]

x0
 y0

b[4]

proc
[5]

x0
 y0

c

proc
[6]

x0

x1

x2

x3

sink

Figure 5.1: First mapping of example applicationtest2

102

Consider the example applicationtest2 given in Figure 5.1. Each block in this application has a

built-in delay of 1s per execution. Blocka waits for 1s and then generates four numbers, one on

each of its four outputs. It runs ten times, making the total number of values generated 40. Blocks

b[1] throughb[4] each wait 1s before passing through a data value from their input ports to their

output ports. Blockc waits 1s before inputting four data values, one from each of its input ports.

Each block is mapped to its own processor CR in this mapping.

For our analysis and discussion, we can consider the communication delay to be negligible. This

is because communication delay is on the order of microseconds, while processing time is on the

order of seconds (i.e. a million times longer).

We will use thetest2 application to illustrate how simulation time can be reduced. There are two

primary methods of speeding up X-Sim application simulations. The first technique involves run-

ning multiple federate simulations in parallel. The secondtechnique involves substituting federate

CR simulations with either trace-based models or with analytic distribution-based models. These

techniques are described in detail in the following sections.

5.1 Simulating CRs in Parallel

As we saw in Chapter 3, X-Dep can be used to create an X-Sim Makefile that coordinates the running

of different federate simulators. A federate simulator canbe either the simulation of a CR (e.g., a

processor or FPGA simulation), or the simulation of an edge mapped to an IR (usingxmodel).

The Makefile generated by running X-Dep on thetest2 application is shown in Figure 5.2.

Let us consider what happens when the simulation described by this Makefile is run on a single-

processor core machine. The first simulation to be run for thegiven mapping is the CR simulation of

proc[1]. Nothing else can run before this simulation, because everything else in the application

mapping is downstream fromproc[1]. Only blocka is mapped toproc[1]. This block runs

10 times, with each run taking 1s. Thus, a core must run for 10sto simulate the complete operation

of proc[1].

103

1 simulate: proc_ [1−6] . p e r f
2 echo S i m u l a t i on done .
3

4 proc_1_.perf:
5 proc_1_ >& proc_1_ . ou t
6 echo Done > proc_1_ . p e r f
7

8 proc_2_.perf: proc_1_ . p e r f
9 xmodel − i t op_a_y0_ou t . t s −1 f r e q =3.4 e9 \

10 −o top_b_1__x0_av l . t s −2 f r e q =3.4 e9
11 mv top_a_y0_ou t . t s top_b_1__x0_av l . da t
12 proc_2_ >& proc_2_ . ou t
13 echo Done > proc_2_ . p e r f
14

15 proc_3_.perf: proc_1_ . p e r f
16 xmodel − i t op_a_y1_ou t . t s −1 f r e q =3.4 e9 \
17 −o top_b_2__x0_av l . t s −2 f r e q =3.4 e9
18 mv top_a_y1_ou t . t s top_b_2__x0_av l . da t
19 proc_3_ >& proc_3_ . ou t
20 echo Done > proc_3_ . p e r f
21

22 proc_4_.perf: proc_1_ . p e r f
23 #### . . . s i m i l a r t o proc [2] and proc [3] ###
24

25 proc_5_.perf: proc_1_ . p e r f
26 ### . . . s i m i l a r t o proc [2] and proc [3] ###
27

28 proc_6_.perf: proc_ [2−5] _ . p e r f
29 xmodel − i top_b_1__y0_ou t . t s −1 f r e q =3.4 e9 \
30 −o top_c_x0_a v l . t s −2 f r e q =3.4 e9
31 mv top_b_1__y0_ou t . t s top_c_x0_a v l . da t
32 xmodel − i top_b_2__y0_ou t . t s −1 f r e q =3.4 e9 \
33 −o top_c_x1_a v l . t s −2 f r e q =3.4 e9
34 mv top_b_2__y0_ou t . da t top_c_x2__av l . da t
35 xmodel − i top_b_3__y0_ou t . t s −1 f r e q =3.4 e9 \
36 −o top_c_x2_a v l . t s −2 f r e q =3.4 e9
37 mv top_b_3__y0_ou t . da t top_c_x2_a v l . da t
38 xmodel − i top_b_4__y0_ou t . t s −1 f r e q =3.4 e9 \
39 −o top_c_x3_a v l . t s −2 f r e q =3.4 e9
40 mv top_b_4__y0_ou t . da t top_c_x3_a v l . da t
41 proc_6_ >& proc_6_ . ou t
42 echo Done > proc_6_ . p e r f
43

44 clean:
45 rm proc_ [1−6] _ . ou t proc_ [1−6] _ . p e r f

Figure 5.2: Simulation Makefile for first mapping oftest2

104

Each of the four processors,proc[2], proc[3], proc[4], andproc[5], take 10s to run to

completion. To simulate these four processors, the single-processor core machine must run a total

of 40s. Note that the communication modeling time is being ignored because it is negligible in

comparison to the CR simulation time. Finally, theproc[6] CR takes approximately 10s to run

and simulate. The total time required to simulate thetest2 application on a single-core machine

is thus approximately 60s.

Consider now the scenario where the same X-Sim simulation isrun on a four-core chip multi-

processor (CMP) machine. As before, the simulation forproc[1] is run before anything else

in the application. This simulation takes 10s, same as before. The simulations forproc[2]-

proc[5] are dependent on theproc[1] simulation, but are not dependent on each other. Thus,

all the simulations for these four CRs can be run in parallel on the four processors of the CMP. Each

of the four simulations take 10s to run. When run in sequence,the four simulations took 40s to run.

In contrast, running the four simulations in parallel on theCMP only takes 10s total.

Finally, proc[6], which is dependent on the simulations forproc[2] - proc[5], is run on

a single core. This last simulation takes 10s. The total timefor this CMP parallel simulation of

test2 is thus 30s rather than the 60s for the single-core sequential simulation. This represents

a speedup of 2× to run the X-Sim simulation. The speedup possible through the use of a CMP

simulating parallel CRs is dependent on the parallelism present in the application mapping and on

the number of processors available on the CMP the simulationis being run on. Future work may

include the ability to distribute simulation work over a cluster of computers, allowing even more

speedup in the simulation of application mappings with large parallelism.

5.2 Substituting CR Simulations

Another technique for speeding X-Sim simulations is to substitute CR simulations with either trace-

based models or with analytic distribution models. It is important to note here that simulation

speedup using CR substitution is only possible when the CR has been defined as an X-Eval block

105

in a .smx file. Figure 5.3 shows a semantics file where the user has defined complete production

rules for each block.

1 block a
2 /∗ ... ∗/
3 rule a.src−> a.y0 and a.y1 and a.y2 and a.y3
4 block b1
5 /∗ ... ∗/
6 rule b1.x0−> b1.y0
7 block b2
8 /∗ ... ∗/
9 rule b2.x0−> b2.y0

10 block b3
11 /∗ ... ∗/
12 rule b3.x0−> b3.y0
13 block b4
14 /∗ ... ∗/
15 rule b4.x0−> b4.y0
16 block c
17 /∗ ... ∗/
18 rule c.x0 and c.x1 and c.x2 and c.x3−> c.sink
19 block top
20 /∗ ... ∗/
21 rule a.src−>c.sink

Figure 5.3: Semantics file for exampletest2

5.2.1 Using Trace-Based Models

If the user runs the simulation fortest2 and analyzes the results, they will find that the total

resultant application running time for the application is 30s. All the CR simulations are native

processor executions, so the simulation running time is also 30s. Note that the application running

time refers to the predicted running time of the deployed application, while the simulation running

time refers to the time it took to simulate the application toget the predicted time. For the initial

mapping oftest2, thus, both the application running time and the simulationrunning time are

60s.

If the first three (from a total of ten) executions for blockc were plotted, the timeline shown in

Figure 5.4 would be generated. This timeline has been specially modified to show each execution of

106

top_c_x0_avl.ts

top_c_x0_in.ts

top_c_x1_avl.ts

top_c_x1_in.ts

top_c_x2_avl.ts

top_c_x2_in.ts

top_c_x3_avl.ts

top_c_x3_in.ts

top_c_sink_tpt.ts

rule trigger

rule start

rule finish

 0 5 10 15 20

Time (s)

c.x0 and c.x1 and c.x2 and c.x3 -> c.sink

execution times = 1s, 1s, 1s

1st execution
2nd execution
3rd execution

Figure 5.4: Timeline for blockc (First mapping oftest2)

the production rule using a different symbol. Additionally, production rule trigger, start, and finish

times have also been added to show how execution times were calculated. Since we are looking at

theoretical numbers here, we find that the timeline gives us exactly 1s as the execution times for

each time blockc ran.

a

proc
[1]

b[1]

proc
[2]

y0

y1

y2

y3

src

x0
 y0

b[2]
x0
 y0

b[3]
x0
 y0

b[4]
x0
 y0

c

proc
[6]

x0

x1

x2

x3

sink

Figure 5.5: Second mapping for applicationtest2

107

1 simulate: proc_ [1 2 6] . p e r f
2 echo S i m u l a t i on done .
3

4 proc_1_.perf:
5 proc_1_ >& proc_1_ . ou t
6 echo Done > proc_1_ . p e r f
7

8 proc_2_.perf: proc_1_ . p e r f
9 xmodel − i t op_a_y0_ou t . t s −1 f r e q =3.4 e9 \

10 −o top_b_1__x0_av l . t s −2 f r e q =3.4 e9
11 mv top_a_y0_ou t . t s top_b_1__x0_av l . da t
12 xmodel − i t op_a_y1_ou t . t s −1 f r e q =3.4 e9 \
13 −o top_b_2__x0_av l . t s −2 f r e q =3.4 e9
14 mv top_a_y1_ou t . t s top_b_2__x0_av l . da t
15 xmodel − i t op_a_y2_ou t . t s −1 f r e q =3.4 e9 \
16 −o top_b_3__x0_av l . t s −2 f r e q =3.4 e9
17 mv top_a_y2_ou t . t s top_b_2__x0_av l . da t
18 xmodel − i t op_a_y3_ou t . t s −1 f r e q =3.4 e9 \
19 −o top_b_4__x0_av l . t s −2 f r e q =3.4 e9
20 mv top_a_y3_ou t . t s top_b_4__x0_av l . da t
21 proc_2_ >& proc_2_ . ou t
22 echo Done > proc_2_ . p e r f
23

24 proc_6_.perf: proc_1_ . p e r f proc_2_ . p e r f
25 xmodel − i top_b_1__y0_ou t . t s −1 f r e q =3.4 e9 \
26 −o top_c_x0_a v l . t s −2 f r e q =3.4 e9
27 mv top_b_1__y0_ou t . t s top_c_x0_a v l . da t
28 xmodel − i top_b_2__y0_ou t . t s −1 f r e q =3.4 e9 \
29 −o top_c_x1_a v l . t s −2 f r e q =3.4 e9
30 mv top_b_2__y0_ou t . da t top_c_x2__av l . da t
31 xmodel − i top_b_3__y0_ou t . t s −1 f r e q =3.4 e9 \
32 −o top_c_x2_a v l . t s −2 f r e q =3.4 e9
33 mv top_b_3__y0_ou t . da t top_c_x2_a v l . da t
34 xmodel − i top_b_4__y0_ou t . t s −1 f r e q =3.4 e9 \
35 −o top_c_x3_a v l . t s −2 f r e q =3.4 e9
36 mv top_b_4__y0_ou t . da t top_c_x3_a v l . da t
37 proc_6_ >& proc_6_ . ou t
38 echo Done > proc_6_ . p e r f
39

40 clean:
41 rm proc_ [126] _ . ou t proc_ [126] _ . p e r f

Figure 5.6: Simulation Makefile for second mapping oftest2

108

Now suppose that the user wants to try out a slightly different mapping for comparison, where blocks

b[1]-b[4] share the same processorproc[2]. This new mapping is shown in Figure 5.5. The

Makefile generated for this new mapping is shown in Figure 5.6. Re-running this simulation will

take 10s forproc[1], 40s forproc[2], and 10s forproc[6], giving a total simulation run

time of 60s. Blocksb[1] - b[4] are now combined into one single-threaded binary. Thus, in a

native execution simulation, only a single processor can beused to simulateproc[2], resulting in

a 40s simulation running time forproc[2].

Say that the user is confident that X-Eval blockc (corresponding to X Language blockc and CR

proc[6]) will perform about the same as in the previous simulation run. Recall that running X-

Eval on the simulation results for an application generatesexec.ts execution time trace files for

each X-Eval block. The execution time traces in these files can be applied to the newavl.ts

timing traces (from the re-simulation) to generatein.ts andout.ts timing traces.

Figure 5.7 shows theavl.ts that are generated for the input ports of X-Eval blockc (i.e., for CR

proc[6]). Theseavl.ts timestamps reflect the times data became available to theproc[6]

under the new mapping. Note the difference inavl.ts timestamps in this simulation and the

avl.ts timestamps in the previous simulation. The reason data became available at later times in

the simulation of the new mapping is that blocksb[1] - b[4] have to share processing time on a

single processor, and thus take longer to produce data.

Once newavl.ts times for blockc’s input ports have been generated in the re-simulation, the

execution times calculated from the previous simulation ofblock c (1s, 1s, 1s, ...) can be applied

to the newavl.ts times to generate newin.ts andout.ts times. Figure 5.8 shows the new

avl.ts generated by the re-simulation of the re-mapping, as well asthe newin.ts andout.ts

times generated by applying the execution times from beforeto the newavl.ts times.

First the rule trigger times are found by looking at theavl.ts times. For example, the first rule

trigger time is calculated to be 5s, because that is the that latestavl.ts time for the first input

record. Note that an input record for blockc consists of one event from all four input ports. At 5s,

there was data available at every input port, and so the rule was triggered for the first time. Since

the CR is not busy executing a previous triggering (this is the first triggering), it can start executing

109

top_c_x0_avl.ts

top_c_x0_in.ts

top_c_x1_avl.ts

top_c_x1_in.ts

top_c_x2_avl.ts

top_c_x2_in.ts

top_c_x3_avl.ts

top_c_x3_in.ts

top_c_sink_tpt.ts

 0 5 10 15 20

Time (s)

avl.ts timestamps for block c

1st set of input data
2nd set of input data
3rd set of input data

Figure 5.7:avl.ts times for blockc (Second mapping oftest2)

top_c_x0_avl.ts

top_c_x0_in.ts

top_c_x1_avl.ts

top_c_x1_in.ts

top_c_x2_avl.ts

top_c_x2_in.ts

top_c_x3_avl.ts

top_c_x3_in.ts

top_c_sink_tpt.ts

rule trigger

rule start

rule finish

 0 5 10 15 20

Time (s)

c.x0 and c.x1 and c.x2 and c.x3 -> c.sink

execution times = 1s, 1s, 1s

1st execution
2nd execution
3rd execution

Figure 5.8: Using execution time traces for blockc (Second mapping oftest2)

110

the production rule right away. The first rule start time is thus also 5s. All thein.ts times for

all input data is set to this time. A delay of 1s is applied to the rule start time to generate the rule

finish time to get 6s. A delay of 1s is used because that is the execution time recorded from the

previous X-Sim run of blockc. All the out.ts times are set to the rule finish time, 6s. All the

execution times recorded for blockc from the previous simulation run can be applied to the new

avl.ts times to get new timing traces for blockc without having to re-run the CR simulation for

proc[6]. This same technique can also be applied to blocka. Blocka is a source block, so there

are no data availability constraints on its operation. Execution times are applied one after the other

in a sequence to generatetop_a_src_tpt.ts andtop_a_y[0-3]_out.ts timing traces

for each execution of blocka.

The tool that uses execution traces as a substitute for re-simulating a CR is calledxmodel2. Using

xmodel2 as a substitute for a CR simulation can greatly reduce the time required to simulate

that CR. For example in the re-simulation oftest2, the re-simulation times forproc[1] and

proc[6] can be reduced to almost zero, making the total X-Sim simulation time 40s instead of

60s. This corresponds to a theoretical simulation speedup of 1.5×.

To make the simulation substitutions, lines 31, 34, 37, and 40 are deleted, because the CR simulation

substitution does not makes use of any data files. Additionally, line 5 from Figure 5.2 is replaced

by:

5 xmodel2 −x t e s t 2 . smx −b a

and line 41 is replaced by:

37 xmodel2 −x t e s t 2 . smx −b c

The template for invokingxmodel2 is:

xmodel2 -x <smxfile> -b <block>

111

The-x <smxfile> option suppliesxmodel2 with the.smx file which lists production rules

and timestamp files for each block, while the-b <block> option specifies which block to simu-

late. Each production rule for the specified block is run, with the correspondingexec.ts file used

to get execution times from the previous simulation run for each production rule. The correspond-

ing index.ts file is used byxmodel2 to figure out which ports a particular production rule run

output data to. Theindex.ts file stores the index of the output conjunction that each run of a

production rule output to.

Thexmodel2 tool is essentially a more complicated version of thexmodel edge communication

simulator discussed earlier in Chapter 3. Recall thatxmodel is used to simulate communication

over an edge by inputting a singleout.ts timing trace file, applying a constant delay (e.g. 5µs),

and outputting a singleavl.ts timing trace file. Thexmodel2 tool is more complicated, and

can be used as a substitute for CR simulations. The basic operation of thexmodel2 is that it reads

avl.ts timing trace files for input ports on a CR, applies an execution time delay, and writes

in.ts andout.ts timing trace files. If a testpoint is used as an input port for an X-Eval block,

there are noavl.ts times that need to be considered byxmodel2. It triggers and starts running

production rules whenever it is done executing the previousproduction rule run.

5.2.2 Using Analytic Distribution Models

Thexmodel2 tool can also use analytic distributions to model a CR’s timing performance. When

reading anexec.ts file, xmodel2 reads the trace file header to check if the user wants to use an

analytic distribution to model the execution time. If an analytic distribution is supplied,xmodel2

generates a random value from the distribution for each production rule run and uses that as the

execution time.

Currently, only a normal distribution is supported for the execution time analytic modeling. Two

header options,mean andstddev, can be set to values by the user to causexmodel2 to use

a normal distribution to model execution times. For example, to model blockc’s execution time

with a normal distribution with a mean of 1s and standard deviation of 0.001s, the header of the

top_c_rule1_exec.ts can be modified to the following:

112

\#XTSFile
mean=1
stdev=0.001
end

The header of a.ts file should always be 512 bytes long. The easiest way for usersto modify a

.ts header is to edit the file in insert mode, taking care to make sure the header file has the keyword

end as the last word.

113

Chapter 6

Benchmarks

This chapter presents results gathered from running X-Sim and X-Eval on sample X-Applications.

The first section presents results gathered from simulatingand analyzing a version of thetest1

application that has been used as an illustrative example throughout this thesis. The second section

presents the VERITAS application, a real world scientific application that has been developed using

the Auto-Pipe toolset.

6.1 Thetest1 Example Application

In thetest1 application, eachGENERATE block generates a single 32-bit unsigned number. These

individual numbers are passed through various blocks to calculate the average. To reduce the inter-

block data movement overhead associated with X Language generated code, arrays of 32-bit num-

bers are generated and processed rather than individual numbers. For the results presented in this

section, arrays of size 1000 were used. Each generate block is run one million times, resulting in a

total of one millionarrays of averages (or equivalently one billionindividual averages) being cal-

culated. Thetest1 application blocks are the same as before, withgen1 andgen2 feeding into

sum, sum feeding intohalf, and finallyhalf feeding intostore. The only difference now is

that arrays of numbers are passed around rather than individual numbers.

We will consider the problem of mapping this array version ofthetest1 application to a four-

processor SMP (Symmetric Multi-Processing) system. The actual physical system used to test out

114

deployments was an AMD Athlon 64 X2 4400+ system with four cores, 1MB L2 cache and 8GB of

system memory. A simple graphical representation of the architecture is shown in Figure 6.1, where

four processors are connected to each other by common sharedmemory. The figure also shows

the first mapping we will consider, where the entire application is mapped to a single processor,

proc[1].

sh
a

re
d

_

m

e
m

proc
[4]

processor

processor

proc
[3]

processor

processor

gen1

proc
[1]

gen2

sum
 half
 store

proc
[2]

Figure 6.1: A single-processor mapping oftest1

A simulation was initially run with no testpoints added, butwith cumulative statistics collection

active. Note that the X-Sim simulation for this mapping is simply running the compiled binary

natively on the target machine, and thus corresponds directly to running the actual physical deploy-

ment. Times for both the complete simulation run, as well as for the complete physical deployment

run, are thus the same value. The total measured time to run the entire application to completion

in this one-processor mapping was 267.5 seconds. Since the native machine 1-processor simulation

corresponds directly to the deployment binary, simulationvalidation (i.e., whether simulation run

times reflect actual deployment run times) is not required.

Figure 6.2 shows the cumulative execution time for each block, gathered from the built-in statistics

collection, over the entire run of thetest1 application. These values represent the total amount of

time spent in each block to process all million arrays (of a thousand numbers each) over the entire

application run.

115

138.2

80

100

120

140

160

e
 t

im
e
 (

s
)

48.9 48.9

18.2
12.9

0

20

40

60

80

gen1 gen2 sum half store

c
u

m
u

la
ti

v
e

block

Figure 6.2: Total processing time per block intest1

As a next experiment, testpoints were inserted at the start and end of the execution of thestore

block. These testpoints provide very detailed data about when the block started and ended process-

ing each array of numbers. For example, the first 6 execution time traces (i.e., processing for six

successive arrays) for thestore block are shown below:

171.9µs, 132.5µs, 135.1µs, 132.3µs, 149.8µs, 133.5µs

An inspection of all the execution times shows that the first execution took the longest, 171.9µs. The

rest of the execution times are in the range 132µs-150µs. The mean of all the execution time traces

is 135µs. It is possible that the reason that the first execution timeis higher than all subsequent

times is thatstore block incurs a small penalty associated with accessing a filefor the first time.

The distribution of execution times that was shown in Figure6.2 shows that thestore block takes

roughly half of the total application run time (i.e., 138.2s/ 267.5s). To improve performance, the

test1 application was re-mapped to two processors with only thestore block mapped to the

second processor, as shown in Figure 6.3.

X-Sim was used to simulate this mapping, with the shared memory link modeled with a zero delay

communication link. This simulation gave a complete application running time of 138.3s. Note that

in this case, a single processor was used to first simulate execution onproc[1], then to simulate

the communication (zero delay) betweenproc[1] and proc[2], and finally to simulate the

116

sh
a
re

d
_

m

e
m

proc
[4]

processor

processor

proc
[3]

processor

processor

gen1

proc
[1]

gen2

sum
 half
 store

proc
[2]

Figure 6.3: A two-processor mapping oftest1

execution onproc[2]. The X-Sim simulation thus predicts that the new dual-processor mapping

will result in a speedup of 1.93× (i.e., 267.5s/138.3s) over the single-processor mapping.

To validate these simulation results, the new mapping of thetest1 application was deployed on

the previously described AMD SMP. Two processors were utilized in this 2-processor mapping,

with actual shared memory the communication mechanism rather than the simplified zero-delay

communication model system that was employed by X-Sim. Running this application took 143.3s

with both processors running in parallel, showing a speedupof 1.87× (267.5s / 143.3s). Thus,

the predicted time given by X-Sim (138.6s) was 3.5% off from the actual deployed two-processor

mapping (143.3s). Application running time results for thesimulation and deployed runs for both

mappings is shown in Figure 6.4.

The 2-processor mapping, withstore on one processor and everything else on another processor,

thus shows an almost 2× speedup over the 1-processor mapping. Without splitting upthestore

block, it is not possible to get higher speedups using 3 or 4-processor mappings. This is because

the store block takes up almost half the processing, and in any distributed processing it will

stay the bottleneck, thus limiting the speedup to about 2×. More distributed mappings and varied

architectures will be explored in the next section, where a scientific application is the target for

performance optimization.

117

267.5 267.5

200

250

300

350

e
s

 (
s

)

138.6 143.3

0

50

100

150

1-core 2-core

a
p

p
 t

im
e

mappings

sim

deployed

Figure 6.4: Run times for 1-processor and 2-processortest1 mappings

6.2 The VERITAS Application

We now move on to simulating and analyzing the VERITAS [22] application, a gamma ray event

parametrization application from the field of astrophysics. The acronym VERITAS stands for Very

Energetic Radiation Imaging Telescope Array System. High energy gamma rays are emitted from a

variety of extraterrestrial sources, including pulsars, supernova explosions, and supermassive black

holes. The gamma rays strike the Earth’s atmosphere and produce Cherenkov radiation, electromag-

netic shockwaves in the blue through ultraviolet portion ofthe spectrum. This radiation is recorded

in the form of arrays of pixels by ground-based telescopes. Asignificant amount of processing must

be done on the raw signals to produce meaningful data that physicists can use. In a real-time de-

ployed system, data from the telescopes is streamed throughand processed on the fly. In an off-line

version of the system, data is read from files and processed. This is the version of the VERITAS

application that is considered in this section. A simple representation of the major blocks in the

VERITAS application is shown in Figure 6.5.

In this simplified representation of the VERITAS application, the first block, theFileRead block,

reads telescope measurements from files on disk. Data is organized intoEvents, where each

Event consists of 499 parallelPixels, where eachPixel is the signal output from a single

photon detector in a telescope detector array. Timing measurements presented in this section are

for application runs done with 5000Events. The next block after theFileRead block is the

Splitter block, which splits eachEvent up into its constituentPixels. The Splitter

118

Data Source

(
FileRead
)

1 Event
(Raw Data for 499 Pixels)

Splitter

Pipe[1]
 Pipe[6]

Merger

Data Sink

(
FileWrite
)

Raw Data for 1 Pixel

Charge for 1 Pixel

...

...

1 Event
(Charges for 499 Pixels)

Front

(
2.3%
)

Pipes

(
95.0%
)

Back

(1.0
%
)

other

(1.7
%
)

Processing Time

Figure 6.5: The VERITAS application

block outputs a batch of 6Pixels at a time, sending onePixel to the each of parallel downstream

Pipe blocks. With 6Pipes, theSplitter block thus produces 84 separate sequential batches

(499/6=83.2) of 6Pixels each. TheSplitter block sends nullPixels on the last batch to

even out the number ofPixels in it to 6. The number ofPipes is a customizable parameter, but

for now we will consider it to be fixed at 6.

After thePipe blocks have processed thePixel values intoCharge values, the data values are

streamed into aMerger block. This block merges together each set of 499 charges, performs

additional computations on the aggregateCharge values and creates a processedEvent. Finally,

theOutput block records the results into a file on disk. TheMerger block, like theSplitter

block, is smart enough to handle situations where the numberof Pixels (i.e., 499) does not divide

evenly into the number ofPipes (e.g., 6). Note that this block diagram is a highly simplified

representation of the actual VERITAS application, and [20]should be referred to for a more detailed

119

description of the application. On the left of the diagram, athree stage-division of the VERITAS

application has been shown, along with percentages for the portion of processing time spent in each

stage. These numbers are gathered from running the application on a single processor, and serve to

illustrate the processing needs of different parts of the application.

On a single processor of the AMD Athlon system, the entire VERITAS application run took 127.2s.

TheFileRead andSplitter blocks are grouped under theFront section, and accounted for

2.3% of the total running time. The middlePipes accounted for the bulk of the processing time,

taking up 95.0%. TheBack section took 1.0% of the application running time, while theremaining

1.7% of the running time was unaccounted for, taken up by processing outside the X-Language

blocks.

FFT

IFFT

Raw Data for 1 Pixel

Real Part

LowPass
 LowPass

Real Part

Imaginary Part

Imaginary Part

Charge for 1 Pixel

FFT

(
46.0%
)

LowPass

(
13.2%
)

IFFT

(40.8
%
)

Processing Time

Figure 6.6: APipe block from the VERITAS application

From these percentages, we can see that the bulk of the processing is done inside thePipes sec-

tion. A more detailed view of aPipe is shown in Figure 6.6. The first block in the pipe is theFFT

(Fast Fourier Transform) block, taking up 46.0% of the totaltime spent in aPipe. The two par-

allel LowPass filter blocks take up 13.2% of thePipe’s processing time, while the finalIFFT

(Inverse FFT) block takes 40.8%. Note that once again, this is a simplified view of the actual al-

gorithm. TheFFT andIFFT blocks shown in this diagram actually include some other blocks that

120

have been lumped along with the FFT and IFFT. These other blocks will be described later in this

section.

6.2.1 Partitioning the VERITAS Application

We now look at the problem of mapping the VERITAS applicationto a two processor system, and

consider both simulation and deployed results. From the distribution of processing times, we know

that the bulk of processing time is taken up in thePipe blocks. We will look at two approaches

to partitioning the VERITAS application to two processors,onevertical and onehorizontal (Fig-

ure 6.7). In the vertical mapping, theFront section and the threePipe blocks on the left are

mapped to one processor, while theBack section and the threePipe blocks on the right are mapped

to the other processor. In the horizontal mapping, everything feeding theIFFT blocks is mapped

to one processor (i.e., everything up to and including theLowPass blocks), while theIFFT and

downstream blocks are mapped to the other processor. Note that the horizontal mapping could be

made more balanced by moving theLowPass blocks fromproc[2] to proc[1]. However,

these blocks have been mapped toproc[2] for demonstrative purposes, making the horizontal

partitioning significantly more imbalanced than the vertical partitioning.

Front

Back

Front

Back

map2a
 :
Vertical Partition
 map2b
 :
 Horizontal Partition

FFT

LowPass

IFFT

proc
[1]

proc
[2]

proc
[1]

proc
[2]

Figure 6.7: Vertical and Horizontal 2-Core Mappings

Figure 6.8 shows the results. The bars labeledmap2a andmap2b show the total application run

time measured from X-Sim simulations as well as deploymentsof the two mappings. Also shown in

this figure is the running time for running the 1-processor mapping, as well as 3-processor mappings

121

that are described later. There are two main things to note here. The first is that the simulation times

are within 5% of the corresponding times measured on the multi-processor deployed application.

Also of note is that the vertical and horizontal mappings arerelatively close to each other, with times

of 70.2s and 75.4s. The vertical 2-processor mapping is a bitfaster than the horizontal 2-processor

mapping, due to the fact that it is a more balanced partitioning of the processing costs. Note that in

the figure, speedups (1.81× for map2a and 1.69× for map2b) over the 1-processor mapping are

shown on the y-axis rather than absolute times.

69.3s
73.4s

46.4s

61.5s

70.2s 75.2s

48.5s

63.2s

1.5

2

2.5

3

1
 p

ro
c
e

s
s

o
r

127.2s

0

0.5

1

map1 map2a map2b map3a map3b

S
p

e
e

d
u

p
 o

v
e
r

Mappings

sim

dep

Figure 6.8: VERITAS speedups on 2 and 3 processors

Front

Back

Front

Back

map3a
 :
Vertical Partition
 map3b
 :
Horizontal Partition

proc
[1]

proc
[3]

proc
[1]

proc
[3]

proc
[2]

proc
[2]

FFT

LowPass

IFFT

Figure 6.9: Vertical and Horizontal 3-Core Mappings

The next mapping problem was to run the VERITAS application on three processors. Once again,

two mappings were evaluated, one vertical and one horizontal. These mappings are shown in

Figure 6.9. In the vertical mapping, twoPipe blocks are mapped to each processor, while the

122

Front block is additionally mapped toproc[1] and theBack block is additionally mapped

to proc[3]. In the horizontal 3-processor mapping, theLowPass blocks are the only things

mapped toproc[2]. Everything upstream of theLowPass blocks is mapped toproc[1], while

everything downstream is mapped toproc[3].

The vertical mapping is a relatively balanced partitioning. The horizontal mapping, mapping how-

ever, is not very balanced. This is because the part (LowPass) of thePipe blocks mapped to the

second processor is not as significant a portion of total processing as theFFT andIFFT blocks.

Results from the 3-processor mappings, in terms of speedupsover the 1-processor mapping, are

shown on the bars labeledmap3a andmap3b in Figure 6.8. Once again the times from running

the X-Sim simulations of the two mappings are within 5% of thetimes gathered from running the

deployed mappings.

The vertical three-processor mapping shows a 2.6× speedup over the single-processor mapping,

while the horizontal three-processor mapping only shows a 2.0× speedup. This difference can be

attributed to the difference in balancing the processing load between the two mappings.

So far we have been running simulations where the communication bandwidth is effectively infinite,

with zero communication delay on edges. We will now considercases where the communication

bandwidth is limited, and the effect this has on different mappings.

6.2.2 Communication Bandwidth Modeling

Recall that communication modeling in X-Sim is done on aper edgebasis, with a fixed communi-

cation delay per transfer on that edge. To simulate a IR (Interconnect Resource) bandwidth, the total

bandwidth on that IR must be split up among the different edges that are mapped to that IR. Each

edge is allocated a fixed bandwidth proportional to the amount of data transferred over that edge,

compared to the total amount of data transferred over all edges mapped to that IR. For example, if

an IR (Interconnect Resource) has a 1Gbps fixed bandwidth capacity, and two edges carrying equal

amounts of data are mapped to this IR, then each edge is allocated 500Mbps bandwidth. If one edge

carries four times as much data as the other, then the bandwidth allocated to the first edge would be

123

800Mbps, while the bandwidth allocated to the other edge would be 200Mbps. The total amount of

data transferred over each edge can be determined either by an analytic calculation, or by examining

the size of the data trace files for each edge after running an X-Sim simulation.

Once a bandwidth has been allocated to each edge mapped to an IR, the delay per data transfer

on each edge is calculated by dividing the amount of data transferred on a push by the edge’s

bandwidth. For instance, if a push on a 200Mbps bandwidth edge consists of 100 bytes, then the

communication delay on that edge is (100B / 200Mbps =) 4µs.

map3b

250

300

350

400

450

u
n

 T
im

e
 (

s
)

map1 map2a map2b map3a map3b

map1

map2a

map2b

map3a

0

50

100

150

200

50

0 200 400 600 800 1000 1200

A
p

p
li

c
a

ti
o

n
 R

u

Communication Bandwidth (Mbits/s)

Figure 6.10: Effect of bandwidth on VERITAS running times

Figure 6.10 shows the running times gathered from simulations of the different VERITAS map-

pings considered so far. For each mapping, the application running time is mapped against the total

communication bandwidth on a shared IR. Shared memory was effectively an infinite-bandwidth

shared IR for VERITAS. This plot shows the effect of different simulated shared IRs with different

communication bandwidths. Consider the data plots on the very right side of the plot. These repre-

sent application running times for each mapping when the total communication bandwidth is 1Gbps

(i.e., equal to the theoretical bandwidth on Gigabit Ethernet).

124

In this scenario, the communication bandwidth is high enough that it is not a bottleneck. As would

be expected, the one-processor mapping,map1, takes the longest time, 127.2s. Next slowest is the

horizontal two-processor mapping,map2b, which takes 74.2s. The vertical two-processor mapping

map2a, with a more balanced partitioning of processing, takes a little less time, 68.4s. Among

the three-processor mappings, the horizontal mappingmap3b at 61.5s is only a little faster than

map2a. The vertical three-processor mappingmap3a is the fastest of all the mappings, with an

application running time of 46.4s.

It is worth noting at this point that processing by the theFFT block results in a very large expansion

of data. TheLowPass blocks operate on this expanded data, before theIFFT blocks perform a

data reduction. Thus, the edges to and from theLowPass blocks are very high traffic compared to

any other edges. The horizontal two-processor mapping,map2b, forces data going to theLowPass

blocks to travel over the communication mechanism, using uplimited bandwidth. The horizontal

three-processor mapping,map3b, maps both the edges going to and coming from theLowPass

blocks to the communication resource, and thus forces twiceas much data over the same limited

bandwidth.

As the communication bandwidth is decreased to 750Mbps, andthen to 500Mbps, we can see

that the running times for all of the mappings stay relatively constant. This is because at these

levels of communication bandwidth, the communication mechanism is not yet a bottleneck. As the

bandwidth is reduced to 250Mbps, the running time formap3b increases, while the running times

for all the other mappings stays constant. This is because a communication bandwidth of 250Mbps

is a bottleneck formap3b, but not for any of the other mappings.

When the bandwidth is reduced to 100Mbps, it becomes a bottleneck for bothmap2b as well as

map3b. With twice as much traffic over the bottleneck communication link, map3b has a running

time that is roughly twice the running time formap2b. The bandwidth is not a bottleneck for any

of the other mappings, and so their running times are still the same as before.

Even when the bandwidth is halved to 50Mbps,map1, map2a, andmap3a have the same running

time as they did before, indicating that the communication link is still not a bottleneck for these

125

mappings. Meanwhile,map2b andmap3b take twice as long to run the VERITAS application on

a bandwidth of 50Mbps as they did to run on a bandwidth on 100Mbps.

6.2.3 Performance Scaling with Multiple Processors

In the next experiment, we will see the X-Sim simulation results from mapping the VERITAS

application to 1, 2, 3, 4, 8, and 16-processor systems. In theprevious section, we saw that a vertical

partitioning of the VERITAS blocks results in relatively balanced distribution of the processing

load. We will take a 16-Pipe version of VERITAS and map thePipe blocks evenly among the

processor resources. For example, the 4-processor mappinghas fourPipe blocks mapped to each

processor. For the 3-processor mapping, a 15-Pipe version of the application was used with five

Pipe blocks mapped to each processor.

11.4s

10

12

14

16

18

r
1
 p

ro
c
e

s
s

o
r

ideal

sim

134.0s
69.1s

47.7s
35.5s

19.6s

0

2

4

6

8

1 2 3 4 8 16

S
p

e
e
d

u
p

 o
v

e
r

Number of processors

sim

dep

Figure 6.11: VERITAS performance scaling with number of processors

The results for simulation runs (in terms of speedups over the 1-processor mapping) for each of

the multi-processor mappings are shown in Figure 6.11. Alsoshown in this figure are the deployed

application run times for the 1 through 4-processor mappings, and the ideal speedups for each

mapping. Results in the figure are shown as speedups over the 1-processor mapping.

The ideal speedup for each mapping is equal directly to the number of processors. For example,

the ideal speedup for a 4-processor system is 4. The graph shows that X-Sim predicts times that

126

roughly follow the ideal speedups, with the difference fromthe ideal increasing with the number

of processors. The likely cause for this is that theFront andBack sections are always mapped

to the first and last processors, and only thePipe section processing is evenly distributed among

the different processors. Say the processing onFront takes f seconds, while the processing on

a Pipe takesp seconds. For the 8-processor mapping,proc[1] has theFront section and 2

Pipesmapped to it (and takesf + 2p seconds). For the 16-processor mapping,proc[1] has the

Front section and 1Pipe mapped to it (and takesf + p seconds). The speedup (forproc[1])

from 8-processor to 16-processor would thus be(f + 2p)/(f + p). Going a step back, the speedup

from 4-processor to 8-processor can similarly be calculated to be(f + 4p)/(f + 2p). Thus, the

speedup from 8-processor to 16-processor is less than the speedup from 4-processor to 8-processor.

A four-processor system was used to test out physical deployments of the VERITAS application

using shared memory as the communication mechanism. As shown by the graph, the 1 and 2-

processor deployments match the simulation predictions fairly closely. The deployed four-processor

application ran approximately 6% slower than the predictedX-Sim simulation. One possible reason

for this discrepancy is that in utilizing all 4 processors available on the deployment system, the

application is more likely to be interrupted by OS processeswhich need to run simultaneously.

Another reason for discrepancies is that shared memory is able to hide its latency by allowing

computation to occur in parallel with memory accesses. In mappings where a processor must both

read from and write to memory, it is harder for shared memory to hide its delay, and this adds to

processing time.

The comparison of simulated and deployed times helps validate X-Sim simulations of zero-delay

communications. The simulation times for the 8-processor and 16-processor systems, on the other

hand, show how X-Sim can be used to predict times for application runs on systems that are not

available currently.

6.2.4 Simulation of A Heterogeneous System

So far we have considered various multi-processor mappingsfor VERITAS. In this section, we

will look at a mapping of VERITAS that is targeted to a heterogeneous architecture consisting of

127

processor and FPGA resources. In this section, we will use X-Sim to analyze the effect of three

different factors on application performance, and how theyinteract with each other. The first factor

is communication bandwidth. We already saw in the previous section how, after a certain critical

level, communication bandwidth can strongly affect the performance of an application. The second

factor we will consider is parallelization. We will see how the performance of VERITAS can change

when it is configured with 1, 2 or 3Pipes. The third and final factor ismapping. Mapping is one

aspect the user (and X-Opt once it has been developed) can easily change, and, as we shall see,

potentially dramatically improve the performance of an application.

The heterogeneous architecture used as a target in this section is shown in Figure 6.12. In this

mapping, two processors and an FPGA are connected to each other on a PCI-X bus. In the de-

ployment system, the two processors are again AMD Athlon 64 X2 4400+ cores. The FPGA is a

Virtex II 6000 running at 100MHz. The PCI-X bus is running at 100MHz with width 64bits, giving

a theoretical maximum bandwidth of 800MBps.

fpga

PCI
-X
proc
[1]

proc
[2]

processor

processor

FPGA

Figure 6.12: Target heterogeneous architecture for VERITAS

The driver used to communicate between the processors and the FPGA over the PCI-X are described

in [4]. In this paper, the authors report sustained throughputs of 815MBps over a 133MHz PCI-X

bus while transferring a steady stream of data. The scaled value for the 100MHz PCI-X bus used in

the current setup is a throughput of 613MBps (815MBps× 100MHz/133MHz).

128

CoreFFT

CoreIFFT

LowPass
 LowPass

ZeroPad

Convert

Chopper

data expansion

(relative to amount

entering Convert) :

2x

1x

16x

10.7x
 10.7x

10.7x
 10.7x

16x

0.17x

Figure 6.13: Detailed view of a VERITASPipe

Before going into the details of a mapping done to this heterogeneous architecture, it is neces-

sary to examine a VERITASPipe in more detail. Figure 6.13 shows aPipe with theFFT and

IFFT blocks expanded out to show more detail. TheFFT block has been replaced by aConvert,

ZeroPad, andCoreFFT block. Note that theCoreFFT does the bulk of the computation that

was done inFFT block. TheConvert andZeroPad blocks do not spend much time processing,

but they do result in data expansions. The data output from theZeroPad block is a 16× expanded

version of the input into theConvert block.

Similarly, theIFFT block from before has been replaced byCoreIFFT andChopper blocks. In

this case, theChopper block does not spend a large amount of time processing compared to the

129

CoreIFFT block, but it does do a very significant data reduction. The amount of data going out of

theChopper block is 96 timeslessthan the amount of data entering it.

At the time of writing this thesis, hardware implementations (i.e., VHDL or Verilog descriptions)

of the Convert andChopper blocks were still in the process of development. As a result,a

constraint was that these two blocks had to be mapped to processors. The rest of the blocks in

VERITASPipes however had hardware (specifically VHDL) implementations available, so it was

possible to map them to an FPGA. The first mapping,mapA1, is shown in Figure 6.14. VERITAS

has been configured to have onePipe. In this mapping, blocksZeroPad throughCoreIFFT

were mapped to thefpgaCR (Computational Resource). Two more mappings,mapA2 andmapA3

were also developed. These are simply 2-Pipe and 3-Pipe versions ofmapA1. Figure 6.15 shows

mapA2.

CoreFFT

CoreIFFT

LowPass
 LowPass

ZeroPad

Convert

Chopper

2x

1x

16x

10.7x
 10.7x

10.7x
 10.7x

16x

0.17x

Front

Back

proc
 [1]

fpga

proc
 [2]

Figure 6.14:mapA1: 1-Pipe VERITAS mapped to a heterogeneous architecture

First, a heterogeneous simulation ofmapA1was run, with the PCI-X IR bandwidth set to 640MBps

(rounded from the maximum of 615MBps). X-Sim used native execution simulations forproc[1]

andproc[2], and a ModelSim simulation for the FPGA. The first simulationwas run with only

130

CoreFFT

CoreIFFT

LowPass
 LowPass

ZeroPad

Convert

Chopper

2x

1x

16x

10.7x
 10.7x

10.7x
 10.7x

16x

0.17x

Front

Back

proc
 [1]

fpga

proc
 [2]

CoreFFT

CoreIFFT

LowPass
 LowPass

ZeroPad

Convert

Chopper

2x

1x

16x

10.7x
 10.7x

10.7x
 10.7x

16x

0.17x

Figure 6.15:mapA2: 2-Pipe VERITAS mapped to a heterogeneous architecture

a single event for the entire simulation. This was done because the ModelSim simulation for the

FPGA processing a single event took about 10 minutes. We would like to do multiple X-Sim simu-

lations of thousands of events each, but the time required torun hardware simulations is prohibitive

for such large experiments. Analytic model substitution was used to speed up the simulation. Ex-

amining the output timestamps from the ModelSim simulationshowed that data was produced every

6.6µs. This corresponded roughly to the fixed clock delay associated with thecoreFFT block, the

longest delay block inside the pipeline mapped to the FPGA.

A simulation ofmapA1 was run with theZeroPad throughCoreIFFT blocks mapped to apro-

cessorinstead of an FPGA, with the VERITAS application run on 5000 events. This generated all

the trace data files that were used in subsequent simulationsof the heterogeneous system. A hetero-

geneous simulation was then run with the FPGA analytically modeled with a fixed execution time

of 6.6µs. The X-Sim simulation yielded a time of 18.3s for the entireVERITAS application run of

5000 events for the heterogeneous system.

131

As a comparison, the deployed system was run on the two processors and a physical FPGA. This

deployed run gave a complete application run time of 96.3s, much higher than given by the X-Sim

simulation (18.3s). (Note: The actual deployed application experiment was for 15000 events, and

yielded a time of 289s. This time has been scaled back for 5000events.)

Recall, however, that the X-Sim simulation was run with a communication bandwidth of 640MBps.

The actual driver used for communication over PCI-X are heavily optimized for a steady stream of

large chunks of data. The X-Com generated code for the deployed system, however, attempts to

send smaller chunks of data, along with a high overhead ofcommandor headerdata. This results

in a lot less sustained throughput. In fact, the sustained throughput formapA1 can be calculated by

dividing the total amount of data transferred over PCI-X (1028MB) by the total application run time

(96.3s). The result of the above calculation gives an effective bandwidth of 10.67MBps, compared

to the maximum possible streaming bandwidth of 613MBps cited earlier.

The effective bandwidth is thus much less when using the driver with small chunks of data with

lots of overhead data. It might be possible in the future to improve the effective communication

bandwidth, for example, by improving how the generated X Language code uses the driver, or by

sending larger chunks of data at a time. A series of X-Sim simulations were run to see the effect this

would have on the performance of themapA1 heterogeneous mapping of VERITAS. Simulations

were also run to determine the performance of the 2-Pipe mappingmapA2 and 3-Pipe mapping

mapA3 under different communication bandwidth restrictions. Figure 6.16 shows the results from

these experiments.

For themapA1 mapping, we can see linear improvements in effective bandwidth result in lin-

ear improvements in application performance. Once the effective bandwidth is increased to about

80MBps, the interconnect ceases to be a bottleneck, and the running time settles at around 18.3s.

Analytically, total processing time spent on the FPGA throughout the whole application run is given

by:

execution time× number of executions

= 6.6µs× (499×5000) = 16.5s

132

80

100

120

u
n

 T
im

e
 (

s
)

mapA1 mapA2 mapA3

0

20

40

60

0 100 200 300 400 500 600 700

A
p

p
li

c
a

ti
o

n
 R

u

Effective Communication Bandwidth (MBytes/s)

Figure 6.16: Performance ofmapA1,A2,A3 heterogeneous mappings

The running time given by the simulation (18.3s) is thus close to the analytically derived minimum

application run time imposed by the FPGA inmapA1 (16.5s). The Virtex II 6000 has the resources

to fit up to 3Pipes. Since thePipes are the bulk of processing in the VERITAS application, one

might want to speed up processing by running morePipes in parallel on the FPGA. To reflect this,

mapA2 andmapA3 were developed.

As can be seen on the left side of the graph, the same communication bottleneck that applied

to mapA1 still applies tomapA2 andmapA3, and these mappings get the same performance as

mapA1. In simulations ofmapA2 andmapA3 where the effective communication bandwidth lim-

itations were eased, communication ceased to be the bottleneck. Recall that the new bottleneck for

mapA1 had been the FPGA. FormapA2, with twice as much processing power on the FPGA, the

new bottleneck isproc[2] instead. The total processing time forproc[2]was found to be 10.5s

from the X-Sim simulation, and this forms a lower bound for how much time the whole application

run takes. The total application run time formapA2 was found to be 13.1s, not much higher than

the total time spent just onproc[2]. In a bandwidth rich scenario,mapA2 (13.1s) took less time

thanmapA1 (18.3s).

133

The time taken byproc[2] in mapA3 (15.4) was found by the simulation to actually be higher

than inmapA2 (10.5s), possibly due to the effect of more pipes on the processing times of the

Chopper blocks. When bandwidth was not a limiting factor,mapA3 (18.4s) thus wound up taking

about as much time asmapA1. To summarize, the execution times and bottlenecks for the different

scenarios are given in Table 6.1. Note that the resource withthe highest utilization (i.e., processing

time) was determined to be the bottleneck.

Bandwidth = 640MB Bandwidth = 10.67MB
App. Run Time Bottleneck App. Run Time Bottleneck

mapA1 18.3s FPGA 96.3s PCI-X
mapA2 13.1s proc[2] 96.5s PCI-X
mapA3 18.4s proc[2] 96.7s PCI-X

Table 6.1: Summary of performance results formapA1,A2,A3

The most important thing to note is that all three mappings suffer heavy performance penalties

when the effective bandwidth is low. There are two ways to improve their performance. One is to

improve the effective communication bandwidth, thus moving right along the performance curve

in Figure 6.16. Another method, explored now, is to make better use of the available effective

bandwidth by producing less traffic on the PCI-X bus.

Figure 6.17 shows an alternate mapping,mapB1, of the VERITAS application configured with a

singlePipe. In this mapping, theChopper block has been moved to the FPGA. Critically, this

mapsChopper’s output edge rather than its input edge on PCI-X. This causes the total amount of

traffic on the PCI-X IR (sum of data entering and exiting the FPGA) to be reduced by a factor of

8.3× (18×/2.17×). Once again,mapB2 andmapB3 are simply 2 and 3-Pipe versions ofmapB1.

The results from simulating these mappings for different communication bandwidths is shown in

Figure 6.18. For comparison, the simulation results formapA2 are also included.

Immediately, we can see that all three new mappings have goodperformance even with limited

effective communication bandwidth. With 8.3× less data being transferred over the PCI-X link, the

mapB mappings are able to operate for most of the different effective communication bandwidths

without the communication link becoming a bottleneck.

134

CoreFFT

CoreIFFT

LowPass
 LowPass

ZeroPad

Convert

Chopper

2x

1x

16x

10.7x
 10.7x

10.7x
 10.7x

16x

0.17x

Front

Back

proc
 [1]

fpga

proc
 [2]

Figure 6.17:mapB1: An alternate 1-Pipe VERITAS heterogeneous mapping

80

100

120

T
im

e
 (

s
)

mapA2 mapB1 mapB2 mapB3

0

20

40

60

0 100 200 300 400 500 600 700

A
p

p
li

c
a

ti
o

n
 R

u
n

 T

Effective Communication Bandwidth (MBytes/s)

Figure 6.18: Performance ofmapA2,B1,B2,B3 heterogeneous mappings

135

10

12

14

16

18

n
 T

im
e
 (

s
)

mapB1 mapB2 mapB3

0

2

4

6

8

10

0 100 200 300 400 500 600 700

A
p

p
li

c
a
ti

o
n

 R
u

n

Effective Communication Bandwidth (MBytes/s)

Figure 6.19: Performance ofmapB1,B2,B3 heterogeneous mappings

A close-up of the bottom part of themapB performance graph is shown in Figure 6.19. The simula-

tion times fromproc[2] showed thatproc[2] consistently took about 5 seconds total processing

time throughout simulations of all themapBmappings. The total application run time thus is lower-

bound by 5 seconds. On the right side of Figure 6.19, where communication bandwidth is not a

limiting factor, mapB1, mapB2, andmapB3 have application run times of about 16.5s, 8.3s, and

5.5s respectively, relatively close to the total time spentprocessing on the FPGA. Processing times

for the analytic model of the FPGA can be determined by the calculations below:

mapB1 FPGA time = 6.6µs×499×5000 = 16.5s

mapB2 FPGA time = 6.6µs×(499/2)×5000 = 8.2s

mapB3 FPGA time = 6.6µs×(499/3)×5000 = 5.5s

For mapB3, all threePipes can run in parallel, so we only need to analyze one of them. The

execution time for aPipe is still determined by theCoreFFT’s latency (i.e, 6.6µs). Only a third

136

of the pixels per event (i.e., 499/3 pixels per event) are processed by thisPipe, and there are a total

of 5000 events.

An effective communication bandwidth of 10.67MBps, the value from the physical deployment of

mapA1, resulted in application running times of 16.5s formapB1 and 11.6s formapB2 andmapB3.

This compares favorably with the times of about 96.5s for allthemapA mappings. Switching from

mapA to mapB and mapping theChopper block(s) to the FPGA brings substantial performance

benefits, mostly because much less data is transferred over the limited effective communication

bandwidth on the PCI-X IR. A summary of the results from simulations involvingmapB1, mapB2,

andmapB3 are shown in Table 6.2 and can be compared to the results presented previously in

Table 6.1.

Bandwidth = 640MB Bandwidth = 10.67MB
App. Run Time Bottleneck App. Run Time Bottleneck

mapB1 16.6s FPGA 16.5s FPGA
mapB2 8.3s FPGA 11.6s PCI-X
mapB3 5.5s FPGA 11.6s PCI-X

Table 6.2: Summary of performance results formapB1,B2,B3

Assuming the effective communication bandwidth stays the same, switching frommapA1 tomapA2

or mapA3 is not likely to significantly improve performance much. Switching frommapA1 to

mapB1 is likely to improve performance substantially, from 96.5sto 16.5s,if the effective commu-

nication bandwidth stays the same. It is possible that the effective bandwidth formapB1 might be

less since it transfers smaller sized data at a time across the PCI-X bus thanmapA1. However, even

if the effective bandwidth halves, a speedup overmapA1 can be expected.

Switching to 2Pipes with mapB2 (11.6s) frommapB1 (16.5s) may result in a slight speedup as

the bottleneck switches from the FPGA to the IR (again assuming constant effective bandwidth).

However, adding a thirdPipe is unlikely to improve performance because the bottleneck is now

the IR and not the FPGA. It follows that adding even morePipes in an attempt to parallelize the

VERITAS application, for instance by employing a larger FPGA such as the Virtex 5 LX330, is not

likely to improve performance because the FPGA is simply notthe bottleneck.

137

So far, we have not made any mention ofproc[1]’s processing time in any of the simulations.

This is because for all the simulations,proc[1], with Front always mapped to it, always took

about 5.0s to run. Thus, it was never a bottleneck in any of thesimulations run so far. It does

however, represent a lower limit on how fast the mappings we have considered so far can run. It

is interesting to note thatmapB3, with 3 Pipes, came close (5.5s) to this when unconstrained by

bandwidth limitations. Theproc[1] run time is another limitation that argues against attempting

to map more than threePipes to the FPGA.

1 processor

2
80

100

120

140

n
 T

im
e
 (

s
)

map1 map2a map3a mapA2 mapB2

2 processors

3 processors

Heterogeneous A

Heterogeneous B

0

20

40

60

80

0 100 200 300 400 500 600 700 800

A
p

p
li

c
a
ti

o
n

 R
u

n

Effective Communication Bandwidth (Mbits/s)

Figure 6.20: Comparison of processor-only and heterogeneous mappings

As a final comparison, Figure 6.20 shows the run times found for the 0-800Mbits/s range for map-

pings targeted to processor-only architectures (map1, map2a, map3a), as well as for mappings

targeted to heterogeneous architectures using both processors and an FPGA (mapA2, mapB2). FP-

GAs have the advantage that computations such as FFTs can be done much faster on them than on

general purpose processors. The main issue with using FPGAsis to make sure that the communi-

cation bandwidth does not become a bottleneck. This can be done by adopting smarter mappings

(e.g.,mapB2 instead ofmapA2), as well as by increasing the amount of effective communication

bandwidth available.

138

Note thateffectivecommunication bandwidth has been an important concept throughout the simula-

tion and analysis of the VERITAS application. This is a reasonable assumption when the bandwidth

of the IR is the main factor affecting its performance. However, other factors can affect the commu-

nication link’s performance too. For example, there might be a high per-transfer overhead associated

with a particular IR. To model this, a fixed overhead delay canbe added to the delay for a simulated

transfer over an edge. In cases where this per-transfer overhead is high, better performance can be

gained by reducing the total number of transfers done, even if the total amount of data transferred

stays the same. For the VERITAS application, this could be achieved by modifying the algorithm so

that multiplePixel elements are grouped together before being transferred over thePCI-X link.

Discovering performance characteristics of particular IRs requires additional experimentation with

deployed applications on the physical IRs.

Throughout discussions in this section, we have seen how factors such as effective communication

bandwidth, application parallelization, and mapping choices affect the performance that can be

expected from different mappings of an application. Simulating different scenarios and analyzing

the results can help the user, and in the future X-Opt, make intelligent decisions in optimizing high

performance streaming applications such as VERITAS.

139

Chapter 7

Summary

7.1 Conclusion

The Auto-Pipe toolset is useful for developing streaming parallel applications that are mapped to

heterogeneous architectures. Within this toolset, X-Sim provides a mechanism to run simulations

and gather results. It automates the task of simulating different parts of the application in a federated

manner, creating full data and timing traces of applicationexecutions where specified. Data traces

can be inspected to debug the application. Timing traces canbe used to analyze the performance of

the application.

X-Eval provides a mechanism to analyze timing traces generated by an X-Sim simulation run. It

generates a timeline visualization that allows the user to grasp the relative timing of various opera-

tions in the application. Additionally, X-Eval provides summary performance metrics like average

execution time and average waiting time for blocks and computational resources.

X-Sim makes use of various techniques to speed up simulations, useful where many successive sim-

ulations must be run, as well as where individual simulationruns are lengthy. This thesis presented

various test cases to demonstrate the use of X-Sim and X-Evalin simulating and analyzing stream-

ing applications. It also presented validation of results,where possible, against physically deployed

applications.

140

7.2 Contributions and Implementation Status

Contributions presented in this thesis include:

• X-Sim, a federated simulation tool that conveniently and efficiently simulates streaming ap-

plications mapped to heterogeneous architectures

• X-Eval, an analysis tool that can be used to analyze timestamps generated by X-Sim

• simulation speedup techniques

• two sample applications,test1 and VERITAS, with detailed simulation, analysis, and vali-

dation

X-Sim is operational and has been extensively used by multiple users successfully. Validation of

native execution simulations has been carried out for largeapplications (e.g. VERITAS) on Sym-

metric Multi Processing (SMP) systems using shared memory.Validation needs to be done for other

target systems.

Testpoints are currently only supported forC implementations of blocks. Support for testpoints

should also be added forVHDL implementations.

X-Eval is operational and has been used to generate timelines as well as execution time metrics for

various applications. The analytic modeling of computational resources currently only works for

one input edge and one output edge. The analytic modeling needs to be updated to support multiple

input and output edges.

7.3 Future Work

Support for the simulation of additional resources, e.g. for Graphics Processing Units (GPUs) and

Network Processors (NPs), need to be added to X-Sim as these resources are added to the Auto-Pipe

framework.

141

Currently X-Sim runs each federate simulator in isolation,reading all the required data and times-

tamps from trace files at the beginning of simulation, and writing all the generated data and times-

tamps to trace files at the end of simulation. X-Sim keepsall input and output data and timestamps in

memory while running the simulation, so that file access doesnot affect the native execution perfor-

mance. This has obvious drawbacks in terms of working memoryrequirements. Techniques should

be investigated on how to get around finite memory resources.For example, one possible technique

is to ‘pause’ an internal simulation clock, dump out all the output data and timestamps collected

so far, and then resume the simulation. That particular technique has the drawback that file-access

mid-simulation can alter disk and chip cache, and thus affect the native execution performance.

X-Opt needs to be developed more concretely. This will help pin down the exact requirements in

the automated optimization step, and thus guide future requirements and development directions for

X-Eval.

The user must currently manually write the semantics file that is used as an input by X-Eval. A

modified version of X-Dep should be developed that generatesa skeleton semantics file based on

the X Language description of the application.

The current communication model is a fixed delay per edge model, where the fixed delay must be

assigned by the user manually. This can be streamlined by a system where the user simply assigns

a fixed bandwidth to an Interconnect Resource (IR), and X-Simautomatically figures out the delay

associated with each transfer on each edge on that resource.X-Sim can run an initial simulation to

find out the total traffic on each edge, and allocate bandwidthproportional to traffic to each edge.

The delay on an edge can then be calculated by dividing the size of a transfer by the allocated

bandwidth.

A library of communication performance models must be builtup with rigorous experimentation

with X Language applications on different physical communication links. This will allow commu-

nication simulation in X-Sim to be done with empirical numbers that have been validated, and thus

allow more accurate performance results to be generated forapplication mappings to a wide variety

of architectures.

References

[1] Jung Ho Ahn, William J. Dally, Brucey Khailany, Ujval J. Kapasi, and Abhishek Das. Eval-
uating the imagine stream architecture. InProc. 31st Annual International Symposium on
Computer Architecture (ISCA’04), page 14. IEEE Computer Society, 2004.

[2] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with iteration.Communi-
cations of the ACM, 20:519–526.

[3] James O. Calvin and Richard Weatherly. An introduction to the high level architecture HLA
runtime infrastructure RTI. In14th Workshop on Standards for the Interoperability of Dis-
tributed Simulations, 1996.

[4] Roger D. Chamberlain, Stever Miller, Jason White, and Dan Gall. Highly-scalable recon-
figurable computing. InProc. of 8th Military and Aerospace Programmable Logic Devices
International Conference, September 2005.

[5] Judith S. Dahmann, Richard M. Fujimoto, and Richard M. Weatherly. The Department of
Defense High Level Architecture. InProceedings of the 1997 Winter Simulation Conference,
pages 142–149, 1997.

[6] Judith S. Dahmann, Frederick Kuhl, and Richard Weatherly. Standards for simulation: As
simple as possible but not simpler the high level architecture for simulation.SIMULATION,
71(6):378–387, 1998.

[7] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, et al. Ptolemy II: Heterogeneous
concurrent modeling and design in java. Technical Report Memorandum UCB/ERL M99/44,
University of California, Berkeley, July 1999.

[8] DMSO. Defense Modeling and Simulation Office.www.dmso.mil.

[9] Mark A. Franklin, Eric J. Tyson, James Buckley, Patrick Crowley, and John Maschmeyer.
Auto-pipe and the X language: A pipeline design tool and description language. InProc. of
Int’l Parallel and Distributed Processing Symp., April 2006.

[10] Saurabh Gayen, Eric J. Tyson, Mark A. Franklin, and Roger D. Chamberlain. A federated
simulation environment for hybrid systems. InPrinciples of Advanced and Distributed Simu-
lation, 2007.

[11] GNU. The GNU Compiler Collection.http://gcc.gnu.org.

[12] National Instruments. Labview.http://www.ni.com/labview.

142

[13] R. Jagannathan and A.A. Faustini. The GLU programming language. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, November 1990.

[14] Frederick Kuhl, Richard Weatherly, and Judith S. Dahmann. Creating Computer Simulation
Systems: An Introduction to the High Level Architecture. Prentice Hall, 1999.

[15] Mentor Graphics Corp. ModelSim.http://www.model.com.

[16] Michael Taylor. btl debugging.
http://cag.csail.mit.edu/raw/memo/19/btl-debug.html.

[17] NI. National Instruments.http://www.ni.com/.

[18] The Ptolemy Team. The ptolemy kernel - supporting heterogeneous design.RASSP Digest
Newsletter, 2(1):14–17, April 1995.

[19] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:a language for streaming applica-
tions. Proc. Inter. Conf. on Compiler Construction, April 2002.

[20] Eric J. Tyson. Auto-pipe and the X language: A toolset and language for the simulation,
analysis, and synthesis of heterogeneous pipelined architectures. Master’s thesis, Washington
University in St. Louis, Department of Computer Science andEngineering, 2006.

[21] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,
R. Barua, J. Babb, Amarsinghe, and A. Agarwal. Baring it all to software: Raw machines.
IEEE Computer, 30(1):86–93, September 1997.

[22] T. C. Weekes, H. Badran, S. D. Biller, I. Bond, S. Bradbury, J. Buckley, D. Carter-Lewis,
M. Catanese, S. Criswell, and W. Cui. VERITAS: the very energetic radiation imaging tele-
scope array system.Astroparticle Physics, 17(2):221–243, May 2002.

143

Vita

Saurabh Gayen

Date of Birth November 26, 1983

Place of Birth Dhaka, Bangladesh

Degrees B.S. Computer Science and Computer Engineering, December 2007
M.S. Computer Engineering, May 2008

Professional
Societies

Institute of Electrical and Electronics Engineers (IEEE)

Publications Roger D. Chamberlain, Eric J. Tyson, Saurabh Gayen, Mark A. Franklin,
Jeremy Buhler, Patrick Crowley, James Buckley. Application Develop-
ment on Hybrid Systems. InProceedings of the 2007 ACM/IEEE Con-
ference on Supercomputing (SC07). November 2007.

Saurabh Gayen, Eric J. Tyson, Mark A. Franklin, Roger D. Chamber-
lain. A Federated Simulation Environment for Hybrid Systems. InPro-
ceedings of the 21st International Workshop on Principles of Advanced
and Distributed Simulation (PADS ’07). May 2007.

Saurabh Gayen, Eric J. Tyson, Mark A. Franklin, Roger D. Chamber-
lain, Patrick Crowley. X-Sim: A Federated Heterogeneous Simulation
Environment. InProceedings of the 10th High Performance Embedded
Computing (HPEC) Workshop. September 2006.

Roger Chamberlain, John Lockwood, Saurabh Gayen, Richard Hough,
Phillip Jones. Use of a Soft-Core Processor in a Hardware/Software
Codesign Laboratory. InProceedings of the 2005 IEEE International
Conference on Microelectronic Systems Education (MSE ’05). June
2005.

May 2008

144

Short Title: X-Sim and X-Eval Gayen, M.S. 2008

