
Parameterized Workload Adaptation for Fork-Join
Tasks with Dynamic Workloads and Deadlines

Marion Sudvarg
Jeremy Buhler
Roger D. Chamberlain
Chris Gill
James Buckley
Wenlei Chen

Marion Sudvarg, Jeremy Buhler, Roger D. Chamberlain, Chris Gill, James
Buckley, and Wenlei Chen, “Parameterized Workload Adaptation for Fork-
Join Tasks with Dynamic Workloads and Deadlines,” in Proc. of IEEE 29th
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), August 2023, pp. 232-242.

McKelvey School of Engineering
Washington University in St. Louis

Dept. of Physics
Washington University in St. Louis

School of Physics and Astronomy
University of Minnesota, Twin Cities

Parameterized Workload Adaptation for Fork-Join
Tasks with Dynamic Workloads and Deadlines

Marion Sudvarg, Jeremy Buhler,
Roger D. Chamberlain, Chris Gill, Jim Buckley

Washington University in St. Louis
{msudvarg, jbuhler, roger, cdgill, buckley}@wustl.edu

Wenlei Chen
University of Minnesota, Twin Cities

chen6339@umn.edu

Abstract—Many real-time systems run in dynamic environ-
ments where exogenous factors inform task workloads and
deadlines, which may not be known prior to job release. A
job of a task that would otherwise miss its deadline may
adapt to remain schedulable by executing in a degraded state
that reduces its workload. We suggest that such a task should
adjust parameters of its computation over multiple dimensions
to maintain schedulability while minimizing loss of utility, which
we discuss for highly parallel fork-join tasks executing on a fixed
number of dedicated processors. We identify the parameterized
degrees of freedom over which workload can be adjusted, then
characterize the impact of workload reduction on response time
and utility. From this, we generate a Pareto-optimal surface over
which efficient search, interpolation, and extrapolation enable
online selection of task parameters at time of job release.

We apply this approach to the Advanced Particle-astrophysics
Telescope, a planned mission to perform real-time gamma-ray
burst (GRB) localization using SWaP-constrained embedded
hardware aboard an orbiting platform. Due to GRBs’ dynamic
and uncertain nature, the workload and deadline may not be
known prior to job release. Nonetheless, even for bright GRBs
that may otherwise take longer than a second to localize on
candidate embedded hardware, our approach often enables sub-
degree accuracy while meeting a 33 ms imposed deadline.

I. INTRODUCTION

Many real-time systems execute in dynamic environments

where exogenous factors inform task workloads and latency

requirements, which therefore may not be known prior to job

release. If a job’s workload cannot be completed in time,

it nonetheless might be able to adjust its computation to

provide an imprecise result prior to the deadline: anytime

workloads [1] stop executing when their budget is exhausted,

providing the current state of their results, while others support

discrete execution modes corresponding to varying degrees of

precision that can be selected prior to execution [2], [3].

However, anytime or discrete semantics may not fully

capture the dimensions over which a task’s workload can

adapt to meet its deadline. Some computations have multiple

parameterized degrees of freedom that can be adjusted from

their nominal values. These can be categorical (e.g., selecting

from among a collection of algorithms) or numeric. Numeric

parameters typically take discrete values (e.g., the number

of iterations to refine a result), though at fine granularity,

they can be approximated as a continuous state space (e.g.,

the proportion of input data selected from a large set for

The research presented in this paper was supported in part by NSF
grants CSR-1814739, CNS-17653503, CNS-2229290 (CPS) and NASA grant
80NSSC21K1741 and was performed on behalf of the APT collaboration.

processing). If an instance of a task is not schedulable when

run using its desired computational mode, its utilization may

be reduced or compressed by adjusting these parameters to

guarantee completion while minimally degrading result utility.

In this paper, we consider the problem of parameterized

workload adaptation for highly parallel fork-join tasks with

dynamic workloads and deadlines executing on a fixed number

of dedicated cores. We compress the task’s workload by

adjusting its parameters so as to maximize the utility of

its result within the available running time. For example, in

simultaneous localization and mapping (SLAM) systems [4],

result utility can be scored objectively according to the relative

pose error (RPE) [5]; compression should therefore seek to

minimize RPE within the constraints of schedulability.

Several challenges must be addressed in the face of dynamic

workloads and deadlines. Characterizing the objective as a

closed-form function over multiple parameterized dimensions

may be difficult, and finding optimal values for each parameter

that satisfy the problem’s dynamic constraints may be ineffi-

cient for online compression. Furthermore, while parameters

must be assigned to satisfy schedulability under worst-case

assumptions, avoiding unnecessary worst-case pessimism (i.e.,

overcompression) remains a goal of this work.

Our solution is to quantify loss empirically for a large

set of states (i.e., joint parameter settings), constructing a

monotonically-decreasing hull of hyperplanes between these

states. The set of all states is reduced to a Pareto-optimal

surface by sorting candidate states in order of worst-case

response times for a target platform and removing those for

which a greater response time yields a lower utility. At job

release, this surface can be efficiently searched to find a state

satisfying the dynamic constraints imposed by the job-specific

workload and deadline. Selected parameter values define a

computational mode prior to execution. Despite conservative

parameter selection to guarantee schedulability under worst-

case execution times, some application semantics enable less

pessimism. For example, an execution time budget may be

assigned to anytime subtasks to allow additional execution if

assigned work is completed early, and alternative approaches

of slack reclamation (such as we describe in Sec. VIII) are

sometimes possible.

We apply our techniques to the Advanced Particle-

astrophysics Telescope (APT) [6], a planned orbital observa-

tory that will detect and localize gamma-ray bursts (GRBs)

in real time using onboard embedded hardware that is highly

232

2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)

2325-1301/23/$31.00 ©2023 IEEE
DOI 10.1109/RTCSA58653.2023.00035

constrained in size, weight, and power (SWaP). Localization is

a highly parallel fork-join task with a workload and deadline

that depend on the unique characteristics of each GRB [7].

We demonstrate that our approach enables efficient online

compression and slack reclamation, allowing for rapid and

accurate localization of even bright transient GRBs that may

provide only a short window of opportunity for observation.

II. BACKGROUND AND RELATED WORK

Several approaches have been explored for adapting work-

loads under resource-constrained recurrent execution. Elastic

scheduling models offer frameworks for dynamic adaptation

of task utilizations to avoid system overload. The elastic

model for implicit-deadline tasks on a uniprocessor [8], [9]

compresses each task’s utilization proportionally to its elas-
ticity, a value indicating its relative adaptability. The model

was extended to constrained-deadline tasks [10], [11], to

multiprocessors [12], to federated scheduling of parallel real-

time tasks for which periods [13] and workloads [14] are

compressed over continuous ranges, and to tasks for which dis-

crete sets of candidate utilizations may be accommodated [15].

Under federated scheduling, each parallel task executes on

cores dedicated according to a sufficiency condition [16];

task utilizations are compressed so that the assigned cores fit

within those available. While several of these models compress

workloads, they do not describe how best to adapt computation

under the applied constraints. The discretely elastic model

considers specific modes of execution, but this does not

capture the multiple degrees of freedom over which a task’s

workload may be compressed. Recent work [17] suggests

using subtask-specific objective functions but is limited to

end-to-end sequential execution and does not consider how

compressing a subtask may affect its successors.

In [18], the authors survey protocols for switching be-

tween execution modes without missing deadlines. An adap-

tive framework in [19] degrades task execution according to

“service levels,” allowing for a user-defined notion of quality

of outcome. A similar approach was presented for parallel

LiDAR object detection [3] and applied to the PointPillars [20]

encoder, aiming to maximize utility while maintaining schedu-

lability guarantees by profiling execution times and assigning

accuracies to discrete states. Such approaches may allow for a

more objective measure of performance than traditional elastic

scheduling, which compresses task utilizations proportionally

to their elasticity. However, they are limited in practice to a

small set of discrete states. We propose to allow adaptation

according to a user-defined objective function over multiple

degrees of freedom involving continuous or discrete numeric

values and categorical variables.

Recent work on dynamic deadline-driven execution [21]

presents a novel adaptation scheme for tasks with

environment-dependent deadlines and execution times.

This data-driven execution model provides handlers for

deadline misses, allowing downstream components in the

computational pipeline to adapt in response. The authors

argue that periodic execution models, which use conservative

WCET estimates, fail “to maximize the runtime-accuracy

trade-off due to the large skew between the mean and

maximum runtime,” which typically “leaves plenty of slack.”

In Sec. IX, we demonstrate an approach that reclaims slack

to provide higher utility while still using conservative WCET

estimates to prevent deadline misses.

Our work focuses on highly parallel fork-join tasks, for

which it is straightforward to characterize a closed-form worst-

case response time under a nearly optimal schedule as a

function of its compressible parameters. Many real-world

applications [22], [23], including APT’s GRB localization

task [7], [24], [25], can be described as such.

III. PROBLEM STATEMENT

We consider recurrent, constrained-deadline, highly parallel

fork-join tasks. Each released job is characterized by workload

C, representing its worst-case execution time on a single

processor core; and relative deadline D, the interval after

its release by which it must complete execution. The task’s

workload and deadline may be dynamic but are fixed for a

given instance at job release. Such a task τ can be decomposed

into a sequence of subtasks {τi} with workloads Ci, where

each subtask is either sequential (s) or parallel (p), as is

illustrated in Fig. 1 in Sec. V. We assume the task executes

on a fixed number of dedicated cores n; as these are highly

parallel tasks for which parallel subtasks have workloads that

can be distributed evenly across processors, the worst-case

response time R can be expressed as

R =
∑

τi is s

Ci +
∑

τi is p

Ci

n
(1)

Every prior instance of a constrained-deadline task must

complete before activation of its next job. This implies that the

task is schedulable if and only if R ≤ D for each instance.

In this paper, we address the scenario where a job is

released with a workload and deadline for which it is not

schedulable. We consider computationally elastic tasks having

multiple execution states associated with a set of application-

specific parameters {aj} over which workload can be adjusted

according to one of the following semantics, allowing response

time to be expressed as a monotone non-decreasing function

R({aj}):
1) The workload of one or more subtasks may be a function

Ci({aj}) of discrete or continuous numeric parameters;

these must be monotone non-decreasing in each parameter.

Sec. VI provides examples of subtasks having execution

times linear or quadratic in a continuous numeric parameter

representing the amount of input data to process.

2) A discrete numeric parameter (e.g., a number of iterations)

may change the sequence of subtasks. In this work, we

consider the case where such a parameter defines the

number of identical copies of a sequence of subtasks.

3) A categorical parameter may change the computational

mode (e.g., the algorithm used) of one or more subtasks.

In this case, each mode may impose its own workload as

233

a function Ci({aj}) of the other parameters. To match

the semantics of (1), we assign numeric values to each

category, with the requirement that a larger numeric value

is assigned to a mode with a greater workload.

Each parameter aj is constrained by some maximum value

amax
j . These values may be either constants or monotone non-

decreasing functions of another parameter. The uncompressed
workload is defined as that associated with each parameter

taking its maximum value. Formally, a task with a dynamic

workload is one for which some values amax
j are unknown

prior to job release. If a job is not schedulable, its workload

is compressed by selecting values {aj} such that its response

time does not exceed its deadline. Compression should attempt

to maximize the utility of the system by minimizing some

application-specific loss function L({aj}) of these parameters.

We consider applications for which L is monotone non-

increasing with each parameter, i.e., doing more work yields

a better result. We formulate our problem as follows:

min
{aj}

L({aj}) (2a)

s.t. R({aj}) ≤ D (2b)

∀j , amin
j ≤ aj ≤ amax

j (2c)

Here, amin
j constrains the parameter to some minimum value

and is assumed to be known a priori.

The problem, then, is to identify the parameters over which

a task’s workload may be compressed; to characterize their

impact on the task’s response time and the utility of its result;

and finally to use this information to solve optimization prob-

lem (2) efficiently online to adjust a released job’s computation

to adapt to overload.

IV. SOLUTION OVERVIEW

In this section we provide a solution overview for highly

parallel fork-join tasks executing on a fixed number of dedi-

cated cores. In subsequent sections we then illustrate and eval-

uate our approach in the context of a real-world application.

Offline Steps. The following steps are performed first offline,

enabling an efficient online solution search.

1© Identify Parameters. Parameters may be identified

offline by inspection of the application and should match the

semantics listed in Sec. III. The parameters for adapting APT’s

GRB localization task are described in Sec. VI.

2© Characterize an Objective Function. Utility loss for

an application can be quantified empirically for a large set of

input state combinations. For each parameter aj , a number

bj of values within the state space should be considered.

The complete Cartesian product of these values should be

tested, except where some parameter is constrained by an-

other. Smaller values of bj reduce the number of samples

for efficiency of offline analysis, but denser sampling may

allow for more accurate characterization of the objective (and

the input space may still be reduced in 4© for use online).

The selection is left up to the application designer, though

for categorical parameters, each possible value should be

considered. In Sec. VI, we identify 4 parameters and test 2657

input states for GRB localization.

For x numeric and y categorical parameters, the objective

will be a function of x+ y dimensions, characterized as
∏

y bj
x-dimensional manifolds. Fitting a closed-form function to the

losses observed at the sampled states may be difficult and

error-prone. Instead, our approach allows the loss function to

be represented as a monotonically decreasing hull formed by

hyperplanes connecting the space of observed states. Construc-

tion from a Pareto-optimal subset of states is described in 4©.
3© Quantify Response Time. The task’s worst-case re-

sponse time can be quantified by decomposing it into con-

stituent subtasks, then profiling subtask execution times in-

dividually or in groups that share dependence on common

parameters. Constituent execution time functions Ci({aj})
can thus be characterized for those parameters satisfying

semantic (1) from Sec. III. For those parameters aj satisfying

semantic (2), some subset of subtasks is duplicated by the

parameter value, equivalent to scaling the workload of the

individual subtasks by aj . This can be incorporated into the

expression Ci({aj}). From this, Eqn. 1 can be used to compute

response times as functions of execution times, allowing easy

adjustments of core assignments for the application on a

given platform. For categorical parameters, the response-time

functions for the Cartesian product of their values must be

identified, resulting in up to
∏

y bj functions of the form

R({aj}) =
∑

τi is s

Ci({aj}) +
∑

τi is p

Ci({aj})
n

. (3)

While the set of functions grows exponentially in the

number of categorical parameters, realistically this can be rep-

resented more compactly. Such parameters typically represent

the selection between a handful of available computational

modes or algorithms to apply to a phase of the application.

These are selected by the application designer and so may be

as small in number as desired. For example, in Sec. VI, a

single categorical parameter selects one of two algorithms for

an initial approximation of a gamma-ray burst’s direction; this

selection only affects the response time of the approximation

stage subtasks. As the results in Sec. IX demonstrate, a single

such parameter is sufficient for our target application.

4© Generate Pareto-Optimal Surface. Candidate states are

sorted by response time, after which any state with a higher

loss than the previous state (i.e., a higher response time results

in a worse outcome) is discarded. As noted in Sec. VIII, for

APT, this procedure yields fewer than 100 candidate states for

each platform we tested. From these, we construct hyperplanes

connecting adjacent states for interpolation. For each candidate

state s, we find the points from the original set of states

having the next larger value of each parameter respectively

with lower error,1 holding constant the other parameters in

s. These hyperplanes can be extended for extrapolation to

parameter values beyond the ranges used to infer the surface.

1Due to the often stochastic nature of characterizing loss, some adjacent
states may not have a lower objective value for a larger parameter value.

234

Online Steps. To implement online task compression, we

modify the task to include an initial sequential subtask that

calculates its response time according to the revealed con-

straints on workload parameters at time of release. In an over-

load scenario, the subtask should then solve the optimization

problem (2) and apply the resulting parameters. Realizing

computational mode changes is application-specific, but we

outline an OpenMP-based approach for GRB localization in

Sec. VII. As this subtask adds to task workload, it must remain

efficient and be accounted for in the response time.
5© Check for Overload. When a job of a dynamic task

arrives, the initial subtask must determine if the job will

complete in time. To do so, it must calculate response time

based on the parameter constraints revealed. We assume that

each function Ci({aj}) can be computed in time linear in

the number of numeric parameters x, so for a given input

state, response time can be calculated in time O(xdm) for m
subtasks and xd numeric parameters with dynamic constraints.

6© Online Solution Search. If a job’s response time ex-

ceeds its deadline, the Pareto-optimal surface can be searched

for a set of parameters that satisfy schedulability. Binary search

over the sorted set of candidates finds the state s with the

greatest response time not exceeding the deadline, from which

a Pareto-optimal solution is then obtained by interpolation or

extrapolation. This can be performed efficiently by considering

each parameter in s connected to an adjacent state in 4©, with

the other parameters held constant, solving in constant time for

the value yielding a response time equal to the deadline. The

best such value obtained (i.e., the one corresponding to the

state with the lowest objective function value) is chosen. This

takes total time linear in the number of numeric parameters.

In the case that the state s has values that exceed the

dynamic parameter constraints imposed on the job, iterative

search down from s can be used to find the best state s′

for which all parameters are within the constraints. However,

parameter extrapolation from this state is not guaranteed to

find a Pareto-optimal set of parameters, though the values

will have a higher expected utility than s′. This is not a

problem for our target application, as its dynamic constraints

(described in Sec. VI) are defined by the amount of input

data available, and our real-world test cases (described in

Sec. IX) all provide sufficient input data. As such, exploration

of alternative approaches (such as storing multiple surfaces,

or falling back to iterative search over the complete set of

candidate states generated in 3©) are deferred to future work.
7© Adapt Task Execution. For subtasks with discrete

modes, execution should proceed according to the state defined

by the input parameters, but this may result in overcom-

pression as worst-case response times are often pessimistic.

For collections of subtasks with anytime workloads, workload

compression can instead be applied by calculating WCETs

corresponding to the given input parameters. This portion of

the task may then be allowed to proceed until the compressed

WCET or response-time limit has been reached, whereupon

it is stopped and the current result is used. Some applica-

tions may provide other opportunities to reduce pessimistic

overcompression via slack reclamation; we describe one such

approach for GRB localization in Sec. VIII.

V. TARGET APPLICATION: GRB LOCALIZATION

The Advanced Particle-astrophysics Telescope (APT) [6] is

a planned space-based observatory that will support multi-

wavelength and multi-messenger astrophysics [26]–[28] by

rapidly detecting gamma-ray bursts (GRBs) and directing

follow-up instruments to observe GRBs across broad ranges

of wavelengths and emission modalities. APT is designed for

a nearly full-sky field of view, but many follow-up instruments

have narrow apertures (often <1◦) and so must point almost

directly at the GRB source. APT will do onboard detection

and localization of GRBs in real-time, enabling prompt com-

munication of precise source directions to those instruments.

We consider reconstruction and localization of Compton-

regime GRBs using techniques presented in [24], [25]. Thou-

sands to millions of gamma-ray photons enter APT’s detector

from a single burst. Each may Compton-scatter one or more

times before being photoabsorbed; each interaction is referred

to as a hit, and a single photon’s hits are collectively referred

to as an event. Event reconstruction, followed by localization

of the GRB by combining multiple reconstructed events, both

execute on a fixed number of cores in SWaP-constrained

hardware flying aboard the orbital platform.

The GRB localization task forms the highly parallel fork-

join computation illustrated in Fig. 1. The task can be decom-

posed into a sequence of subtasks that collectively form the

three stages detailed in Sec. VI. Each instance of this task,

corresponding to the detection and localization of a unique

GRB, is highly variable in its workload and deadline. The

workload depends on the number of detected events, which

itself is a function of the burst’s spectral-energy distribution,

angle with respect to the detector, and fluence (a measure

proportional to the number of incident gamma rays) [7]. The

deadline may depend on the burst duration, which can range

from around 10 ms to 20 minutes in the Compton regime [29]–

[32]. It also may be informed by the communication latency

and slewing speeds of available follow-up instruments. Speed-

of-light delays to ground-based devices impose an extra ≈5 s

of latency, but APT could be instead be coupled with an

onboard optical telescope (similarly to Swift’s UVOT [33]).

For highly transient bursts, the window of opportunity for

follow-up observations may be very brief, though the timescale

of prompt emissions in secondary modalities is still an open

question in astrophysics. The localization task therefore must

Reconstruction Approximation

…

Refinement

… …

1 iteration

…

Fig. 1: APT’s highly parallel fork-join localization task.

235

Param Stage Description Constraint
nr Reconstruction Events to reconstruct 30 ≤ nr ≤ ne

α Approximation Approximation technique α ∈ {FibSpiral, ApproxCircles}
ns Approximation Number of annuli to sample for joint log-likelihood max{10, na} ≤ ns ≤ min{1000, na}
x Refinement Refinement iterations x ∈ {0 . . . 20}

TABLE I: Compressible parameters for APT localization task.

adaptable to guarantee completion before a deadline that

may not be known a priori, even for highly transient bursts

generating large volumes of data.

To characterize system performance, we simulate the in-

strument’s response to several GRBs with the APTSoft pack-

age [34] that uses the Geant4 simulator [35] to generate

independent gamma rays from a simulated source and track

their physical interactions in the detector, then models the

response of the front-end electronics. We generate sets of 106

gamma rays using two spectral-energy distributions character-

istic of short GRBs [36]. We use two Band [37] functions

with parameters α=−0.5, Epeak=490 keV, β∈{−3.2,−2.1} to

capture a range of spectral profiles. Spectral energies are in

[100 keV−30MeV] to match the Compton regime of the Fermi

Gamma-ray Burst Monitor (GBM) sensitivity [38], data from

which the distributions presented in [36] were obtained. For

each spectrum, we first generate a normally-incident set, and

then the sets described by the Cartesian product of {30◦, 60◦}
polar angles and {0◦, 45◦} azimuth angles. This gives a

total of 10 synthetic GRBs across 5 incident angles and 2

spectral energy distributions, which we use to characterize

the pipeline’s localization accuracy and worst-case execution

times.

VI. PARAMETERS AND LOSS FUNCTION

Workloads in each of APT’s three pipeline stages may be

compressed to fit a dynamic deadline known only when each

job is released. We aim to minimize an objective function

informed by the angular error in the predicted GRB source

direction, while still guaranteeing that the deadline is met. The

associated compressible parameters are outlined in Table I.

Stage 1: Event Reconstruction. For each event, we use

the tree search algorithm from [24] to infer the temporal

order of the first two hits, constraining the gamma ray’s

source vector to an annulus on the unit sphere with thickness

Fig. 2: Impact of nr on localization error. Note that axes are logarithmic.

determined by uncertainties in detector spatial and energy

measurements [39]. In simulation, events with more than 6

hits are extremely uncommon (<0.01%), so we exclude these

from reconstruction to bound the tree traversal. Physically

impossible reconstructions are dropped, with the remaining na

annuli passed to localization. Reconstruction can degrade by

dropping events: for ne reconstructable events, we can select

nr≤ne events to actually reconstruct. As ne is typically on

the order of several thousand or more, we approximate nr as

a continuous numeric variable. Reconstruction is an anytime

workload: the stage can stop at any point.

To characterize the impact of compressing nr, we iterated

over a geometric progression of 11 values from 30 to 30 000,

using uncompressed values for all other input parameters. For

each value of nr, we generated 10 000 inputs to the pipeline

by randomly sampling 1000 subsets of reconstructable events

from each of the 10 simulated GRBs. Fig. 2 plots the discrep-

ancy in degrees between the inferred and true source direction

against the number of events reconstructed, with the vertical

bars enclosing the extent of the distribution. Because of the

high variance in localization error for a given value of nr,

rather than using expected error as the objective, we instead

use 68% containment (representing the 68th percentile error,

a commonly used metric for GRB localization accuracy [34],

[40]). These values are shown in Fig. 2, which illustrates a

roughly log-log linear dependence on nr.

Stage 2: Initial Source Approximation. We use multilateration

over reconstructed annuli to infer the GRB’s source direction.

This involves an initial rough approximation that is then

iteratively refined in Stage 3. We consider two approximation

techniques (α) both of which execute over a subset ns≤na of

the input annuli. Our prior work [24], [25] fixed ns=1000 and

used only the first approximation technique (ApproxCircles).

It uniformly distributes 720 points around each of 20 circles

selected at random from ns, finds the point from each with

the greatest joint log-likelihood over all ns annuli, then uses a

weighted mean to approximate the source vector. The second

technique (FibSpiral) is new to this work. It generates 100

points almost uniformly over the surface of the unit sphere

with a Fibonacci spiral. For each point, it finds the joint log-

likelihood over all ns annuli, then approximates the source

vector as a weighted mean over the top 10. Approximation

requires both α and ns to be specified prior to computation.

While FibSpiral is much faster (requiring only 100·ns

log-likelihood computations, versus 14 000·ns for ApproxCir-
cles), it has less fidelity in its estimate for equal values of ns.

In this work, we constrain ns to the range [10, 1000], which

with the choice of α approximates two continuous state spaces

that are non-overlapping in execution time but may overlap in

result accuracy, as illustrated in Fig. 3. Measured 68% con-

236

Fig. 3: Comparison of approximation techniques.

tainments for the approximated source error (degrees) without

refinement are plotted against the number of log-likelihood

computations required by values of ns for each technique.

For this plot, no subsequent refinement is performed, and nr

is fixed at 30 000. 68% containments for each ns were obtained

from 1000 trials over each simulated GRB.

Stage 3: Iterative Source Refinement. The approximation

result is subsequently refined using a modified version of the

iterative linear least-squares approach in [24], [25] over all

reconstructed data. Refinement executes for x iterations (or

until convergence). Whereas our prior work fixed x=20, now

we allow the task to adapt by compressing x to a discrete

numeric value in the range {0. . .20}. Iterative refinement can

be terminated at any time, with the result of the last com-

pleted iteration (or the initial approximation, if no iterations

completed) used as the estimated source direction of the GRB.

Iterative refinement is highly dependent on the quality of

the initial source estimate provided by approximation, as

illustrated in Fig. 4. Each value of (ns, x) is plotted against

the 68% containment of localization error (degrees) over 1000

trials from our 10 synthetic GRBs with nr=1893 (the smallest

Fig. 4: Impact of approximation on iterative refinement.

value in our geometric progression for which ns can reach

1000) and using the ApproxCircles technique. With fewer

annuli sampled for approximation, more refinement iterations

are necessary to converge on an accurate result. With more

refinement iterations, the impact of a poor initial estimate is

reduced.

VII. RESPONSE TIMES

Each of APT’s three stages of CPU computation (illustrated

in Fig. 1) has an initialization subtask preceding a parallel sub-

task, with the work evenly split across cores using OpenMP.

We measure execution times for each subtask, then use these

to calculate response times for each stage as functions of the

tunable parameters.

Reconstruction processes events independently, with its

workload linear in nr after a constant-time initialization. To

characterize response time, we fit a linear function on the three

hardware platforms listed in Table II, all with CPU throttling

disabled, running the pipeline at the highest real-time priority.

These platforms span a range of performance in available

SWaP-constrained hardware while remaining tolerant to harsh

environmental conditions. Though not rad-hardened, they are

candidates to fly aboard a scheduled Antarctic high-altitude

balloon demonstration mission, and our group has flown the

Atom-based platform on previous such missions.

On each platform, we profile the reconstruction stage for

values of nr from 3000 to 27 000 in steps of 3000. For each

value, we collect 20 response times from each of our 10

simulated GRBs. To better capture the worst case, we collect

200 times from each GRB for nr=30 000. We fit a linear

function over the maximum times for each nr, then offset by

the greatest positive residual to guarantee the function upper-

bounds all 3200 observed response times. Measured worst-

case times and characteristic functions are illustrated in Fig. 5.

Note that on the Atom, the extra samples for nr=30 000
produced a slight outlier in measured WCET, indicating that

the platform’s timing is slightly less stable than the RPi3 or

RPi4. Nonetheless, with our offsetting technique we were still

able to meet all deadlines considered in Sec. IX.

Approximation initializes with results from reconstruction

then samples annuli at random, with which it computes joint

log-likelihoods for each of its candidate source directions.

Aggregation and sampling are performed by a single subtask

0 5 10 15 20 25 30

Thousands of Events Reconstructed

0

0.5

1

1.5

2

2.5

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

105

Rpi3
R

r
 = 8.22n

r
 + 891

Rpi4
R

r
 = 3.55n

r
 + 2.68e+03

Atom
R

r
 = 3.06n

r
 + 7.33e+03

Fig. 5: Reconstruction stage worst-case response times.

237

Platform Abbr. CPU Cores Freq. RAM Linux Kernel
Raspberry Pi 3 Model B+ RPi3 Cortex-A53 (ARMv8) 4 700MHz∗ 1GB 5.15.61
Raspberry Pi 4 Model B RPi4 Cortex-A72 (ARMv8) 4 600MHz∗ 4GB 5.15.61

WINSYSTEMS EBC-C413 Atom Intel Atom E3845 4 1.92GHz 8GB 5.15.0

TABLE II: Hardware platforms evaluated. ∗While the Raspberry Pi models tested support higher CPU clock
speeds, we use the lower frequencies recommended in [41], [42] to prevent throttling and instability.

0 100 200 300 400 500 600 700 800 900 1000

Annuli Sampled

0

2

4

6

8

10

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

105

Rpi3
R

a
 = 823n

s
 + 1e+04

Rpi4
R

a
 = 362n

s
 + 4.87e+03

Atom
R

a
 = 186n

s
 + 6.72e+03

(a) ApproxCircles

0 100 200 300 400 500 600 700 800 900 1000

Annuli Sampled

1000

2000

3000

4000

5000

6000

7000

8000

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

Rpi3
R

f
 = 5.49n

s
 + 2.1e+03

Rpi4
R

f
 = 3.48n

s
 + 2.57e+03

Atom
R

f
 = 1.82n

s
 + 1.44e+03

(b) FibSpiral
Fig. 6: Approximation stage worst-case response times.

that precedes an independent subtask for each candidate source

direction (100 for FibSpiral and 14 400 for ApproxCircles).

A final subtask aggregates the results to find an average source

vector, weighted by the joint log-likelihoods. Execution times

for each subtask scale linearly with the number of sampled

annuli ns. We characterize the worst-case response time sepa-

rately for each technique α. We profile both approximation

techniques for ns ∈ {200, 400, 600, 800, 1000}. For each

value, we collect 20 response times from each of 10 simulated

GRBs. Similar to reconstruction profiling, we fit a linear func-

tion over the maximum times for each ns, then shift vertically

to guarantee an upper bound over all observed response times.

The measured worst-case times and corresponding functions

are illustrated in Figures 6(a) and 6(b). Notice that the vertical

axis scale for ApproxCircles is 2 orders of magnitude greater

than for FibSpiral, commensurate with the number of log-

likelihood computations required by each technique.

Finally, Refinement is iterative; each iteration has a se-

quential initialization subtask followed by a parallel subtask to

process and filter each annulus. A final sequential subtask in

each iteration constructs and solves a constant-time quadratic

0 5 10 15 20 25 30

Thousands of Events Reconstructed

0

5000

10000

15000

R
es

po
ns

e
T

im
e

(m
ic

ro
se

co
nd

s)

Rpi3

R
i
 = 5.45e-06n

r
2 + 0.171n

r
 + 4.25e+03

Rpi4

R
i
 = 3e-06n

r
2 + 0.0504n

r
 + 2.56e+03

Atom

R
i
 = 7.61e-07n

r
2 + 0.0407n

r
 + 577

Fig. 7: Refinement stage worst-case response times.

eigenvalue problem, for which forming the matrix has cost

quadratic in the number of reconstructed annuli [6]. Each

iteration, then, has a worst-case response time quadratic in

nr; this is multiplied by x to produce the response time of

the stage. We fit this function on our three candidate devices,

profiling each iteration of refinement from the same set of runs

measured for reconstruction. Results are illustrated in Fig. 7.

VIII. IMPLEMENTATION

In this section, we discuss our implementation of workload

adaptation for APT’s GRB localization task.

Pareto-Optimal Surface. We quantified response times for

2657 input parameter states per the functions identified for

each stage in Sec. VII. After generating a Pareto-optimal set

of candidates (Sec. IV), only 81 states remained for the RPi3,

84 for the RPi4, and 83 for the Atom. We characterized

localization error for all values of α and x for each tested

value of nr and ns, removing the option of interpolation over

these discrete states. For each candidate state s, we reduced

the hyperplanes connecting adjacent values of nr and ns to

log-linear functions of error in each of these parameters. As

the maximum value of nr is a dynamic constraint, we also

constructed log-linear functions from the points for which

nr=30 000 (the largest value tested) by extrapolation from

the state with the next smaller value of nr having a higher

measured error. Each candidate state and its log-linear function

parameters are stored in a lookup table to use online.

Determining Parameter Values. When a job arrives, the

localization task checks the worst-case response time for the

number of reconstructable events: if it exceeds the deadline,

parameter values are selected accordingly (Sec. IV).

Adapting to Overload. The number of events reconstructed

affects the response time of the downstream refinement stage,

so we do not treat reconstruction as an anytime workload.

Instead, once parameter values are selected, global variables

are set prior to computation to restrict the number of events re-

constructed, the number of annuli sampled for refinement, and

238

the number of refinement iterations to perform. The software

implements FibSpiral and ApproxCircles as C++ subclasses

of a common Approximation class, allowing dynamic object

construction according to the chosen value of α.

Slack Reclamation. When parameter values for an execution

mode guarantee completion before the deadline in the worst

case, pessimism in WCET estimates may result in overcom-

pression. Nonetheless, some tasks provide opportunities for

slack reclamation after computation completes. APT’s final

iterative source refinement is an anytime workload, so slack

could be reclaimed naı̈vely by allowing it to continue iterating

until the deadline. However, it might still complete early if

refinement converges, and this does not consider that earlier

stages of the pipeline may also have been compressed. Instead,

we implement a version of slack reclamation that determines,

given the remaining slack time (less its own overhead), how

many additional events can be reconstructed with another

refinement iteration run over the resulting larger set of annuli.

For efficiency, rather than allowing OpenMP to split events

among threads prior to reconstruction, an idle thread retrieves

an event using an atomic fetch-and-increment of an index that

tracks the next available event. Once this index reaches nr,

reconstruction halts, but is resumed when slack reclamation

increases the limit. Reclamation continues in a loop until there

is insufficient slack time remaining, as illustrated in Fig. 8. At

this point, additional iterations of refinement can still be run

until the deadline (or until convergence).

IX. EVALUATION

To evaluate our proposed workload compression approach,

we first measured the overheads associated with each optional

extension of the APT GRB localization application (inter-

polation/extrapolation and slack reclamation) to appropriately

account for them. We next compared these extensions when

running the pipeline against our synthetic GRBs to decide

which are expected to further improve results against real-

world data. Finally, we evaluated our approach in the context

of historical GRBs to demonstrate that our approach extends

from training to real-world tests, enabling localization of bright

GRBs even under highly constrained deadlines.

A. Overheads

To evaluate our proposed workload compression approach,

we applied it to the APT localization task. We began with

profiling the overhead of searching online for a Pareto-optimal

set of compressed input parameters (described in Sec. IV)

and of computing the inputs to slack reclamation (Sec. VIII).

We ran the localization task with both compression and slack

Reconstruct Iterative
Refinement

Approx
SourceCompress

Slack? Produce
Result

Reconstruct Refinement
Iteration

No
Yes

Fig. 8: Localization pipeline with compression and slack reclamation.

reclamation over the synthetic GRBs described in Sec. V. For

each GRB, we tested numbers of input gamma-ray photons

over a geometric progression of 9 values from 30 to 106.

Geometric progressions of 9 deadline values were selected

separately for each hardware platform to guarantee that the

shortest deadline would be between the response times of the

first two candidate states, and that the longest deadline would

be greater than the response time of the last candidate state.

Fig. 9 illustrates the overheads of the 810 profiled runs of

online compression for each tested hardware platform, with the

vertical bars enclosing the distribution. The overhead remained

under 220 μs on the RPi3, under 180 μs on the RPi4, and

under 60 μs on the Atom, demonstrating the efficiency of our

online compression technique. We adjusted the response time

functions for each of our platforms accordingly.

Overheads of slack reclamation were captured by profiling

the elapsed time of the first successful attempt to reclaim

slack for each run. Those runs for which slack could not

be reclaimed were ignored, as the overhead may be lower

in these cases. This produced 538 samples for the RPi3, 555

for the RPi4, and 573 for the Atom; these are also illustrated

in Fig. 9. Despite the equivalent program logic, the RPi3 had

significantly higher overhead (notice the difference in vertical-

axis units): its overhead reached 97.5 μs, whereas it remained

under 1.9 μs on both the RPi4 and Atom.

B. Evaluation on Synthetic GRBs

To characterize the expected performance of our approach,

we evaluated three versions when applied to APT’s local-

ization task. The first, Pareto, finds the best state from the

Pareto-optimal set of candidates with a response time that

does not exceed the deadline and for which nr≤ne according

to the procedure in Sec. IV. The second, IntExt, addition-

ally interpolates or extrapolates from that state. The third,

Reclaim, performs compression equivalently to IntExt while

also attempting to reclaim available slack time after the task

completes according to the procedure in Sec. VIII.

We ran each version over each of our 10 synthetic GRBs,

using subsets of the generated gamma rays with sizes 10N

for N from 2 to 6. For each of the resulting 50 subsets,

we evaluated the pipeline with a sufficiently large deadline to

guarantee an uncompressed state, then imposed deadlines of

Fig. 9: Measured overhead times.

239

GRB Catalog # Duration (s) α Epeak(keV) β Fluence (MeV/cmˆ2) # Gamma Rays θ φ

80905499 0.704 0.66 284.6 -2.15 0.918 299 288 33.244 120.90
81209981 0.320 -0.67 1057.0 -2.25 2.452 818 489 40.576 43.60
90227772 0.704 0.48 2013.0 -3.15 20.272 1 772 628 16.766 37.64
90429753 0.832 -0.28 178.3 -1.65 2.643 803 322 31.572 214.17

TABLE III: Simulated short GRBs with parameters matching corresponding catalog entries in [36].

10, 33, 100, 330, and 1000 ms,2 for a total of 300 sets of inputs

to the pipeline. For each set of inputs, we ran Pareto and

IntExt once and ran Reclaim 5 times to account for variations

in remaining slack time. We observed that over 1750 deadline-

constrained runs on each of our three hardware platforms, no

instance of the task missed its deadline.

To predict which approach is most likely to perform best

on real-world datasets, we compared each approach pairwise

with the other two. We define better utility as exceeding a

10% reduction in localization error; we use this threshold to

characterize the difference because even a small change in

input can result in significantly different results, as reflected

by the wide distributions illustrated in Fig. 2. Results for all

1500 runs of Reclaim and 300 runs of IntExt and Pareto are

illustrated in Fig. 10. We note that a pairwise comparison pro-

vides more detail than enumerating the times each approach is

the best of the three, which would not capture situations where

two methods dominate the third, but not each other. We also

observe that slack reclamation occasionally degrades results,

as the additional input events selected might be incorrectly

reconstructed or reflect noisy measurements. Nonetheless, the

results suggest additional interpolation or extrapolation from

an initial candidate state, and reclaiming slack at the end of

execution, are expected to improve outcomes most of the time.

C. Evaluation on Short GRBs Observed by Fermi GBM

To characterize how well our approach extends from syn-

thetic training data to real-world workloads, we simulated four

additional GRBs sourced from the Fermi GBM catalogs. We

used the data in [36], which fits spectral-energy distributions

to GRBs observed by the GBM. We searched for short GRBs

(duration <1s) fit to a Band function; four matched these

2The shortest-duration burst captured by GBM was around 10 ms [29]–[32].

RPi3 RPi4 Atom
0

10

20

30

40

50

60

70

80

IntExt Outperforms Pareto
Pareto Outperforms IntExt

RPi3 RPi4 Atom
0

100

200

300

400

500

600

Reclaim Outperforms IntExt
IntExt Outperforms Reclaim

RPi3 RPi4 Atom
0

100

200

300

400

500

600

Reclaim Outperforms Pareto
Pareto Outperforms Reclaim

Fig. 10: Pairwise comparison of approach versions for synthetic GRBs.

criteria. Simulation parameters are listed in Table III. We

randomly generated source directions by sampling the polar

angle uniformly from 0−60◦ and the azimuth from 0−360◦.

Worst-case response times on each platform to perform un-

compressed localization of each GRB are listed in Table IV.

Device 80905499 81209981 90227772 90429753
RPi3 1087 1379 5813 1177
RPi4 490 618 2808 529
Atom 265 346 1268 291

TABLE IV: Worst-case response times (ms) for uncompressed localization.

We ran each version of our pipeline for each new GRB.

We used a sufficiently large deadline to guarantee an uncom-

pressed state, then imposed a deadline equal to the burst’s

duration, and finally iterated over the same deadlines evaluated

for our synthetic GRBs (10, 33, 100, 330, and 1000 ms). For

each deadline, we ran each version of the pipeline 20 times

over each GRB. We then found the 68% containment of error

in source direction for each set of 20 results. None of the

1440 deadline-constrained runs on each of our three hardware

platforms missed its deadline.

Similarly to the analysis for the synthetic GRBs, we com-

pared Pareto, IntExt, and Reclaim pairwise with the other

two, enumerating how often each outperformed the others.

Results are illustrated in Fig. 11. Counts are out of 28. The

results validate our predictions from the initial analysis of

synthetic GRBs: interpolation and extrapolation from an initial

Pareto-optimal state, then reclaiming slack time at the end of

the pipeline, both typically improve localization accuracy.

In Fig. 12, we provide a plot for each simulated GRB of

the 68% containment of source direction error in degrees over

the 20 iterations of Reclaim for each imposed deadline. We

observe that, with compression, the APT localization task is

often able to produce results close in accuracy to those of

its uncompressed state for deadlines of around 100 ms, even

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

IntExt Outperforms Pareto
Pareto Outperforms IntExt

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

Reclaim Outperforms IntExt
IntExt Outperforms Reclaim

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

Reclaim Outperforms Pareto
Pareto Outperforms Reclaim

Fig. 11: Pairwise comparison of approach versions for cataloged GRBs.

240

with worst-case uncompressed response times approaching 6

seconds on the platforms tested. While we allow for fur-

ther compression to guarantee schedulability in response to

dynamic workloads and deadlines, our approach also allows

us to characterize a minimum acceptable deadline for each

hardware platform. For deadlines as short as 33 ms, it is

often successful in providing sub-degree accuracy, sufficient

for follow-up observations by optical telescopes. However,

as the imposed deadline deadline increases, localization error

typically decreases, yielding greater utility. Nonetheless, this

is not always the case: because of the high variance in

localization accuracy, and because larger values of nr might

cause noisy or incorrectly reconstructed events to be selected,

occasionally larger deadlines correspond to lower accuracy.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a technique for compressing the

workloads of highly parallel fork-join tasks executing on a

fixed number of processors to remain schedulable in the face

of dynamic workloads and deadlines. By identifying multiple

discrete numeric, continuous numeric, and categorical param-

eters over which subtask workloads can be compressed, and

through offline characterization of their effects on result utility

and response times, a Pareto-optimal surface can be generated

to enable efficient online compression that guarantees schedu-

lability while minimizing the resulting loss. We also identified

methods to reduce pessimism by reclaiming available slack

if execution completes early. We demonstrated that, when

applied in the context of real-time GRB localization aboard

the planned APT satellite mission, our approach provided sub-

degree estimates of source direction even for≈33 ms deadlines

imposed by bright, transient bursts.

Nonetheless, APT and other space-based missions may

present additional challenges that motivate further exploration.

The real-time properties of GRB localization might be better

expressed with time utility functions, rather than a hard

deadline: narrow observation windows may impose a tradeoff

favoring earlier, but potentially less accurate, alerts [7]. Ad-

ditionally, the GRB localization pipeline may run on shared

hardware with mission-critical instrument control tasks (e.g.,

that regulate power or cool the instrument). Alternative analyt-

ical frameworks, such as semi-federated [43] or reservation-

based federated [44] might allow these techniques to be ex-

tended to general parallel DAG tasks that share cores with low-

utilization workloads. Additionally, further work is needed to

efficiently guarantee a Pareto-optimal solution even when the

Pareto-optimal surface does not intersect the region described

by the dynamic constraints for a given job. This work serves as

a prerequisite toward a utility-driven elastic scheduling model

over multiple tasks that share a limited set of resources.

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB80905499

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB81209981

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB90227772

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB90429753

(a) RPi3

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB80905499

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB81209981

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB90227772

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB90429753

(b) RPi4

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB80905499

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB81209981

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB90227772

101 102 103

Deadline (ms)

10-2

100

68
%

 C
on

ta
in

m
en

t E
rr

or

GRB90429753

(c) Atom

Fig. 12: 68% containment of error in source direction using Reclaim.
Horizontal lines indicate 68% containment for uncompressed execution.

241

REFERENCES

[1] W. Kywe, D. Fujiwara, and K. Murakami, “Scheduling of image
processing using anytime algorithm for real-time system,” in Proc. of
18th Int’l Conf. on Pattern Recognition, vol. 3, 2006, pp. 1095–1098.

[2] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

[3] A. Soyyigit, S. Yao, and H. Yun, “Anytime-Lidar: Deadline-aware
3D object detection,” in Proc. of IEEE 28th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2022, pp. 31–40.

[4] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and
localization for an autonomous mobile robot,” in Proc. of IEEE/RSJ Int’l
Wkshp. on Intelligent Robots and Systems, vol. 3, 1991, pp. 1442–1447.

[5] A. Li, H. Liu, J. Wang, and N. Zhang, “From timing variations
to performance degradation: Understanding and mitigating the impact
of software execution timing in SLAM,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022.

[6] J. Buckley et al., “The Advanced Particle-astrophysics Telescope (APT)
Project Status,” in Proc. of 37th International Cosmic Ray Conference
— PoS(ICRC2021), vol. 395, Jul. 2021, pp. 655:1–655:9.

[7] M. Sudvarg, J. Buhler, R. Chamberlain, C. Gill, and J. Buckley, “Work
in Progress: Real-Time GRB Localization for the Advanced Particle-
astrophysics Telescope,” in Proc. of 15th Wkshp. on Operating Systems
Platforms for Embedded Real-Time Applications, Jul. 2022, pp. 57–61.

[8] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” in Proc. of IEEE Real-Time Systems Symposium, 1998.

[9] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002.

[10] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic schedul-
ing,” in Proc. of IEEE International Real-Time Systems Symposium,
2006, pp. 236–245.

[11] ——, “Generalized elastic scheduling for real-time tasks,” IEEE Trans-
actions on Computers, vol. 58, no. 4, pp. 480–495, Apr. 2009.

[12] J. Orr and S. Baruah, “Multiprocessor scheduling of elastic tasks,” in
Proc. of 27th International Conference on Real-Time Networks and
Systems. ACM, 2019, pp. 133–142.

[13] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah, “Elastic scheduling for
parallel real-time systems,” Leibniz Transactions on Embedded Systems,
vol. 6, no. 1, p. 05:1–05:14, May 2019.

[14] J. Orr et al., “Elasticity of workloads and periods of parallel real-time
tasks,” in Proc. of 26th International Conference on Real-Time Networks
and Systems. ACM, 2018, pp. 61–71.

[15] J. Orr, J. C. Uribe, C. Gill, S. Baruah et al., “Elastic scheduling of
parallel real-time tasks with discrete utilizations,” in Proc. of 28th
International Conference on Real-Time Networks and Systems. ACM,
2020, pp. 117–127.

[16] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in Proc.
of 26th Euromicro Conference on Real-Time Systems, 2014, pp. 85–96.

[17] Y. Bai, L. Li, Z. Wang, X. Wang, and J. Wang, “Performance opti-
mization of autonomous driving control under end-to-end deadlines,”
Real-Time Systems, vol. 58, no. 4, pp. 509–547, Dec 2022.

[18] J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp.
161–197, 3 2004.

[19] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint, “An adaptive
framework for multiprocessor real-time systems,” in Proc. of Euromicro
Conference on Real-Time Systems, 2008, pp. 23–33.

[20] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“PointPillars: Fast encoders for object detection from point clouds,”
in Proc. of IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2019, pp. 12 689–12 697.

[21] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, “D3: A
dynamic deadline-driven approach for building autonomous vehicles,” in
Proc. of 17th European Conf. on Computer Systems, 2022, p. 453–471.

[22] M. Stigge, P. Ekberg, and W. Yi, “The fork-join real-time task model,”
SIGBED Rev., vol. 10, no. 2, p. 20, Jul. 2013.

[23] Q. Wang and G. Parmer, “FJOS: Practical, predictable, and efficient
system support for fork/join parallelism,” in Proc. of 19th Real-Time
and Embedded Technology and Applications Symp., 2014, pp. 25–36.

[24] M. Sudvarg, J. Buhler, J. H. Buckley, W. Chen et al., “A Fast GRB
Source Localization Pipeline for the Advanced Particle-astrophysics
Telescope,” in Proc. of 37th International Cosmic Ray Conference —
PoS(ICRC2021), vol. 395, Jul. 2021, pp. 588:1–588:9.

[25] J. Wheelock, W. Kanu, M. Sudvarg et al., “Supporting multi-messenger
astrophysics with fast gamma-ray burst localization,” in Proc. of
IEEE/ACM HPC for Urgent Decision Making Workshop, Nov. 2021.

[26] I. Bartos and M. Kowalski, Multimessenger Astronomy, ser. 2399-2891.
IOP Publishing, 2017.

[27] A. Neronov, “Introduction to multi-messenger astronomy,” in Journal of
Physics: Conference Series, vol. 1263, no. 1. IOP Publishing, 2019.

[28] P. Mészáros, D. B. Fox, C. Hanna, and K. Murase, “Multi-messenger
astrophysics,” Nature Reviews Physics, vol. 1, no. 10, pp. 585–599, 2019.

[29] D. Gruber, A. Goldstein, V. W. von Ahlefeld et al., “The Fermi GBM
gamma-ray burst spectral catalog: Four years of data,” The Astrophysical
Journal Supplement Series, vol. 211, no. 1, p. 12, Feb. 2014.

[30] A. von Kienlin, C. A. Meegan, W. S. Paciesas et al., “The second Fermi
GBM gamma-ray burst catalog: The first four years,” The Astrophysical
Journal Supplement Series, vol. 211, no. 1, p. 13, Feb. 2014.

[31] P. N. Bhat, C. A. Meegan, A. von Kienlin et al., “The third Fermi GBM
gamma-ray burst catalog: The first six years,” The Astrophysical Journal
Supplement Series, vol. 223, no. 2, p. 28, Apr. 2016.

[32] A. von Kienlin, C. A. Meegan, W. S. Paciesas et al., “The fourth Fermi-
GBM gamma-ray burst catalog: A decade of data,” The Astrophysical
Journal, vol. 893, no. 1, p. 46, Apr. 2020.

[33] P. W. A. Roming, T. E. Kennedy, K. O. Mason et al., “The Swift ultra-
violet/optical telescope,” Space Science Reviews, vol. 120, no. 3, pp.
95–142, Oct. 2005.

[34] W. Chen, J. Buckley, S. Alnussirat et al., “The Advanced Particle-
astrophysics Telescope: Simulation of the Instrument Performance for
Gamma-Ray Detection,” in Proc. of 37th Int’l Cosmic Ray Conference
— PoS(ICRC2021), vol. 395, 2021, pp. 590:1–590:9.

[35] S. Agostinelli, J. Allison, K. Amako et al., “Geant4 — a simulation
toolkit,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 506, no. 3, pp. 250–303, 2003.

[36] L. Nava, G. Ghirlanda, G. Ghisellini, and A. Celotti, “Spectral properties
of 438 GRBs detected by Fermi GBM,” Astronomy & Astrophysics, vol.
530, p. A21, Apr. 2011.

[37] D. Band et al., “BATSE observations of gamma-ray burst spectra. I.
spectral diversity,” Astrophys. J., vol. 413, p. 281, Aug. 1993.

[38] “Overview of the Fermi GBM,” https://fermi.gsfc.nasa.gov/ssc/
data/analysis/documentation/Cicerone/Cicerone Introduction/GBM
overview.html, National Aeronautics and Space Administration
Goddard Space Flight Center, Jan. 2020, curated by J.D. Meyers.
Accessed: 26 Oct, 2022.

[39] S. Boggs and P. Jean, “Event reconstruction in high resolution Compton
telescopes,” Astronomy and Astrophys. Supp. Series, vol. 145, no. 2, pp.
311–321, 2000.

[40] V. Connaughton et al., “Localization of gamma-ray bursts using the
Fermi gamma-ray burst monitor,” The Astrophysical Journal Supplement
Series, vol. 216, no. 2, p. 32, Feb. 2015.

[41] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic latency management for ROS 2: Benefits, challenges, and
open problems,” in Proc. of IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 264–277.

[42] M. Sudvarg and C. Gill, “A concurrency framework for priority-aware
intercomponent requests in CAmkES on seL4,” in Proc. of IEEE
28th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2022, pp. 1–10.

[43] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in Proc. of IEEE Real-Time
Systems Symposium (RTSS), 2017, pp. 80–91.

[44] N. Ueter et al., “Reservation-based federated scheduling for parallel real-
time tasks,” in Proc. of IEEE Real-Time Systems Symposium (RTSS),
2018, pp. 482–494.

242

