
Department of Computer Science & Engineering

2008-18

Software and Hardware Acceleration of the Genomic Motif Finding Tool
PhyloNet

Authors: Justin Brown

Corresponding Author: jtb1@cec.wustl.edu

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Jeremy Buhler, Chair

Mark Franklin
Tao Ju

SOFTWARE AND HARDWARE ACCELERATION OF THE GENOMIC MOTIF

FINDING TOOL PHYLONET

by

Justin Tyler Brown, B.S.C.S

A thesis presented to the School of Engineering
of Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

August 2008
Saint Louis, Missouri

ABSTRACT OF THE THESIS

Software and Hardware Acceleration of the Genomic Motif Finding Tool PhyloNet

by

Justin Tyler Brown

Master of Science in Computer Science

Washington University in St. Louis, 2008

Research Advisor: Professor Jeremy Buhler

A major area of research in molecular and computational biology is deciphering the

cis-regulatory network that governs transcriptional regulation. This task has proven

to be a challenge because regulatory elements are usually short, degenerate, and

hidden in very long sequences. A recently developed algorithm known as PhyloNet

attempts to computationally identify conserved regulatory motifs of an organism by

using alignments to related species as evidence of conservation. In this thesis, we

address the problem of scaling PhyloNet to handle large genomes. We first work

to improve PhyloNet in software alone, improving its speed and sensitivity. Our

improved version of PhyloNet on the budding yeast genome yields 1.6x more known

yeast motifs and a speedup of 20x over the originial. We then develop a streaming

architecture design of PhyloNet and show how the seed matching and extension stages

can be implemented using Field Programmable Gate arrays. We estimate that our

FPGA design yields an additional order of magnitude speedup over our best software

version of PhyloNet.

ii

Acknowledgments

I would like to thank Dr. Jeremy Buhler for all of his advisement, patience, and

invaluable feedback over the past two years. I give much thanks to the members of

Dr. Buhler’s lab group, Yanni Sun, Hongtao Sun, Arpith Jacob, and Josh Coats for

their friendship, encouragement, and assistance.

I wish to thank the members of my research group, Mark Franklin, Roger Cham-

berlain, Eric Tyson, and Saurabh Gayen for their keen insights and constructive

criticisms.

I am much appreciative for the support from the National Science Foundation.

Finally, I am forever grateful for the support and encouragement of my parents, sister,

and Emily. Their belief in me makes all of this possible.

Justin Tyler Brown

Washington University in Saint Louis

August 2008

iii

To Emily wherever I may find her.

iv

Contents

Abstract . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Deciphering the Cis-Regulatory Network 2

1.1.1 Biology of the Cis-Regulatory Network 2
1.1.2 Difficulties of Uncovering the Cis-Regulatory Network 4

1.2 Computational Approaches for Motif Finding 7
1.3 PhyloNet Algorithm . 8

1.3.1 PhyloNet’s Input . 9
1.3.2 Comparing Profiles . 10
1.3.3 Stages of PhyloNet . 11

1.4 Utility of Streaming Architectures . 16
1.5 Contributions to Phylonet . 18

2 Software Improvements to PhyloNet 20
2.1 Software Improvements . 20

2.1.1 Improved Clustering . 21
2.1.2 Support for Gapped Profiles 23
2.1.3 Other Speed Improvements 25

2.2 Experimental performance of PhyloNet 25
2.2.1 The Data Sets . 26
2.2.2 Dealing with repetitive and low-complexity regions 26
2.2.3 Measuring Performance of PhyloNet 27
2.2.4 Output Quality in Yeast . 29
2.2.5 Efficiency in Yeast . 30
2.2.6 Scalability to Fruit Fly . 31

2.3 Beyond Software PhyloNet . 32
2.3.1 Effects of Parameters on the Performance of PhyloNet 32
2.3.2 Bottlenecks in software version of PhyloNet 34

3 Design of an Accelerated Seed Generation Stage 37

v

3.1 Stage 1 of PhyloNet . 37
3.1.1 Seed Matching using Table Lookups 38
3.1.2 Adapting Table Lookups for PhyloNet 38
3.1.3 Table Lookup Data Structures 39

3.2 Hardware Design of Stage 1 . 39
3.2.1 Area Estimates of Table for Stage 1 40
3.2.2 Occupancy Sizes of Tables . 40
3.2.3 Table Design . 41

3.3 Stage 1 Performance Model . 43
3.4 Performance Estimates for Stage 1 44
3.5 Conclusion . 47

4 Design of an Accelerated Seed Extension Stage 49
4.1 Stage 2 of PhyloNet: Seed Extension 49
4.2 Hardware Design of Stage 2 . 50

4.2.1 Fixed Window Extension . 51
4.2.2 ALLR calculation in Hardware 54
4.2.3 Storage of Tables in block RAM and Representation of Values 55
4.2.4 Pipeline Design of ALLR calculation 57

4.3 Synthesis of ALLR calculation in Hardware 59
4.4 Performance Estimates of Stage 2 . 59
4.5 Overall Performance Estimation . 61

4.5.1 Accounting for Query Pre-processing 62

5 Conclusion and Future Works . 64
5.1 Conclusion . 64
5.2 Future Works . 65

Appendix A Glossary . 66

References . 68

Vita . 71

vi

List of Tables

1.1 Binding Site Motifs for Abf1 . 6
1.2 Example of Aligned Promoter Regions and the Profile 9

2.1 Gapped Alignment Versus Multiple Ungapped Alignments 24
2.2 Total CPU Time for S. cerevisiae genome 31
2.3 Statistics for Fruit Fly Data Set . 31
2.4 Total Running Time of PhyloNet on the Yeast Data Set 36

3.1 Memory requirements of a direct lookup table 40
3.2 Occupancy Sizes of Tables . 41
3.3 Query locations per entry for a 36 bit SRAM 42
3.4 Specifications of FPGA . 45
3.5 Average Clock Cycles Needed Per Database Entry for Various Param-

eters . 46
3.6 Output of Stage 1 . 47
3.7 Stage 1 Hardware versus Software Time 48

4.1 Quality of Fixed Window Filter . 54
4.2 Composition of Tables for ALLR Calculation 57
4.3 Stage 4 Timing Analysis . 60
4.4 Stage 1 Hardware Time with Reduced Clock Frequency 61
4.5 Hardware and software times for each stage of the optimal configuration. 62

vii

List of Figures

1.1 Growth of GenBank (1982-2005). 2
1.2 Cis-regulatory Network . 3
1.3 Distances of yeast binding sites (in base pairs) from genes. 4
1.4 A common transcription factor binding to similar but distinct binding

sites in the promoters of multiple genes. 6
1.5 Basic approaches for finding motifs. Yellow boxes indicate locations

of conservation. (A) Multiple Genes, Single Species. (B) Single Gene,
Multiple Species. (C) Combined Approaches. 8

1.6 Phylonet pipeline. 12
1.7 Exact seed matching. 12
1.8 Mapping of profile columns to degenerate sequence. 13
1.9 Extension of Seed Hits into HSPs. 14
1.10 Clustering HSPs into motifs. Cliques in the graph (bold lines) represent

clusters. (A) HSPs are mapped onto the query profile. (B) HSPs that
overlap are connected. 15

1.11 Consensus sequence of a yeast motif with instances drawn from pro-
moter alignments of four budding yeast species. 16

2.1 Clustering HSPs using an Interval Graph. 22
2.2 Performance of PhyloNet Versions parameterized by p-value cutoff. . 29
2.3 Result Quality of PhyloNet for Different User Inputs. 33
2.4 Time spent in the various stages of PhyloNet. 35

3.1 Path of Table Lookups . 42
3.2 Distributions of Positions Returned from Table Lookups for Query

Sizes of 1000, 2000, and 4000. 45

4.1 Variable-Length Extension in Software 50
4.2 Fixed-Length Extension in Hardware 51
4.3 Storage of two tables in one block RAM 56
4.4 Pipelined ALLR calculation. 58
4.5 Area usage of ALLR units . 59

viii

Chapter 1

Introduction

Sequence analysis encompasses a wide variety of bioinformatic methods used to infer

biological information hidden within DNA and peptide sequences. Even though the

most reliable way to determine the structure or function of an RNA or protein is by

direct experimentation, it is far easier to obtain the DNA sequence of the correspond-

ing gene. This provides a strong motivation to create tools that can infer structure

and function by examining the sequence itself. Tasks of sequence analysis are numer-

ous and include aligning sequences, predicting protein structures, and reconstructing

gene regulatory networks. The success of sequence analysis methods is in part due to

the ability to automate these methods using computers and the availability of large

amounts of raw sequence provided by, for example, the Human Genome Project [19].

In order to be useful, computational methods must be able to scale to the large

amounts of raw data available. Sequence databases continue to grow exponentially

as entire genomes of organisms are sequenced, thus making sequence analysis a com-

putationally demanding task. As an example, GenBank, the NIH database of all

publicly available DNA sequences, has steadily doubled in size approximately every

18 months since its inception in 1982 [11] (Figure 1.1).

In this thesis, we consider the acceleration of a particular sequence analysis tool used

to detect cis-regulatory sites in genomic DNA. Acceleration is important in contending

with the large amounts of raw sequence available for processing. We show how this

tool can be accelerated by using programmable logic on Field Programmable Gate

Arrays (FPGAs). We report our methods and expected performance improvements

over software.

1

1985 1990 1995 2000 2005
0

10

20

30

40

50

60

Year

S
e
q
u
e
n
c
e
s
 (

m
ill

io
n
s
)

Figure 1.1: Growth of GenBank (1982-2005).

1.1 Deciphering the Cis-Regulatory Network

A key area of genomic research is understanding the mechanisms that control the

regulation of gene expression levels. This regulation is governed by the cis-regulatory

network which involves the interaction of transcription factors (TF) and their binding

sites. In this network, proteins known as transcription factors bind to sites within

the promoter regions upstream of gene-encoding sequences. These binding sites are

known as transcription factor binding sites (TFBS). In this thesis, we address the

problem of identifying the locations of transcription factor binding sites within the

genome.

1.1.1 Biology of the Cis-Regulatory Network

The TFBS are short sequences (6-12 base pairs long) located in promoter regions of

the genome, which are regulatory regions of DNA located on the side of the gene

where transcription begins. These binding sites act as control points for regulated

gene transcription. The binding of TFs to TF Binding Sites affects the presence of

2

RNA polymerase, the enzyme that synthesizes the RNA from the coding region of the

gene. TFs may act as activators or repressors, increasing or preventing the presence

of RNA polymerase respectively, which in turn activates or represses the transcription

of DNA into RNA (Figure 1.2).

Figure 1.2: Cis-regulatory Network

In a study done on the genome of baker’s yeast (Sacchomyces cerevisiae), it was shown

that binding sites are not uniformly distributed over the promoter regions but instead

show a sharply peaked distribution [15]. Very few sites are located in the region 100

base pairs (bp) upstream of protein-coding sequences. This region typically includes

the transcription start site and is bound by the transcription initiation apparatus. The

vast majority (74%) of the transcriptional regulator binding sites lie between 100 and

500 bp upstream of the protein-coding sequence. The number of binding sites trails

off in regions more than 500 bp upstream (Figure 1.3). The yeast transcriptional

regulators seem to function at short distances along the linear DNA, a property that

reduces the potential for inappropriate activation of nearby genes.

3

Figure 1.3: Distances of yeast binding sites (in base pairs) from genes.

1.1.2 Difficulties of Uncovering the Cis-Regulatory Network

Identifying the location of transcription factor binding sites within the genome is

a key problem in genomic research. Two of the main difficulties in identifying the

binding sites are the sheer number of binding sites within the entire genome and the

short, degenerate nature of binding sites. Binding sites are typically 6-12 base pairs

long and are hidden within promoter regions that can be on the order of 1,000 to

10,000 base pairs. Also, a single transcription factor can bind to sites that are similar

but not identical to each other. This degeneracy in the binding sites for a single

transcription factor makes the search for a common pattern more difficult.

Scaling of the Cis-Regulatory Network

The well-studied S. cerevisiae genome provides an example of the sizes of data in-

volved. The genome of this simple eukaryotic organism is composed of about 13

million base pairs and over 4,600 genes [10]. These genes are regulated by roughly

200 transcription factors [15]. Compared to higher eukaryotes, the genes in yeast are

4

close together, and so the promoter regions tend to be less than 1,000 base pairs.

In general, each transcription factor regulates many genes, meaning multiple binding

sites are contained in each promoter region. For example, 2022 genes from S. cere-

visiae were examined, and 4229 conserved and bound motif sites were mapped across

these genes [26]. Also, the Yeastract database (www.yeastract.com), a comprehen-

sive online database of the S. cerevisiae genome, generally lists tens of TFBS for each

gene.

The number of transcription factors within an organism increases with the genome

size, and the number of binding sites per gene increases with larger genomes [34]. The

human genome has an estimated 20,000 to 25,000 protein-coding genes [29] and over

2000 transcription factors [2]. Thus, approximately 10% of the genes in the genome

code for transcription factors. In one in vivo analysis of the transcription factors

Sp1, cMyc, and p53, an unexpectedly large number of transcription factor binding

site regions were found [8]. Minimal estimates of the number of binding sites over the

entire human genome were 12,000 for Sp1, 25,000 for cMyc, and 1,600 for p53.

In addition to more abundant transcription factors and binding sites, the promoter

regions of higher eukaryotes tend to be longer. The genes in higher eukaryotes are

generally more spread out within the genome than the genes in yeast. Thus, while

binding sites in yeast are generally less than 1,000 base pairs away from the gene,

binding sites in higher eukaryotes can be as much as 10,000 base pairs away from the

genes. This means that instead of searching a few million base pairs as in yeast, tens

to hundreds of millions of base pairs must be searched in higher eukaryotes such as

human. An exhaustive comparison of each promoter sequence to all other promoter

sequences is quadratic in the total length of the sequences. The orders of magnitude

more sequences involved in higher-level organisms underscore the need to develop fast

methods that scale to larger genomes.

Ambiguous Nature of TF Binding Sites

The other main difficulty of identifying binding sites is that they can be short and

degenerate. Bindings sites are usually short (6-12 bases) and embedded in long back-

ground sequences, creating a low signal-to-noise ratio. Furthermore, binding sites can

5

be degenerate, meaning that two binding sites with different sequences can bind the

same transcription factor (Figure 1.4).

Figure 1.4: A common transcription factor binding to similar but distinct binding
sites in the promoters of multiple genes.

The variability of the bases within a binding site weakens the already short, hidden

signal, making it harder to distinguish it from random DNA. The discrepancy between

the sequences of individual binding sites for the same transcription factor is position-

specific. Certain bases are constrained by virtue of their contact with the TF, while

others are free to vary [27]. Table 1.1 shows some examples from the literature of

possible binding site motifs for the same transcription factor Abf1, illustraing just

how dissimilar binding sites can be and yet still possess an affinity for Abf1. In the

table, an n stands for no preference for a base, R represents a purine (A or G), Y

represents a pyrimidine (C or T), and B represents anything but A (C, G, or T).

Table 1.1: Binding Site Motifs for Abf1

TnnCGTnnnnnnTGAT [4]

TCRTnnnnnAYGA [7]

RTCRYBnnnnACG [9]

The middle bases of the binding site are able to mutate without preventing the Abf1

factor from binding. Only a few positions at the ends of the binding site are con-

strained to certain bases.

6

1.2 Computational Approaches for Motif Finding

Despite some of the difficulties of locating transcription factor binding sites, many

computational approaches have been developed over the past two decades that have

met with some success in discovering TF binding sites. Since a binding site can occur

many times throughout the genome, the computational approaches generally work by

identifying recurring sequence motifs within the genome.

Algorithms to recognize motifs in genomic DNA take one of two basic forms [35]. The

multiple gene, single species approach (Figure 1.5a) recognizes motifs because they

recur with few changes in the promoters of multiple genes within a single genome.

Tools of this form include Gibbs Sampler [24], MEME [3], Consensus [17], and Alig-

nAce [18]. In contrast, the single gene, multiple species or phylogenetic footprinting

approach (Figure 1.5b) recognizes motifs in promoters of genes derived from a com-

mon ancestral gene (known as orthologous genes) across related species. Programs

that use this approach include FootPrinter [6], PhyME [31], CompareProspector [25],

and PhyloGibbs [30].

Wang and Stormo combined these two approaches into a single software program

called PhyloCon (Phylogenetic Consensus) [35]. It is one of the first motif finding

algorithms to combine the power of phylogenetic conservation and gene co-regulation

to identify conserved regulatory motifs. It attempts to identify conserved regions

across alignments of related species (Figure 1.5c).

PhyloCon was used along with Converge [15] to identify a comprehensive list of motifs

in S. cerevisiae [26]. Converge and PhyloCon each identified more correct motifs than

were found using the combined results of the six programs employed in an earlier

study [15]. Significant sequence motifs were discovered for 36 transcription factors

that were previously missed, and 636 more regulatory interactions were found than

in the previous experiment.

To scale PhyloCon’s ability to discover motifs across an entire genome, Wang and

Stormo developed the successor program PhyloNet (Phylogenetic Network) [36]. Phy-

loNet implements a BLAST-like seeded alignment algorithm to accelerate detection of

7

Figure 1.5: Basic approaches for finding motifs. Yellow boxes indicate locations of
conservation. (A) Multiple Genes, Single Species. (B) Single Gene, Multiple

Species. (C) Combined Approaches.

putative motif instances across thousands of promoters. We now describe this tool in

more detail, as this is the algorithm we seek to accelerate using dedicated hardware.

1.3 PhyloNet Algorithm

PhyloNet is a software tool for detecting the regulatory site motifs, or transcription

factor binding sites, involved in gene expression regulation. It identifies sites that are

conserved across related species and throughout the genome. A single transcription

factor can bind to many different promoters throughout the genome. As a result, one

would expect to find binding sites for a particular factor in many different promoter

regions within a species. Thus, a pattern that recurs often in promoter regions of a

single genome is evidence that the pattern represents a TF binding site. Furthermore,

since transcription factors play an important role in the transcription of genes, one

8

would expect that the binding sites would be under more selective pressure than

the surrounding background sequence. Thus, highly conserved regions within the

promoters of orthologous genes provide further evidence that the region represents

a motif. Evidence of conservation across co-regulated genes and among promoter

regions of orthologous genes is combined under one general framework in PhyloNet.

1.3.1 PhyloNet’s Input

Phylonet takes as input a collection of multiple sequence alignments. A multiple

sequence alignment is an alignment of three or more biological sequences. These

sequences are generally assumed to be ortholgous. The multiple sequence alignment

can be compactly represented as a profile, which is a matrix containing the number

of each type of base found in each column of the alignment (Table 1.2).

Table 1.2: Example of Aligned Promoter Regions and the Profile

Alignment of YOR231W YOR232W.aln Cer ...TCGCATTTTCCA...

Orthologous Promoters YOR231W YOR232W.aln Par ...TCGCACTTGCCA...

YOR231W YOR232W.aln Mik ...ATGCTTCTGTCA...

YOR231W YOR232W.aln Bay ...TCGCATTTACTA

Profile A count ...100030001004...

C count ...030401100330...

G count ...004000002000...

T count ...310013341110...

In the context of PhyloNet, each profile represents an alignment of promoter regions

from orthologous genes. The promoter regions are regulatory regions of DNA contain-

ing the binding sites of transcription factors located on the sides of the genes where

transcription begins. In simple organisms such as yeast where the genes are close

together, the promoter regions can be taken to be all the intergenic regions of the

genome. Each intergenic region is typically less than 1,000 base pairs long. In higher

level eukaryotes where the genes are typically more spread out, promoter regions can

be defined as all the bases up to a certain distance from the transcriptional start site

of each gene. The proximal promoter in higher eukaryotes is generally assumed to

9

be a couple hundred bases, but there are enhancer regions that could extend 10,000

bases or more from the transcriptional start site.

The set of profiles derived from multiple sequence alignments of orthologous promoter

regions represent the input of PhyloNet. In its original form, PhyloNet requires the

input alignments to be ungapped. An ungapped alignment is an alignment in which

there is a one-to-one correspondence between the bases of each sequence. This means

that there cannot be a base present in one sequence without a corresponding base

present in the other sequence. We extend PhyloNet to be able to handle gapped mul-

tiple alignments and discuss this improvement in Chapter 2. Gapped alignments allow

bases to be inserted into or deleted from one of the sequences, which is biologically

common.

1.3.2 Comparing Profiles

Once the profiles of multiple sequence alignments are created, a method needs to be

devised to compare profiles. Wang and Stormo developed a novel scoring statistic

between columns of two profiles that they call the Average Log Likelihood Ratio

(ALLR) [35]. For a given profile column, nb is the number of instances of base b

in the column. The profile column is modeled as an independent and identically-

distriubted (i.i.d) random variable generated from a multinomial distribution, where

the probability of observing base b is fb. The probability of observing each base is

approximated using the counts of the column, with pseudocounts added to account

for small sample biases. Assuming the frequency vector p for all bases is known, one

can compute the likelihood ratio

LR(f, p; n) =
∏

b=A..T

(
fb

pb

)nb

, (1.1)

which measures the likelihood the observed base counts came from the approximated

base distribution f rather than the background distribution p. The log likelihood

ratio LLR is used in practice, which is the log of the likelihood ratio.

LLR(f, p; n) = n ∗
∑

b=A..T

fb ln
fb

pb

, (1.2)

10

where n =
∑

b nb. Given two profile columns i and j with estimated parameters fi

and fj and counts ni and nj respectively, LLR(fj, p; ni) compares the log likelihoods

that column i came from column j’s distribution versus the background distribution

p. Likewise, LLR(fi, p; nj) compares the log likelihoods that column j came from

column i’s distribution versus the background distribution p. The ALLR is defined

to be the weighted sum of these two log likelihood ratios:

ALLR(i, j) =

∑
b=A..T nbj ln fbi

pb
+

∑
b=A..T nbi ln

fbj

pb

ni + nj

, (1.3)

where nbi is the number of occurrences of base b in column i, pb is the background

frequency for base b, and fbi = nbi/ni is the maximum likelihood estimate for the

frequency of base b in the i-th column.

If ni = nj as in the case with comparing ungapped multiple alignments of a set

number of species, equation 1.3 reduces to

ALLR(i, j) =

∑
b=A..T fbj ln fbi

pb
+

∑
b=A..T fbi ln

fbj

pb

2
. (1.4)

The total ALLR score is the sum of the scores between each column comparison.

Similar to the log likelihood ratio, the ALLR score assumes the number of sequences

in the alignment is large, and so pseudo-counts are added to adjust for small sample

biases.

1.3.3 Stages of PhyloNet

PhyloNet consists of three main stages: (1) Table generation and lookup, (2) Seed

Extension, and (3) High-scoring Segment Pair (HSP) clustering. The output of each

stage becomes the input of the next stage in a pipelined fashion (Figure 1.6). The

amount of output of each stage decreases, but the complexity of the stage increases

as the data is moved through the pipeline.

11

Figure 1.6: Phylonet pipeline.

Table Generation and Lookup

PhyloNet uses an inexact matching scheme to find good approximate alignments

among profiles, similar to the approach used by the BLAST algorithm to find inexact

matches among DNA sequences [1]. Inexact matches are found by first looking for

smaller exact matches that are part of longer exact matches. By the pigeonhole

principle, if two words of length l have k mismatches between them, then they will

have an exact match of at least length d l−k
k+1
e. In practice, one can expect to find

longer exact matches than this.

Exact matches between two sequences can be efficiently found using lookup tables.

Both sequences are divided into words of length w known as w-mers or seeds. The

locations of the w -mers from one of the sequences is stored in a lookup table. The table

is queried using the w -mers from the other sequence. A hit in the table corresponds

to an exact match of length w between the two sequences (Figure 1.7).

Figure 1.7: Exact seed matching.

12

In the example given in Figure 1.7, each sequence is divided into seeds of length 4.

The positions of the seeds in the query sequence are stored in the table. The table is

queried using the database seeds. A hit represents an exact match between the query

and database sequences.

This approach can be generalized by searching for matches that score above some

threshold rather than simply searching for exact matches. This is done by storing

not only all of the w -mers from a sequence into the table but also the neighborhoods

of those w -mers. The neighborhood of a w -mer is the set of all possible w -mers that

match the original w -mer with a score greater than some threshold. Now when the

table is queried, the lookup will return all the locations of the sequence that match

the w -mer to within the threshold. This is the approach taken by BLASTP and also

by PhyloNet.

For PhyloNet to take advantage of the table lookup approach, profile columns are de-

generately mapped to letters of a discrete alphabet, resulting in a sequence of discrete

characters. Each count vector is converted to a frequency vector such that the sum

of the elements equals 1. It is then mapped to one of 15 characters (Figure 1.8). The

mapping function is created by clustering columns from all matrices of known yeast

transcription factors, as well as multiple sequence alignments of intergenic regions of

four yeast species, into 15 subspaces via supervised learning ([36], supplementary

material). This mapping of profile columns to characters allows PhyloNet to take

advantage of the fast inexact matching scheme used by the family of BLAST algo-

rithms. Each profile’s degenerate sequence is in turn taken to be the query and is

compared to all other profiles’ sequences, known as the database. The hits resulting

from the lookup are returned to stage 2, the seed extension stage.

Figure 1.8: Mapping of profile columns to degenerate sequence.

13

Seed Extension

Once a seed match has been found, stage 2 attempts to extend these matches into

High-scoring Segment Pairs (HSPs). Starting at the location of the seed hit, Phy-

loNet compares profile columns to the left and to the right of the seed hit. Comparison

between profile columns is done using the ALLR score. The seed hit is extended in

both directions until the running score is less than some fixed value below the maxi-

mum score (Figure 1.9). This fixed value that decides when an extension terminates

is known as the x-drop and is the heuristic used in NCBI BLAST for extending seed

hits. The boundaries of the extension are taken to be the location of the maximum

scores of the left and right extensions, and the score of the extension is simply the

sum of the maximum scores in both directions. If the score is above some threshold,

then the extension is deemed an HSP and is passed to stage 3, the clustering stage.

Figure 1.9: Extension of Seed Hits into HSPs.

14

HSP Clustering

The seed extensions from stage 2 that score high enough to become High-scoring

Segment Pairs (HSPs) are passed to the HSP clustering stage. Each HSP is mapped

back to the original query profile. An overlap graph is formed of the HSPs, where the

nodes are the HSPs themselves and edges are drawn between HSPs that overlap each

other on the original query profile. Clustering is done using a general clique finding

algorithm on the overlap graph (Figure 1.10).

Figure 1.10: Clustering HSPs into motifs. Cliques in the graph (bold lines)
represent clusters. (A) HSPs are mapped onto the query profile. (B) HSPs that

overlap are connected.

Clusters are converted to motifs using a greedy heuristic approach derived from the

WConsensus motif finder [17]. The motifs, which consist of a consensus sequence and

a list of supporting instances, are reported as output of PhyloNet. Figure 1.11 shows

an example of the consensus sequence of a short yeast motif, along with three of its

instances drawn from promoter alignments of four budding yeast species.

15

Figure 1.11: Consensus sequence of a yeast motif with instances drawn from
promoter alignments of four budding yeast species.

1.4 Utility of Streaming Architectures

Our goal of this thesis work is to improve the quality of the results and scalability

of PhyloNet. In order to be useful for large genomes such as human, the PhyloNet

algorithm must be able to scale well with ever-increasing datasets. PhyloNet scales

quadratically with its input size. It can process an all-vs-all comparison of the non-

coding sequences of the yeast genome, but this analysis takes over five CPU days on

a modern AMD Opteron workstation. The noncoding regions of higher eukaryotic

genomes can contain tens to hundreds of times more sequence than that of yeast.

Thus, further efforts must be made to accelerate PhyloNet.

One approach employed in accelerating biosequence comparison algorithms is devel-

oping streaming designs of these algorithms. Streaming designs are useful when the

algorithm involves simple, repetitive calculations that can be pipelined. Examples

of architectures that support the streaming model are chip multiprocessors, graphics

16

processing units (GPUs), and field-programmable gate arrays (FPGAs). We target

the FPGA for our streaming design of PhyloNet.

The speedup over a traditional CPU that can be achieved by implementing a com-

putation as a circuit on an FPGA has been reported many times in the technical

literature. The inherent spatial parallelism of the logic resources on the FPGA allows

for considerable compute throughput even at a sub-500 MHz clock rate. Another op-

tion for increasing throughput by exploiting parallelism is to run these algorithms on

a workstation cluster. However, clusters typically have high acquisition, maintenance,

and energy costs when compared to single-node solutions. One study compared the

performance of image processing application programs executing in hardware on a

Xilinx Virtex E2000 FPGA to that on three general-purpose processor platforms:

MIPS, Pentium 111 and VLIW [12]. The study showed that the FPGA implementa-

tions are one to two orders of magnitude faster than the CPUs, even after accounting

for the clock frequency differences. The authors of the study attribute this speed-up

to the following factors:

1. iteration-level parallelism on FPGAs, which is limited only by device area and

the available I/O and memory bandwidths.

2. better instruction efficiency in FPGAs, which is defined as the number of arith-

metic and logic operations executed per unit of data.

3. the ability to stream data from memory or I/O to the datapath on the FPGA.

Several BLAST-family algorithms have been accelerated by orders of magnitudes

using FPGAs. Mercury BLASTN [22] is a high-throughput and high-sensitivity

BLASTN accelerator for comparing DNA-to-DNA sequences. Mercury BLASTP [21]

is an FPGA implementation of BLASTP, the most popular tool to perform compar-

ative sequence analysis of protein sequences. DeCypherBLAST [33] is a commercial

product to accelerate BLASTP, utilizing FPGA-based processing engines attached to

high-end CPUs. TreeBLASTP [16] is an FPGA-based accelerator for BLASTP-like

computations. PhyloNet utilizes similar techniques to those in BLAST, and we thus

leverage these ideas to create an FPGA implementation of PhyloNet.

17

1.5 Contributions to Phylonet

In this thesis work, we were able to increase both the quality of results and the speed of

the PhyloNet algorithm. Through modifications of the PhyloNet algorithm, including

the use of gapped alignments as input into PhyloNet, we were able to identify an

average of 60% more known transcription factor binding sites in a whole-genome

analysis of yeast. Utilizing a faster ALLR scoring calculation scheme and a more

efficient clustering algorithm, we were able to decrease the running time of PhyloNet

by 20-fold in software alone. We also devised an approach to accelerate the seed-

matching and HSP generation stages of PhyloNet in hardware and got an expected

speedup of close to 30-fold versus our improved software version of PhyloNet. The

author’s specific contributions to increase the performance of the PhyloNet algorithm

are summarized below.

1. Contributions to the software analysis

(a) A metric was devised to quantify the sensitivity and specificity of the motifs

produced by Phylonet versus a gold standard data set.

(b) Yeast and fly datasets were analyzed to determine the sensitivity of Phy-

loNet and to empirically locate the performance bottlenecks.

(c) A set of filters was created to discard from the output motifs that are likely

to be repetitive or low-complexity DNA.

(d) Support for gapped profiles was introduced, and its performance was mea-

sured.

2. Contributions to the hardware design

(a) A strategy was developed to implement stage 1 seed matching in hardware.

Its performance compared to a software implementation was analyzed.

(b) A design of the ALLR score calculation amenable for use on the FPGA was

created, and its specificity and sensitivity were compared to the software

scoring calculation.

(c) A strategy was developed to implement stage 2 HSP generation in hard-

ware. Its performance was compared to the software implementation.

18

(d) End-to-end throughput calculation of PhyloNet on an FPGA was studied

and compared to the software performance.

The rest of the thesis is organized as follows. Chapter 2 discusses the software im-

provements made to PhyloNet. Chapter 3 describes the design of an accelerated seed

generation stage in hardware. Chapter 4 continues the hardware design discussion

with a look at the acceleration of HSP generation and concludes with end-to-end

performance gains. Chapter 5 makes some concluding remarks and discusses possible

future work.

19

Chapter 2

Software Improvements to

PhyloNet

This chapter describes the software contributions we made to PhyloNet 2, the most

current version of PhyloNet available. We offer a new version, PhyloNet 3, that

increases both the speed and sensitivity of the program while preserving the basic

structure of the computational pipeline. We address these changes throughout the

chapter. We also present a way to quantity the result quality of PhyloNet and compare

the performance of PhyloNet 3 to that of PhyloNet 2.

2.1 Software Improvements

In this section, we discuss the improvements made to PhyloNet 2, both in terms of

its running time and its ability to discover TF binding sites within the genome. The

principal algorithmic change from PhyloNet 2 to PhyloNet 3 is a complete redesign

of stage 3 of the pipeline, which is the clustering of HSPs. The main change that

improved sensitivity of the results was support for gapped alignments as input into

PhyloNet, rather than restricting inputs to ungapped alignments as in PhyloNet 2.

We discuss these in turn and also allude to some of the less drastic changes that were

made.

20

2.1.1 Improved Clustering

In the clustering phase of PhyloNet, High Scoring Segment Pairs (HSPs) are grouped

according to where they align with the profile of interest (query profile). These groups

are expanded into motifs, the final output of PhyloNet. PhyloNet 2 first forms an

overlap graph on the set of HSPs, where each HSP is a node in the graph, and an

edge is drawn between two HSPs if they overlap each other with respect to the query

profile. PhyloNet 2 uses a general clique-finding algorithm on this graph to cluster the

HSPs into groups. Next, the motif is formed using a greedy heuristic by progressively

adding instances to the motif and trimming regions that do not increase the score,

so that the total ALLR score is maximized. The length of the motif is determined

automatically by this process and does not require the motif length to be fixed a

priori.

PhyloNet 3 uses a more efficient clustering method that offers stronger performance

guarantees. We first observe that connecting HSPs with an edge when the HSPs

overlap on the query profile produces an interval graph. All maximal cliques in an

interval graph can be found in time linear in the number of HSPs and enumerated in

time proportional to their total sizes [13]. Finding maximal cliques essentially involves

sweeping a line across the interval graph (Figure 2.1) and counting the number of

HSPs that intersect the line. Local maxima in this count correspond to maximal

cliques. PhyloNet 3 uses interval clique finding to guarantee both maximality and

exhaustive enumeration of clusters, with much better scalability than general clique

finding. To avoid building clusters from HSPs that overlap by very little (e.g. a single

base), it is desirable to enforce a minimum overlap of k positions to create an edge

in the overlap graph. This criterion can be enforced by reducing each interval’s right

endpoint by k − 1 prior to clique finding.

To simplify conversion of clusters to motifs, PhyloNet 3 replaces the earlier version’s

greedy heuristic with the following enumerative algorithm. For each HSP Hj in the

cluster, let Pc and Pj be the profiles that it aligns, and let [`j, rj] and [`′j, r
′
j] be the

intervals that it aligns from Pc and Pj, respectively. Let dj = `′j − `j be the diagonal

of Hj, that is, the offset of its starting indices in Pc and Pj.

21

Figure 2.1: Clustering HSPs using an Interval Graph.

Suppose that the HSPs in a cluster have minj `j = L, and maxj rj = R. For each

left endpoint ` and right endpoint r, L ≤ ` ≤ r ≤ R, we find the best-scoring motif

whose instance on Pc is the interval [`, r]. The instance corresponding to HSP Hj is

then [` + dj, r + dj]. (If this instance runs off either end of Pj, then it is discarded for

this choice of endpoints.) We then discard any instance whose ALLR score versus Pc

is negative and retain the total score s`,r of the remaining instances. The motif with

the highest total ALLR score for the cluster is the one with endpoints argmax`,rs`r

in Pc.

Our enumerative algorithm requires time Θ(m2n), where n is the number of HSPs in

the cluster and m = R − L + 1. However, the ALLR scores for each column of the

potential alignment between each Pj and Pc can be precomputed and stored in total

time Θ(mn), so the constant factor associated with the quadratic cost in m is small

in practice, consisting mostly of addition and table lookup. We also note that when

the goal is instead to minimize the statistical p-value defined in [36] for the motif, the

motif with best p-value for a cluster can still be found in time Θ(m2n log n).

22

2.1.2 Support for Gapped Profiles

PhyloNet 2 takes as input multiple suboptimal ungapped alignments. Since real se-

quences can have insertions and deletions of bases, a single good ungapped alignment

cannot in general be obtained. Thus, multiple ungapped alignments are generated

with the hope that a real motif will be correctly positioned in one of these alignments.

This scheme has the intuitive disadvantages that it increases the size of the data by

including many alternative alignments, may not cover all of the original input se-

quences, and may contain many junk alignments. A gapped alignment, in contrast,

can align the entire sequence at once and account for the insertions and deletions of

bases that occur as species diverge from a common ancestor. Therefore, we introduce

into PhyloNet 3 support for gapped alignments. Because the input now contains only

a single gapped profile, rather than many profiles, per promoter region, the work of

scanning the database and generating HSPs is substantially reduced, and the program

runs faster. As we will see, PhyloNet 3 is also able to find more known binding sites

than PhyloNet 2.

As an example of the advantage of using gapped alignments, the sequence ‘CGT-

GTGAAGTGAT’ is a binding site for the protein Abf1 in the intergenic region of

S. cerevisiae between the genes YIL073C and YIL072W. Results of aligning this

intergenic region with the orthologous regions in three related yeast species using a

gapped approach and an ungapped approach are given in Table 2.1. The region of the

alignment containing the binding site is shown in the table. The multiple ungapped

alignments were generated using WConsensus [17]. In total, 100 ungapped alignments

were generated, 16 of which contained the binding site for Abf1 in the S. cerevisiae

sequence. A partial, representative list of alignments containing the binding site is

given in the table. Notice that the one gapped alignment shows more conservation

across the sequences than any of the ungapped alignments. If a binding site lacks

conservation in the other sequences, then it may not be discovered by PhyloNet. In

fact, PhyloNet 3 correctly identifies this binding site as a motif, while PhyloNet 2

fails to do so.

PhyloNet 3 accepts gapped multiple alignments in Multiple Alignment Format (MAF) [28].

The MAF format stores a series of multiple alignments in a format that is human

readable and straightforward to parse. MAF files include gapped alignments, the

23

Table 2.1: Gapped Alignment Versus Multiple Ungapped Alignments

Gapped Alignment Multiple Ungapped Alignments

ctaCGTGTGAAGTGATa-t ctaCGTGTGAAGTGATata
tt-CGTGAGAAGTGATact ataCACTTGTGATGTTatc
gttCGTGATACGTGATgct gtaAATTTGCGAAGTTatc
-taCGTAACAAGTGATatc ttaCGTAACAAGTGATatc

ctaCGTGTGAAGTGATata
cttATTTTATTATCTActa
cttATTTTATTATCTActg
tacGTAACAAGTGATAtcc
ctaCGTGTGAAGTGATata
ccaTGTTGCAGTTTCTtat
ccaTGTTGCAGTTTCTtta
gaaAGGGGCAACTCTTtct

scores of the alignments, and the source genomes’ positions, strand directions, and

lengths of the aligned sequences.

In order to support gapped alignments, the ALLR computation must be modified

to account for the presence of gaps. We considered two approaches. One approach

is to treat gaps as unknown residues. An unknown residue is one in which there is

no information about its identity. This introduces a new character to the possible

characters in an alignment column, along with the already present ‘A’, ‘C’, ‘G’, and ‘T’

characters. The ALLR calculation would need to be only trivially modified to include

this possiblity. However, a gap in the alignment really indicates that no homologous

residue is present in the sequence, not that the residue is unknown. Thus, despite

being straightforward to implement, this approach is not well-justified.

The second approach is simply to ignore gaps when calculating the counts of each

residue in a profile column. The resulting total base count may be less than the total

number of sequences, and profile columns in general may be of different sizes. Thus,

we use the more general form of the ALLR calcuation which does not assume equal

numbers of bases in each column:

ALLR(i, j) =

∑
b=A..T nbj ln fbi

pb
+

∑
b=A..T nbi ln

fbj

pb

ni + nj

. (2.1)

24

We add pseudo-counts to the counts in the profile columns, which has the effect of

giving less weight to columns with smaller base counts. If, for example column i is

different from the background distribution p but has a small number of bases, then

fbi tends to pb and ln fbi

pb
tends to 0, making the score smaller than if column i had a

relatively large number of bases. In essence, gaps in an alignment do not affect the

estimated frequency of a column but they affect the weight given to that estimated

frequency.

2.1.3 Other Speed Improvements

The ALLR score computation between profile columns dominates the program’s run-

ning time. Thus, it is important to make this computation as efficient as possible.

Acceleration of this computation is done using precomputed values of logarithms,

multiplication and division stored in tables. The only remaining calculations that

need to be done are additions. The lookup into the tables depends on the counts of

the number of bases in each of the profiles being compared. Both PhyloNet 2 and

PhyloNet 3 utilize these lookup tables, but PhyloNet 3 requires one-fifth as many

table lookup and additions per ALLR computation. Other changes that impact per-

formance include more efficient memory layout of profiles, faster parsing of profile

data, and a faster implementation of seed matching. These improvements were made

by Dr. Jeremy Buhler.

2.2 Experimental performance of PhyloNet

In order to compare the results of PhyloNet 2 and PhyloNet 3, we devised a proce-

dure to quantitatively compare the sensitivity and specificity of the programs. We

analyzed promoter regions of two datasets, one consisting of multiple Saccharomyces

(yeast) genomes and the other of multiple Drosophila (fly) genomes. We compared

the outputs of the two programs to known TF binding sites in Saccharomyces cere-

visiae and Drosophila melanogaster. The next few sections describe in more detail

the data sets we used, some practical issues when dealing with real data sets, and the

procedure used to measure the effectiveness of each of the PhyloNet programs.

25

2.2.1 The Data Sets

We analyzed the performance of PhyloNet 2 and PhyloNet 3 using yeast and fruit fly

genomes. For the yeast dataset, we obtained both ungapped and gapped alignments.

The ungapped data set consisted of 3,761 S. cerevisiae intergenic sequences with

ortholog counterparts in S. bayanus, S. paradoxus, and S. mikatae (Wang, personal

communication). We aligned each group using WConsensus and used these ungapped

alignments as input into PhyloNet 2 and PhyloNet 3.

Our second yeast data set consisted of gapped alignments of the S. cerevisiae genome

with DNA fragments from various related yeast species. These alignments were ob-

tained from the UCSC Genome browser (genome.ucsc.edu). We extracted those align-

ments that fell within the intergenic regions of S. cerevisiae and used these as our

promoter regions for a total of 5,769 regions. Thus, each query consisted of all the

gapped multiple alignments within a particular intergenic region. These alignments

were used when testing PhyloNet 3, which can handle gapped alignments.

To illustrate PhyloNet 3’s abilility to scale to larger genomes, we analyzed the fruit fly

genome. We obtained 15,347 gapped multiple alignments of 14 insects to Drosophila

melanogaster. These alignments were created using MULTIZ [5] and consisted of

the first 1000 bases upstream of genes from the RefSeq Genes (refGene) track that

have annotated coding sequences (CDS) and untranslated regions (UTR). They are

provided by the Berkeley Drosophila Genome Project on the UCSC Genome Browser.

2.2.2 Dealing with repetitive and low-complexity regions

Noncoding genomic DNA, including regions of high conservation, contains a large pro-

portion of repetitive and low-complexity sequence. Such sequences are too promiscu-

ous in the genome to act as specific targets for TF binding, but they are still recognized

and emitted by motif finders like PhyloNet. To eliminate such “junk” motifs from

our output, we devised filtering strategies to identify and discard low-complexity and

short tandem repeat sequences. Firstly, all input sequences were preprocessed with

Dust [14], a tool that recognizes and masks low-complexity DNA. Repetitive sequence

patterns are replaced with an ‘*’, which does not match any base.

26

Secondly, we implemented a set of filters to discard from the output motifs that are

likely to be repetitive or low-complexity DNA. In each experiment, the first genome

in the input profiles (cerevisiae for yeast, melanogaster for fly) is the most complete;

we call this genome the canonical sequence for the input. In our experiments, we

discarded any putative motif for which the query profile’s canonical sequence met

any of the following criteria:

• The sequence consists of 80% or more of a single base.

Examples: AAACA, TTTATTT

• The sequence has a run of four or more of the same base.

Examples: GCTCAAAAAG, AATTTTCGA

• The sequence contains a tandem repeat with period 2, 3, or 4 with at least three

copies.

Examples: TACACACTGG, TACGGACCACCACCGT

• The sequence consists entirely of gaps or masked bases.

Examples: ——–, *******

The same set of filters was applied to input alignments and output motifs for both

PhyloNet 2b and PhyloNet 3.

We could filter more aggressively by applying our filters to the consensus sequence of

the motif and/or the sequences from motif instances other than that from the query.

However, visual inspection of the filtered motifs suggests that our approach misses

few if any motifs that would be considered “obviously” low-complexity.

2.2.3 Measuring Performance of PhyloNet

We assessed the quality of PhyloNet’s output on yeast by measuring its sensitivity

and specificity. Sensitivity was measured by coverage of a set of known yeast TF

binding sites, while specificity was estimated from the total amount of S. cerevisiae

intergenic DNA labeled as being part of a motif.

27

To measure sensitivity, we compiled a list of experimentally supported TF binding

sites from the YEASTRACT database (www.yeastract.com). YEASTRACT is a

curated repository that contains regulatory associations between TFs and target genes

in S. cerevisiae . In total, our list comprised 558 binding site locations for 66 TFs. We

measured sensitivity as the fraction of this set of S. cerevisiae sites that were labeled

by PhyloNet as being part of a motif. A site was considered found by PhyloNet when

the experimentally supported site’s extent overlapped a reported motif instance by

over half of its length.

To assess specificity, we collected the list of cerevisiae sites from all motif instances

output by PhyloNet. We then measured the fraction of the cerevisiae sequence present

in the program’s input that was covered by a known motif instance. Higher coverage

reflects lower specificity. While this measure conflates true motif instances with falsely

labeled, non-motif sequences, it provides a fair measure of specificity given that we

do not know the complete set of motif instances in the cerevisiae genome.

PhyloNet can be manipulated to trade off sensitivity and specificity by setting the

statistical p-value threshold for reported motifs. The p-value is a value from 0 to

1 that indicates the probability that a particular motif occurred by chance, with 1

meaning that it certainly occurred by chance. A lower p-value threshold reduces the

amount of output and so increases specificity but may decrease sensitivity. We present

a unified evaluation of output quality for many different p-values as an ROC curve.

The above evaluation assesses PhyloNet’s ability to recognize all instances of a motif.

A second, related question is how many distinct motifs PhyloNet can correctly recog-

nize. To address this question, we collected sequence profiles, expressed as position-

specific scoring matrices (PSSMs), for known or predicted yeast binding site mo-

tifs from the TRANSFAC database and from a set of high-throughput chromatin-IP

(CHIP) experiments by Lee et al. We then compared these sets of PSSMs to those for

all motifs in PhyloNet’s output. The comparison was done using MatAlign (Wang,

unpublished), a program to find statistically significant pairwise alignments of PSSMs

from two databases. A motif from the TRANSFAC or CHIP data sets was reported

as occurring in PhyloNet’s output if it matched with a MatAlign conservative p-value

of at most 10−5.

28

2.2.4 Output Quality in Yeast

Figure 2.2 shows ROC curves for three versions of PhyloNet: the previous version

(PhyloNet 2b), our new version (PhyloNet 3, using gapped alignments), and a more

limited implementation that adds our clustering and other algorithmic improvements

but still uses ungapped alignments. The set of p-values tested for each implementation

included 10−k for k ranging from 0 to 50.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fraction of coverage on the cerevisiae query sequence

F
ra

c
ti
o

n
 o

f
k
n

o
w

n
 m

o
ti
f

in
s
ta

n
c
e

s
 c

o
v
e

re
d

Performace of PhyloNet Versions Parameterized by P!value Cutoff

PhyloNet 3

PhyloNet 2b Improved

PhyloNet 2b

Figure 2.2: Performance of PhyloNet Versions parameterized by p-value cutoff.

We note that for the same p-value, PhyloNet 3 returns motif instances covering more

of the input than does PhyloNet 2b. While it may be that these additional instances

reflect more actual TF binding sites, they could also reflect an increased false positive

rate in the new implementation. Hence, to fairly compare PhyloNet 2b and PhyloNet

3, we report the difference in the two programs’ sensitivities at comparable specificity

(i.e. coverage of the input), rather than identical p-values. Equivalently, we report

the vertical distance between ROC curves at corresponding points on the horizontal

axis.

Our core algorithmic improvements to ungapped PhyloNet alone increased the num-

ber of known yeast motif instances found by an average of 1.15x for the same speci-

ficity. The greatest sensitivity gains are achieved at p-values > 10−5, i.e., at lower

29

levels of specificity. When we also switch to using gapped alignments, PhyloNet 3

finds an average of 1.6x more known motif instances than PhyloNet 2b for the same

specificity.

To compare our results to the TRANSFAC and CHIP motif sets, we considered

only those results returned by PhyloNet 3 with a p-value of at most 10−50, which

yielded motifs covering a total of 2.6% of the input sequence. We found that these

motifs included matches to 49/50 TRANSFAC motifs and 90/102 CHIP motifs with a

MatAlign p-value of at most 10−5. These results indicate strong absolute sensitivity

of PhyloNet 3. However, they are not substantially different from the numbers of

matches obtained by PhyloNet 2b (50/50 and 88/102, respectively) for a comparable

level of specificity (PhyloNet 2b p-value 10−6, corresponding to 2.5% coverage of the

input). Hence, the improved result quality of PhyloNet 3 in yeast is a matter of

finding more motif instances, rather than more distinct motifs overall.

2.2.5 Efficiency in Yeast

While the observed improvements in PhyloNet 3’s output quality are welcome, it is

also important to investigate whether we achieved the goal of improved computational

efficiency. We therefore compared the compute time spent by the old and new versions

of PhyloNet. Our test system was a cluster of 2.4-GHz AMD Opteron processors; we

report the total CPU time summed over all CPUs.

Table 2.2 gives the total running time on the yeast data set for PhyloNet 2b, for our

ungapped version with algorithmic improvements, and for the full gapped PhyloNet

3. Our algorithmic changes alone improved the average running time per query by

almost a factor of four. Switching to the gapped data set increased this advantage

to 20-fold over PhyloNet 2b. PhyloNet 3 achieves improvements in both speed and

output quality over the previous version.

30

Table 2.2: Total CPU Time for S. cerevisiae genome

Execution Time Speedup
PhyloNet 2 130.2 hours —
PhyloNet 2 Improved 34.2 hours 3.8x
PhyloNet 3 6.5 hours 20.0x

2.2.6 Scalability to Fruit Fly

As described above, we assessed PhyloNet 3’s scalability to a larger eukaryotic genome

by running it on proximal promoter sequences from Drosophila. This data set spans

14.4x more sequence than our gapped yeast data set, contains 12x more total align-

ment columns, and has a maximum alignment depth more than thrice that of the

yeast alignments.

Table 2.3 gives overall running times for the fruit fly analysis. The total compute

time of 7.41 CPU days was 95 times longer than that required for the gapped yeast

data set, which is less than the 144x increase expected under the assumption of naive

quadratic scaling with the total size of the input profiles. This improvement appears

to derive from a lower density of strongly conserved regions in the Drosophila input

and consequently less time spent in HSP extension per column of the input. We

also note that the time to analyze fly was roughly comparable to the 5.54 CPU days

required for the older PhyloNet 2b to process the ungapped yeast data.

Table 2.3: Statistics for Fruit Fly Data Set

No. of Profiles 15,347
Avg. Time Per Query 41.74 sec
Total CPU Time 7.41 days

We assessed the output quality of PhyloNet 3 on Drosophila by comparing its motifs

to a set of 50 fly motifs obtained from TRANSFAC, using the same MatAlign-based

protocol as in yeast. We retained only those PhyloNet motifs with p-values of at most

10−500, which cover roughly 5% of the input sequence from melanogaster. PhyloNet’s

31

output matched 48 of 50 (96%) TRANSFAC motifs with a MatAlign p-value of at

most 10−5.

2.3 Beyond Software PhyloNet

Despite the successful improvements to PhyloNet in software alone, there is still much

room to improve the scalability of the PhyloNet algorithm. PhyloNet 3 manages to

do an all-vs-all comparison of the promoter regions of fruit fly in over 7 CPU days.

Analysis of the entire fruit fly genome would be infeasible in PhyloNet 2. In order for

PhyloNet to process mammalian genomes, which in general contain longer and more

complex promoter regions, in a reasonable length of time, more needs to be done to

improve its processing power. This leads us to implement PhyloNet on dedicated

hardware. To improve the runtime of PhyloNet, we leverage the ability to modify its

parameters without changing its sensitivity to assist in our hardware design. We also

identify the stages that are the software bottlenecks in order to direct our efforts in

increasing performance.

2.3.1 Effects of Parameters on the Performance of PhyloNet

We will find in later chapters that the choice of the user-defined parameters of Phy-

loNet has a large impact on which hardware designs are feasible. The parameters that

we examine impacting the design are the word length, the neighborhood threshold,

and the query size.

The word length sets the length of the seeds and is 6 by default. The neighborhood

threshold sets the size of the neighborhoods for each of the seeds and has a default

value of 5. These parameters have an impact on area usage and throughput. Fig-

ure 2.3 plots the ROC curves of the yeast dataset for each of the different values of

parameters used.

We see that these parameters are robust to at least slight deviations from the default

settings. The sensitivity remains unchanged under these particular values of the

32

Figure 2.3: Result Quality of PhyloNet for Different User Inputs.

33

parameters, and so we allow these parameters to take on any of these values as we

design our hardware implementation of PhyloNet.

We also examine the effects of processing more than one query simultaneously as

oppossed to processing each query individually. This bin-packing approach has the

advantage of requiring fewer passes over the database and improving the running

time of PhyloNet. We double the query size until the total running time no longer

improves, examining query sizes of 1000, 2000, 4000, 8000, and 16000. Table 2.4

shows the total running time of PhyloNet on the yeast data set using the different

parameters.

PhyloNet took longer to run relative to the other parameters when a seed length of

7 was used. Thus, we do not include a seed length of 7 in our further analysis. The

parameters that result in the fastest running time of PhyloNet on the S. cerevisiae

genome are a word length of 6, neighborhood threshold of 6.0, and a query size of

8,000. We use this as our software baseline to compare against our hardware design.

Due to resource constraints, we will see that we are limited in the sizes of our queries,

and therefore only examine query sizes up to 4,000 in our hardware design.

2.3.2 Bottlenecks in software version of PhyloNet

We determine the bottlenecks of the PhyloNet pipeline by profiling the running time

of PhyloNet on the yeast genome data set. Figure 2.4 shows the proportions of time

spent in various stages of PhyloNet for fixed-length profiles of 1000 and the default

parameters.

By far, the table setup, seed matching, and seed extension take the most amount of

time, with 93% of the time spent on these items. The table setup, which involves

creating the seed neighborhoods and loading the table with the query positions, can

be done offline and must be done only once for each query profile. This leaves seed

matching and seed extension as stages in which to concentrate our improvements.

Chapter 3 is devoted to speeding up seed matching (Stage 1) in hardware, while

Chapter 4 discusses the speedup of seed extension (Stage 2) in hardware and concludes

34

Input
0%

Table Set Up
27%

Seed
Matching

20%

Extension
46%

Clustering
2%

Output
1%

Other
4%

Figure 2.4: Time spent in the various stages of PhyloNet.

with an overall performance analysis and benchmarking of PhyloNet. Chapter 5

concludes our analysis and discusses possible future work.

35

Table 2.4: Total Running Time of PhyloNet on the Yeast Data Set

Seed Neighborhood Query Time
Length Threshold Size (sec)
5 4 1000 5785.5
5 4 2000 6425.0
5 5 1000 3679.9
5 5 2000 3338.3
5 5 4000 3182.4
5 5 8000 3316.3
5 6 1000 2198.0
5 6 2000 1899.5
5 6 4000 1751.7
5 6 8000 1719.1
5 6 16000 1981.1
6 4 1000 6444.9
6 4 2000 6073.0
6 4 4000 5715.5
6 4 8000 5265.6
6 4 16000 5462.4
6 5 1000 3442.9
6 5 2000 3028.1
6 5 4000 2822.9
6 5 8000 2662.6
6 6 16000 2801.6
6 6 1000 2248.1
6 6 2000 1811.8
6 6 4000 1602.0
6 6 8000 1539.9
6 6 16000 1717.3

36

Chapter 3

Design of an Accelerated Seed

Generation Stage

In this chapter we present a design for Stage 1 of PhyloNet amenable to a hardware

implementation, specifically on an FPGA. We first describe in detail the Stage 1 pro-

cess. We then discuss our design of Stage 1 on an FPGA and analyze its throughput.

Finally, we compare the speed of the hardware implentation of PhyloNet to that of

our improved software implementation.

3.1 Stage 1 of PhyloNet

Recall that alignments of DNA sequences are called profiles. Each of the promoter

regions of the genome are aligned to orthologous promoter regions of other species.

The profiles each in turn act as the query profile, which is compared to all other

profiles (collectively known as the database).

The goal of Stage 1 is to find potential locations for high-scoring regions between

two profiles. This is done by searching for short regions of the database profiles that

match regions of the query profile to within some threshold. Two regions that are

similar will in general have short regions that match very well. This is the same idea

used in the BLAST algorithm to compare DNA sequences. It is not guaranteed to

find optimal local alignments but has shown good sensitivity in the context of the

BLAST family of algorithms.

37

3.1.1 Seed Matching using Table Lookups

Finding exact matches of a fixed length between two sequences can be done in time

linear in their total length using table lookups. Both sequences are divided into short

substrings of fixed length known as words. Each word is given an address in a lookup

table. The locations of the words in one sequence are stored in the table. The table

is then queried using the words of the other sequence. Matches between words in the

database and query are known as seeds. This process is guaranteed to find all exact

matches of a fixed length between the two sequences.

This technique can be extended to find all substrings of a fixed length that match to

within some threshold for some scoring scheme. This is done by generating a set of

neighborhood words for each of the words in the stored sequence. A neighborhood

word is a substring the same size as the query word that matches the query word

with an alignment score greater than a user-defined threshold. A branch and bound

algorithm is used to generate neighborhood words and is guaranteed to generate all

words that are similar within the threshold. This is the approach used in BLASTP,

an algorithm used to compare protein sequences. It is used in the context of BLASTP

because evolutionary and biochemical similarities between amino acids are not well

characterized by a match or mismatch of the characters as is the case for DNA

sequences as some amino acids have more similar properties to each other than others.

3.1.2 Adapting Table Lookups for PhyloNet

The table lookup approach cannot be directly applied to PhyloNet because profile

columns are being compared rather than simply discrete characters of sequences.

The number of possible columns grows cubically with the number of sequences in

the profile. Even for fairly small numbers of species, it quickly becomes impractical

to compute all neighborhood profile words and store them in a lookup table. Thus,

the approach used in PhyloNet is to map each of the profile columns to a discrete

character that can be used in the table lookup approach. Different profiles can be

mapped to the same character, and so this mapping is degenerate. PhyloNet maps

the profiles to an alphabet of 15 characters. The mapping function was derived by

clustering the columns of matrices of known yeast transcription factors and multiple

38

alignments of intergenic regions of four yeast species into subspaces via a supervised

learning algorithm [36] (supplementary).

After the profiles are mapped to degenerate sequences, they can be divided into seeds

and stored in the table just as in the approach used for sequence comparisons. As done

for proteins, a neighborhood scheme is employed to capture approximate matches.

3.1.3 Table Lookup Data Structures

There are two data structures typically used to implement a lookup table: direct

lookup and hashing. A direct lookup table contains a unique address for all possible

entries. Constant-time lookup is guaranteed, but the table may be inefficient in its

space usage if the number of actual entries is much less than the number of possible

entries. A hash table, on the other hand, does not have a unique address for all

possible entries. Thus, two entries may map to the same location, causing a collision

that must be resolved. These collisions mean lookups cannot be satisfied in constant

time in general. The advantage of a hash table is that it utilizes space more efficiently

than a direct lookup table. The software version of PhyloNet 3 uses a direct table

approach provided there is enough memory to support it and switches to a hash table

approach when space is an issue.

3.2 Hardware Design of Stage 1

The main work done in Stage 1 is seed matching via the lookup table. In this section

we explore the implementation of a lookup table on an FPGA. We develop a design

that attempts to quickly satisfy each query of the table so that we achieve a high

throughput of seed hits out of Stage 1.

39

3.2.1 Area Estimates of Table for Stage 1

There are two potential places to store the table on an FPGA: block RAM and SRAM.

Block RAM is on-chip and so is able to take less time looking up a value than the

off-chip SRAM. However, block RAM is much smaller than the SRAM. A single block

RAM is at most 36 kilobits while the SRAM on our target FPGA development board

is 9.0 megabytes. In order to accommodate storage of the locations of the query seeds

and neighborhood seeds, the SRAM is needed.

For a direct lookup table, the number of entries is the number of total possible seeds

of length w generated from an alphabet A. This results in a total of |A|w possible

seeds and thus |A|w entries. Each entry of the SRAM can be 36 bits wide. The total

area requirements of the table, then, is 36 bits ∗ |A|w. Table 3.1 shows the amount of

area needed for an alphabet size of 15 and seed sizes of 5, 6, and 7.

Table 3.1: Memory requirements of a direct lookup table

Alphabet Size Word Length Prim Table Entries Primary Table Size
15 5 759375 2.71 MB
15 6 11390625 44.67 MB
15 7 170859375 731.16 MB
SRAM Size 2097152 9.0 MB

If the word length is 5 or less, a direct lookup table may be used. If a word length

greater than 5 is used, either more SRAMS or a hash table approach could be used.

3.2.2 Occupancy Sizes of Tables

Depending on the parameters, the number of entries in the lookup table and the

number of query locations per entry will vary. The number of non-empty entries

in the table divided by the total possible entries, or the occupancy rate, is a factor

in determining the effectiveness of using a hash table. A sparse table is ideal for

hashing, while an almost full table will result in many hashing collisions and yield a

non-constant lookup time. The design of the table will be affected by the expected

40

number of query locations returned per table lookup. Both of these statistics are

given in Table 3.2.

Table 3.2: Occupancy Sizes of Tables

Word Neigh. Query Occupancy Positions
Length Thresh. Size Rate per Entry
5 4 1000 0.1988 2.17
5 4 2000 0.2647 3.27
5 4 4000 0.3160 5.48
5 5 1000 0.0809 1.76
5 5 2000 0.1170 2.44
5 5 4000 0.1495 3.83
5 6 1000 0.0228 1.47
5 6 2000 0.0360 1.87
5 6 4000 0.0503 2.67
6 4 1000 0.1593 1.51
6 4 2000 0.2454 1.97
6 4 4000 0.3337 2.90
6 5 1000 0.0678 1.33
6 5 2000 0.1125 1.61
6 5 4000 0.1675 2.16
6 6 1000 0.0233 1.22
6 6 2000 0.0409 1.39
6 6 4000 0.0658 1.73

In some cases, the occupancy rate is quite low, and so a hash table approach may be

worthwhile to pursue. A hash table would allow for bigger tables than ones having a

word size of 5, which is currently a constraint.

3.2.3 Table Design

We implement a design of the table similar to that done for Mercury BLAST [21]

This table is composed of two tables, called the primary table and duplicate table

(Figure 3.1). Each entry of the primary table stores a duplicate bit indicating if the

duplicate table needs to be accessed. The rest of the entry contains either of the

following depending on the state of the duplicate bit:

41

1. if the duplicate bit is set to 0, then the entry contains the positions in the query

profile that matches that entry’s seed; or

2. if the duplicate bit is set to 1, then the entry contains the count of the number

of positions stored and a pointer to the duplicate table. The seed positions are

stored in consecutive memory locations in the duplicate table starting at the

address of the pointer from the primary table.

Figure 3.1: Path of Table Lookups

Since a duplicate bit is required for each entry, the number of bits available to store

query locations is 35 bits. Each query location is represented with a fixed number

of bits. Although using a variable number of bits to represent query locations would

make the storage more compact, it would also require more logic, and thus more

time, to retrieve query locations from the table. With a fixed-length represntation,

the number of query positions that can be stored in a single entry is dlog2 Ne, where

N is the size of the query profile. Table 3.3 gives the number of query positions

possible per entry for various query lengths.

Table 3.3: Query locations per entry for a 36 bit SRAM

Query Length Bits/Query Pos Query Pos/Entry Delta Encoding?
1024 10 3 No
2048 11 3 No
4096 12 3 Yes

Notice that even though a query length of 4000 requires 12 bits per query position,

three query positions can be stored in 35 bits instead of 36 bits. One can use delta

42

encoding, which stores the differences between positions rather than the positions

themselves [21].

3.3 Stage 1 Performance Model

Here we provide the framework to model the performance of Stage 1 given the table

design of the previous section. We use this model to calculate the expected throughput

of Stage 1.

The input rate onto the FPGA is the number of database entries that can be streamed

in per second and is given by

R = I/db, (3.1)

where I (in bits per second) is the rate at which data can be streamed to the hardware

and db (in bits per position) is the space requirement of each database position. The

database position consists of the counts of the number of bases from a single column

and the degenerate character that represents that column. Assuming we allow up to

127 species alignments, each of the four counts of a single column needs 7 bits, for a

total of 28 bits. The degenerate character can be represented with 4 bits because it

comes from an alphabet of size 15. Thus, db = 32 bits.

The throughput of Stage 1 is the minimum of the input rate R (in database positions

per second) into Stage 1 and the service rate U (in database positions per second) of

Stage 1.

Throughput = min(R,U). (3.2)

The service rate can be calculated as

U = f ∗ 1

A
∗M, (3.3)

where f is the frequency of the SRAM, A is the expected number of clocks per

database entry, and M is the number of SRAMS used in parallel. To calculate the

expected number of clocks per database entry, we add up the number of clocks that

each query takes, given that only 3 locations can be returned per clock, and divide

43

by the total number of queries. This calculation can be expressed as

A =
1

N
∗

∑
i

g(ni), (3.4)

where N is the number of database entries, ni is the number of positions returned

for database entry i, and g(ni) is the number of clocks needed to return ni query

locations. The number of clocks needed to return ni query locations depends on our

table design, where at most 3 query locations can be stored per table entry. Thus,

queries that return 0 through 3 positions can be satisfied in one clock cycle. Queries

that return 4 through 6 positions take one clock cycle to go to the duplicate table plus

two more clock cycles to return all the hits for a total of three clock cycles. Queries

containing 7 through 9 positions take four clock cycles, 10 through 12 positions take

5 clock cycles, and so on. The formula for g(ni) is given as

g(ni) =

1 if 0 ≤ ni ≤ 3

bni−1
3
c+ 2 if ni > 3

(3.5)

The average amount of output generated by Stage 1 per clock cycle can be calculated

by summing up the total positions returned of all database entries and dividing by

the total number of clocks needed:

hits per clock =

∑
i i ∗ ni∑

i g(ni) ∗ ni

. (3.6)

3.4 Performance Estimates for Stage 1

Given the performance model illustrated in the previous section, we estimate the

performance of hardware Stage 1 on the yeast data set and compare it to software

Stage 1. Table 3.4 gives some of the specifications for the FPGA needed in our

performance model.

The input rate is 700 MB/s (Table 3.4), and the number of positions that can be

streamed in per second is 700 MB/s divided by the database position size of 32 bits

44

Table 3.4: Specifications of FPGA

Input Rate 700 MB/s
Number of SRAMS 1
Frequency of SRAM 200 MHz

(Equation 3.1). The number of database positions that can be streamed in every

second is then 183.5 million.

We empirically calculate the number of positions returned for each table lookup using

the yeast dataset on various parameters. The distributions of the positions returned

from the table lookups are given in Figure 3.2.

Figure 3.2: Distributions of Positions Returned from Table Lookups for Query Sizes
of 1000, 2000, and 4000.

Each subplot shows the distribution of a particular word length and neighborhood

threshold for query sizes of 1000, 2000, and 4000. As the query size increases, the

45

number of positions returned increases, shifting the distributions to the right. The

distributions have peaks located either at zero or near zero with long tails. This

indicates that most lookups only return a few positions, although some may return

upwards of tens of positions.

Using these distributions, we can calculate the average number of clock cycles per

table query based on Equation 3.4. Table 3.5 lists the average clock cycles needed

per database entry for the various parameters on the yeast data set. The average

number of clock cycles increases when query size increases and decreases when the

neighborhood threshold increases.

Table 3.5: Average Clock Cycles Needed Per Database Entry for Various Parameters

Seed Neighborhood Query Average
Length Threshold Size Clks/DB
5 4 1000 1.6574
5 4 2000 2.6075
5 4 4000 4.3340
5 5 1000 1.3068
5 5 2000 1.8725
5 5 4000 2.9608
5 6 1000 1.0995
5 6 2000 1.3464
5 6 4000 1.9160
6 4 1000 1.2806
6 4 2000 1.8759
6 4 4000 3.0292
6 5 1000 1.0797
6 5 2000 1.3106
6 5 4000 1.9072
6 6 1000 1.0299
6 6 2000 1.1315
6 6 4000 1.4405

The rate at which queries can be made against the table also depends on the number

of SRAMS being utilized (Equation 3.3). Even though we could potentially use more

SRAMS, we used just one because we determine that this is sufficient to keep up with

Stage 2 of the pipeline.

46

We can also calculate the amount of output produced per clock cycle based on Equa-

tion 3.6. This is given in Table 3.6. Four configurations produce less than one position

per clock cycle. One out of these four has a seed length of 5. The amount of output

from Stage 1 impacts our design of Stage 2, which we discuss in Chapter 4.

Table 3.6: Output of Stage 1

Seed Neighborhood Query Positions Out
Length Threshold Size Per Clock
5 4 1000 1.4286
5 4 2000 1.8202
5 4 4000 2.1929
5 5 1000 1.0765
5 5 2000 1.5063
5 5 4000 1.9076
5 6 1000 0.6402
5 6 2000 1.0483
5 6 4000 1.4751
6 4 1000 1.1317
6 4 2000 1.5494
6 4 4000 1.9217
6 5 1000 0.6862
6 5 2000 1.1339
6 5 4000 1.5606
6 6 1000 0.4221
6 6 2000 0.7707
6 6 4000 1.2125

Based on the number of clocks per database entry, we calculate the expected time

required for Stage 1. This is simply the average clocks per database given in Table 3.4

multiplied by the size of the database divided by the clock frequency. The results are

given in Table 3.7.

3.5 Conclusion

We compute the expected running time of our hardware design of Stage 1 for all of the

possible parameters. The best hardware performance came when using a word length

47

Table 3.7: Stage 1 Hardware versus Software Time

Seed Neighborhood Query Hardware
Length Threshold Size Time (sec)
5 4 1000 31.4
5 4 2000 24.7
5 4 4000 20.4
5 5 1000 24.7
5 5 2000 17.7
5 5 4000 14.0
5 6 1000 20.8
5 6 2000 12.7
5 6 4000 9.0
6 4 1000 24.3
6 4 2000 17.7
6 4 4000 14.3
6 5 1000 20.4
6 5 2000 12.4
6 5 4000 9.0
6 6 1000 19.5
6 6 2000 10.7
6 6 4000 6.8

of 6, neighborhood threshold of 6, and query size of 4000, spending 6.8 seconds total.

The fastest software version of PhyloNet (word size of 6, neighborhood threshold of

6, and query size of 8000) spends 141.5 seconds in the seed matching stage. If we

use a direct lookup table stored on a single SRAM, we need to use a seed length of

5, which means our best hardware improvement uses word length of 5, neighborhood

threshold of 6, and query size of 4000, resulting in a time of 9.0 seconds.

In general, both software and hardware run faster when the query sizes are larger,

the neighborhood thresholds stricter, and the seed lengths longer. This makes sense

because longer seed lengths and longer query sizes mean less lookups, and higher

neighborhood thresholds mean less positions returned. We also found that the number

of positions output by Stage 1 ranged from 0.4 to 2.2 positions per clock. A low

neighborhood threshold, a short seed length, and a long query length result in more

words in the table, meaning more seed hits returned on the average.

48

Chapter 4

Design of an Accelerated Seed

Extension Stage

In this chapter, we discuss Stage 2 of PhyloNet, which involves the extension of seeds

into high scoring segment pairs (HSPs). We develop a design for implementing this

stage on an FPGA and compare the hardware design performance to the software

design. We conclude with end-to-end speed improvements of PhyloNet.

4.1 Stage 2 of PhyloNet: Seed Extension

In stage 1 of PhyloNet, database seeds are compared against query seeds. Matches

between the database seeds and query seeds are returned from stage 1 and are then

input to stage 2. In stage 2, the seed hits are extended into high scoring segment

pairs (HSPs). These HSPs are then clustered into motifs. Extension is done on the

original profiles using the full ALLR calculation. Extension is performed by extending

the seed hit in both directions. A running score and a maximum score are recorded

for each direction. Extension terminates when the running score drops below the

maximum score minus a user-defined threshold known as the x-drop (Figure 4.1). If

the maximum score is above some threshold, it is passed to stage 3 for clustering.

49

Figure 4.1: Variable-Length Extension in Software

4.2 Hardware Design of Stage 2

The stage 2 design of PhyloNet in software needs to be adapted to work in the context

of a hardware design. The issues that make adapting stage 2 into hardware nontrivial

are as follows:

1. Extension in software can be of variable length. It is unknown beforehand how

far a seed hit must be extended.

2. The ALLR calculation involves the computation of logarithms and divisions,

which are costly in hardware.

3. Software PhyloNet uses floating point arithmitic to compute the ALLR score

between profile columns.

4. There are limitations in the sizes, quantities and numbers of accesses per clock

cycle to tables stored on the FPGA.

We address each of these in this section as we devise a hardware design for Stage 2

of PhloNet.

50

4.2.1 Fixed Window Extension

Extensions in software are of variable lengths. Extensions terminate when the current

score drops below the x-drop cutoff. However, this approach does not lend itself well to

a hardware design. Instead, we extend the seed hits over a fixed window in hardware

(Figure 4.2). The seed gets extended over the entire window, and the best scoring

alignment is recorded.

Figure 4.2: Fixed-Length Extension in Hardware

If an extension hits the edge of the window, but the current score is still within

the x-drop of the maximum score and meets a certain threshold score T , then this

extension is passed to software for the usual software extension. An extension may

be deemed an HSP even if it does not get passed to the software extension, as long as

its score in hardware is above the minimum score for an HSP. Algorithm 1 displays

the pseudo-code for this process. Its input is the query profile (query), database

profile(database), positions of the seed hit in the query and database (sq and sd), and

the window length W . It returns true if extension in software is required. Otherwise,

it returns the score of the best extension (HSP Score) and the endpoints of the best

extension (Lmax index and Rmax index).

51

Algorithm 1 Seed Hit Extension

1: procedure Extension(sq, sd, query, database,W)
2: HSP Score← 0

3: ExtendLeft(sq, sd, query, database, W/2)
4: ExtendRight(sq, sd, query, database, W/2)

5: if Lcurrent index = W/2 and Lcurrent score > T then
6: return TRUE
7: else
8: HSP Score← HSP Score + Lmax score

9: end if

10: if Rcurrent index = W/2 and Rcurrent score > T then
11: return TRUE
12: else
13: HSP Score← ans + Rmax score

14: end if

15: return FALSE, HSP Score, Lmax index, Rmax index

16: end procedure

The fixed window extension in hardware is implemented as two systolic arrays, ex-

tending W/2 positions to the left and to the right of the seed hit, where W is the total

window length. In total, W pipelined, ALLR calculations are processed in parallel.

The scores of the ALLR calculators from each extension are summed and the maxi-

mum scores (Lmax score and Rmax score) and their locations (Lmax index and Rmax index)

are returned, along with the scores and indices at the termination of the extensions

(Lcurrent score, Rcurrent score, Lcurrent index, and Rcurrent index). Algorithm 2 shows this

process for extension in both the left and the right directions.

Another possible approach to doing the extension is to use a dynamic programming

algorithm that finds the maximal-scoring extension containing the seed and uses just

one systolic array of length W . Instead of extending in both the left and the right

direction starting at the seed, it beings at the left-most end of the window and extends

to the right-most end. This approach was used in [23]. The advantage of the approach

described in the prior paragraph is that it more closely mimics the software extension,

and the left and right extensions can be done in parallel.

52

Algorithm 2 Directional Extension

1: procedure ExtendLeft(sq, sd, query, database,W)
2: Lmax score ← Lcurrent score ← 0
3: Lmax index ← Lcurrent index ← 0

4: for i = 1 to i = W do
5: Lcurrent score ← Lcurrent score + ALLR(query[sq − i], database[sd − i])
6: Lcurrent index ← i
7: if Lcurrent score > Lmax score then
8: Lmax score ← Lcurrent score

9: Lmax index ← Lcurrent index

10: end if

11: if Lcurrent score < Lmax score − x drop then
12: return Lmax score, Lmax index, Lcurrent score, Lcurrent index

13: end if
14: end for

15: return Lmax score, Lmax index, Lcurrent score, Lcurrent index

16: end procedure

17: procedure ExtendRight(sq, sd, query, database,W)
18: Rmax score ← Rcurrent score ← 0
19: Rmax index ← Rcurrent index ← 0

20: for i = 1 to i = W do
21: Rcurrent score ← Rcurrent score + ALLR(query[sq + i], database[sd + i])
22: Rcurrent index ← i
23: if Rcurrent score > Rmax score then
24: Rmax score ← Rcurrent score

25: Rmax index ← Rcurrent index

26: end if

27: if Rcurrent score < Rmax score − x drop then
28: return Rmax score, Rmax index, Rcurrent score, Rcurrent index

29: end if
30: end for

31: return Rmax score, Rmax index, Rcurrent score, Rcurrent index

32: end procedure

This hardware extension does a good job as a pre-filter into software extension. Ta-

ble 4.1 shows the fraction of the extensions that avoid being passed to software as a

function of the window size. Over 99% of the extensions can be satisfied in hardware

without passing them to software. We are limited in the size of the window by the

53

area constraints of placing multiple ALLR calculations on the hardware. This will

be explained in detail in the next two sections. Even with this high filtering rate, we

will see that even when using the largest window size that fits onto the FPGA, the

processing done in software takes more time than the processing done in hardware.

Thus, we would still like to reduce the number of extensions being passed to software

or increase our hardware capacity to further reduce the time spent in Stage 2.

Table 4.1: Quality of Fixed Window Filter

Window Size Percent Filtered
20 99.18%
24 99.51%
30 99.68%

4.2.2 ALLR calculation in Hardware

The full ALLR calculation is given as

ALLR(i, j) =

∑
b=A..T nbj ln fbi

pb
+

∑
b=A..T nbi ln

fbj

pb∑
b=A..T nbi + nbj

, (4.1)

where nbi is the number of occurrences of base b in the i-th column, pb is the back-

ground frequency for base b, and fbi is the frequency of base b in the i-th column.

Since the number of aligned species tends to be small, pseudo-counts are added to

the score to account for small sample biases. Thus, ni is estimated as ni + pc, and fbi

is estimated as nbi+pb∗pc
ni+pc

, where ni =
∑

b=A..T nbi and pc is the pseudo-count, which is

0.1 by default in PhyloNet.

For the hardware implementation, we wish to reduce the logarithm and division calcu-

lations to table look-ups, while minimizing the number of additions, multiplications,

and table-lookups needed to complete an ALLR calculation. By rearranging the

ALLR formula, we get an equation more conducive to table lookups. We can reform

54

the allr calculation as

ALLR(i, j) =
1

ni + nj + 2 ∗ pc
∗

[∑
i6=j

(ni + pc) ∗ (−log (nj + pc)) (4.2)

+
∑
i6=j

∑
b=A..T

(nbi + pc ∗ pb) ∗ log

(
nbj + pc ∗ pb

pb

)]
.

Replacing the logarithms and divisions with table lookups, the above equation be-

comes

ALLR(i, j) = Table1(ni + nj) ∗

[∑
i6=j

Table2(ni) ∗ Table3(nj)

+
∑

b=A..T

(Tableb1(nbi) ∗ Tableb2(nbj))

+
∑

b=A..T

(Tableb1(nbj) ∗ Tableb2(nbi))

]
. (4.3)

Each ALLR calculation only requires 9 additions and 11 multiplications and no log-

arithms or divisions. The logarithms and divisions are pre-computed in software and

loaded onto the hardware. The number of entries in the tables depends on the number

of aligned species, and the width of each table entry depends on the number of bits

needed to store a value.

4.2.3 Storage of Tables in block RAM and Representation of

Values

The tables required for the ALLR calculation can be stored in the block RAMs on

the FPGA. In the Virtex 4 family, the number of block RAMs range from 48 to 552,

and each block RAM is 18 kilobits. The block RAMs are dual-ported, meaning two

simultaneous accesses can be made to a single block RAM on each clock.

The block RAMs can be configured into many aspect ratios. We utilize the ratios 1K

x 18 and 512 x 36. To do so, we represent numbers using 18-bit fixed point arithmetic.

55

This allows us to store one value per entry in a 1K x 18-bit table and two values per

entry in a 512 x 36-bit table. We find that using 18-bit fixed point numbers with

8 bits of precision maintains the same sensitivity as the full floating point numeric

representation.

In equation 4.3, the indices into some tables are the same. Tables that are indexed by

the same numbers can be stored side-by-side in a block RAM arranged in the ratio

512 x 36 bits. A single lookup can retrieve two values, one stored in the first 18 bits,

and the other stored in the last 18 bits. Figure 4.3 shows an example of one of the

tables where the number of aligned sequences is four. Two lookups are done, but four

values are returned.

Figure 4.3: Storage of two tables in one block RAM

Based on this idea, we can consolidate the tables that are indexed by the same

numbers.

ALLR(i, j) = Table1(ni + nj) ∗

[∑
i¬j

Table2L(ni) ∗ Table2U(nj)

+
∑

b=A..T

(TablebL(nbi) ∗ TablebU(nbj))

+
∑

b=A..T

(TablebL(nbj) ∗ TablebU(nbi))

]
. (4.4)

56

The tables subscripted with L and R return two values with each lookup. Given a

table TableX that returns two values, the lower half of the bits contain the value

of TableXL and the upper half of the bits contain the value of TableXU . Instead of

needing 11 tables, one for each lookup, we need only 6 tables. These 6 tables give

us the 21 values needed to compute the ALLR score. A description of each of these

tables is given in Table 4.2.

Table 4.2: Composition of Tables for ALLR Calculation

Table Index Value 1 Value 2 Size Max Species
Table1 ni + nj

1
ni+nj+2∗pc

none 1024 entries x 18 bits 511

Table2 ni ni + pc −log(ni + pc) 512 entries x 36 bits 511
TableA nAi nAi + pc ∗ pA log(nAi+pc∗pA

pA
) 512 entries x 36 bits 511

TableC nCi nCi + pc ∗ pC log(nCi+pc∗pC

pC
) 512 entries x 36 bits 511

TableG nGi nGi + pc ∗ pG log(nGi+pc∗pG

pG
) 512 entries x 36 bits 511

TableT nTi nTi + pc ∗ pT log(nTi+pc∗pT

pT
) 512 entries x 36 bits 511

4.2.4 Pipeline Design of ALLR calculation

To maximize the throughput of each ALLR calculation, we divide the computation

into pipelined stages. We generate a dependency tree of the steps involved to calculate

the ALLR score using the table lookups. This is illustrated in Figure 4.4.

Table 1 is queried once per clock cycle, and the other tables are queried twice, giving

11 queries of the six tables. This is possible because the block RAMs are dual-ported,

allowing two simultaneous accesses. The entries returned by Tables 2, A, C, G and

T actually contain two values: one value in the lower 18 bits and the other value in

the upper 18 bits. The 21 values returned by the table lookups are combined through

a combination of 9 additions and 11 multiplications to get the result of the ALLR

calculation. Since the calculation is pipelined, the ALLR block can return one ALLR

calculation every clock cycle after an initial latency of 8 clock cycles.

57

Table1 Table2 TableA TableC TableG TableT

xx xx xx xx xx

x

+ +

+

+ + +

+

+

+

Figure 4.4: Pipelined ALLR calculation.

58

4.3 Synthesis of ALLR calculation in Hardware

In order to estimate how much area the ALLR units require, we simulated the ALLR

calculators on the Virtex-4 XC4VLX80 platform using the Xilinx synthesis tools

(www.xilinx.com). We synthesize up to 30 ALLR units using the pipelined design

with table lookups and 18-bit fixed point arithmetic. The area estimates are shown

in Figure 4.5.

Figure 4.5: Area usage of ALLR units

Since a window size of 20 only requires 40% of the total number of LUTS and only

passes 0.82% of the extensions to software, we use this window size for our hardware

Stage 2 extension.

4.4 Performance Estimates of Stage 2

We compute the estimated time spent in Stage 2 of the hardware design and report

speedup over the software. From our synthesis of the ALLR design in hardware, we

find that we are able to process one hit per clock cycle, and our maximum clock cycle

is 155 MHz. Since each hardware extension can be processed in one clock cycle using

59

a window size of 20, the time spent in hardware extension is the total number of seed

hits times the clock period. The time spent in software is the time spent processing

the seed hits that make it pass the hardware fixed window extension. Table 4.3 lists

these times.

Table 4.3: Stage 4 Timing Analysis

Parameters Hardware Filter
Word Neigh. Query Hardware Time Software Time
Length Thresh. Size (seconds) (seconds)
5 4 1000 57.7 22.4
5 4 2000 57.9 35.8
5 4 4000 57.9 58.5
5 5 1000 34.3 24.3
5 5 2000 34.4 38.5
5 5 4000 34.4 66.4
5 6 1000 17.1 21.3
5 6 2000 17.2 40.4
5 6 4000 17.2 63.3
6 4 1000 35.3 20.8
6 4 2000 35.4 32.8
6 4 4000 35.4 57.8
6 5 1000 18.0 20.9
6 5 2000 18.1 33.2
6 5 4000 18.1 57.8
6 6 1000 10.6 20.1
6 6 2000 10.6 32.2
6 6 4000 10.6 55.7

The overall time spent in hardware Stage 2 is the maximum of the times spent in

hardware extension and software extension since these two steps can be done in

parallel. The fastest hardware Stage 2 time is 20.1 seconds. This is achieved using

word length of 6, neighborhood threshold of 6.0 and query size of 1000. The fastest

software implementation spends 780.9 seconds in Stage 2, which is 38.9 times slower

than hardware.

60

4.5 Overall Performance Estimation

We were able to substantially reduce the time spent in Stage 1 and Stage 2 of Phy-

loNet, which we found to be the major bottlenecks in the algorithm. Here, we present

the overall performance gains with our hardware implementations of Stages 1 and 2.

We found that Stage 1 could run at 200 MHz, while Stage 2 could run at 155 MHz.

Thus, we run both stages at 155 MHz. Table 4.4 gives the modified time in Stage 1

using a clock frequency of 155 MHz.

Table 4.4: Stage 1 Hardware Time with Reduced Clock Frequency

Seed Neighborhood Query Hardware
Length Threshold Size Time (sec)
5 4 1000 40.5
5 4 2000 31.9
5 4 4000 26.3
5 5 1000 31.9
5 5 2000 22.8
5 5 4000 18.1
5 6 1000 26.8
5 6 2000 16.4
5 6 4000 11.6
6 4 1000 31.4
6 4 2000 22.8
6 4 4000 18.5
6 5 1000 26.3
6 5 2000 16.0
6 5 4000 11.6
6 6 1000 25.2
6 6 2000 13.8
6 6 4000 8.7

We have two main constraints that need to be satisfied. The first is that if we wish

to use a direct lookup table, we must use a seed length of no more than 5. Also, since

Stage 2 can only extend one seed hit every clock cycle, the average number of hits

being produced by Stage 1 per clock cycle must be less than one. We see from our

analysis in Chapter 3 that there is one set of parameters that meet both critera: seed

length of 5, neighborhood threshold of 6 and query length of 1000. Stage 1 produces

61

0.64 positions per clock cycle with these parameters, a rate which Stage 2 can handle.

Table 4.5 shows the time spent in the optimal design, split into the hardware and

software time for each stage.

Table 4.5: Hardware and software times for each stage of the optimal configuration.

Stage Hardware time Software time
(sec) (sec)

1 26.8 —
2 17.1 21.3
3 — 10.3

Final 26.8 sec 31.6 sec
Cost

The hardware stages are pipelined, meaning the total time is the maximum of the

times spent in each individual stage. Thus, the total time spent on the yeast data

in seed matching, extension, and clustering is 31.6 seconds. This is compared to

the 926.2 seconds that is required to run these stages in software alone on a single

CPU. This gives an inferred speedup of 29x over the three stages in the best software

version. Even if the stages of PhyloNet were pipelined on software and placed on 3

CPUs, it would still take a total time of 780.93 seconds, giving a speedup of 25x.

4.5.1 Accounting for Query Pre-processing

In addition to the the three stages of the PhyloNet pipeline, a significant amount

of time is spent in the preprocessing of the queries. This preprocessing involves the

neighborhood generation and table set-up for Stage 1. If this preprocessing cannot

be done offline, it must be taken into account when estimating the total runtime of

our hardware accelerated design of PhyloNet. In the software version of PhyloNet,

preprocessing takes roughly 27% of the total time. Without improvements to this

step, the most speedup that can be achieved is about 4x over the fastest software

version. Improvements such as vectorization and better memory management can be

made to optimize the code for query preprocessing [20]. Additionally, the sizes of the

query tables grow exponentially with the word size (Table 3.1) and so using a smaller

word size will cut down on the cost of query preprocessing. Since the software version

62

of PhyloNet uses a word length of 6 and the streaming hardware version uses a word

length of 5, less work needs to be done to create the lookup tables. If the time spent

in the query preprocessing step can be improved by 5 to 10x, the overall speedup over

the best software version would be between 18 and 35x respectively.

63

Chapter 5

Conclusion and Future Works

5.1 Conclusion

The short, degenerate nature of transcription factor binding sites coupled with the

rapidly increasing genomic database makes motif-finding in DNA a demanding and

time-consuming task. Recent developments in phylogenetic footprinting have resulted

in more sensitive tools for locating patterns in DNA. PhyloNet is a software tool for

finding patterns in DNA by combining information from conserved sequences within

a single species and across many related species. The software implementation of this

tool can take several days to run on large eukaryotic genomes such as mammalian.

We addressed the problem of scaling PhyloNet to large genomes by first redesigning

the software and then developing a hardware/software architecture. We first made

improvements to the software, most importantly reducing the complexity of HSP

clustering from quadradic to linear in the number of HSPs and simplifying the input

into PhyloNet by adding support for gapped alignments. We found that running

PhyloNet on gapped alignments improved the tool’s sensitivity on a list of known

transcription factor binding sites. These improvements gave us a speedup of over 20x

over the original and resulted in the same amount of output but 1.6x more known

TF binding sites in the budding yeast genome.

We next developed a design of PhyloNet that is amenable to implementation on an

FPGA. We organized PhyloNet as a pipeline with three stages: seed generation, seed

extension, and HSP clustering. We found that the first two stages are the bottlenecks

and created a design to place both these stages on hardware. The estimated speedup

64

of the hardware version of PhyloNet over our best software version is 18-35x, depend-

ing on how much we can reduce the time spent in the query preprocessing step. These

efforts make PhyloNet a more sensitive and faster tool for finding conservation across

multiple genomes.

5.2 Future Works

Immediate future work includes optimizing the query preprocessing step so that it

is no longer the bottleneck and implementing and testing the hardware design put

forth in this thesis. Stage 1 of PhyloNet is similar to the seed matching stage of

the BLASTP algorithm, allowing us to draw upon work already done to accelerate

BLASTP on FPGA hardware [21]. Possible improvements to the Stage 1 design

include using Bloom Filters to pre-filter the table lookups and using hash tables to

allow for larger seed lengths in hardware. We saw that using a seed length of 6 offered

better performance in hardware than a seed length of 5, but a hash table design would

need to be used in Stage 1 to allow for a seed length greater than 5.

Stage2, the seed extension stage of PhyloNet, deviates the most from BLAST-like

algorithms because it uses a much more complicated scoring scheme between the

query and database. The design used in this thesis - efficient use of table lookups and

a pipeline of the computation tree - may be amenable to other complex comparisons of

query to database such as HMMER, which compares sequences to a statistical model

of a family of sequences. Further work needs to be done to determine how to best

implement the systolic array used in seed extension. Either the two-way extension

described in this thesis or the one-way extension described in [23] could be used, and

the choice of implementations depends on the resources available.

65

Appendix A

Glossary

Alignment: A pairing of bases between two sequences highlighting the similarites

and differences between them. Pairs of bases that are the same are called matches,

and pairs of bases that are different are called mismatches. A base that is not paired

with any base is paired with a gap.

Average Log Likelihood Ratio (ALLR): Score used by PhyloCon and PhyloNet

to compare two profile columns.

Database Profiles: The set of profiles that the query profile is compared against.

Degenerate Sequence: A sequence created by mapping the columns of a profile to

discrete characters. This representation is used in Stage 1 of PhyloNet.

Extension: An attempt to find the maximum score between two profile segments

that contain a seed. This is part of Stage 2 of PhyloNet.

Gapped Alignment: An alignment between two sequences allowing gaps.

High Scoring Segment Pair: An extension that scores above some minimum

threshold.

Motif: A recurring sequence pattern within the genome.

Multiple Alignment: An alignment of three or more sequences.

Neighborhood: For a given w -mer, the list of all w -mers that score above some

threshold T when compared to that w -mer.

66

Orthologous sequences: Sequences that have been derived from a common ances-

tor.

Profile: A matrix containing the number of each type of base found in each column

of the alignment.

Promoter: A regulatory region of DNA located upstream of a gene that controls

initiation of gene transcription.

Query Profile: A profile that is compared against profiles from the database.

Seed: A short exact match between two profiles that acts as the starting point for

an extension.

Sequence: A chain of characters from a discrete alphabet.

Transcription Factor (TF): A protein that binds to specific parts of DNA and

controls the transcription of DNA into RNA.

Transcription Factor Binding Site (TFBS): A site in genomic DNA that binds

transcription factors.

Ungapped Alignment: An alignment between two sequences in which all bases

between sequences are paired.

W -mer: A sequence of exactly w characters. Also known as a word.

67

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local
alignment search tool. J. Mol. Biol, 215(3):403–410, 1990.

[2] M.M. Babu, N.M. Luscombe, L. Aravind, M. Gerstein, and S.A. Teichmann.
Structure and evolution of transcriptional regulatory networks. Current Opinion
in Structural Biology, 14(3):283–291, 2004.

[3] T.L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopoly-
mers using expectation maximization. Machine Learning, 21(1):51–80, 1995.

[4] R. Beinoraviciute-Kellner, G. Lipps, and G. Krauss. In vitro selection of DNA
binding sites for ABF1 protein from Saccharomyces cerevisiae. FEBS Lett,
579(20):4535–40, 2005.

[5] M. Blanchette et al. Aligning Multiple Genomic Sequences With the Threaded
Blockset Aligner. Genome Research, 14(4):708–715, 2004.

[6] M. Blanchette and M. Tompa. Discovery of Regulatory Elements by a Computa-
tional Method for Phylogenetic Footprinting. Genome Research, 12(5):739–748,
2002.

[7] AR Buchman, WJ Kimmerly, J. Rine, and RD Kornberg. Two DNA-binding
factors recognize specific sequences at silencers, upstream activating sequences,
autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae.
Mol. Cell. Biol, 8(1), 1988.

[8] S. Cawley et al. Unbiased Mapping of Transcription Factor Binding Sites along
Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding
RNAs. Cell, 116(4):499–509, 2004.

[9] F. Della Seta, I. Treich, JM Buhler, and A. Sentenac. ABF1 binding sites in yeast
RNA polymerase genes. Journal of Biological Chemistry, 265(25):15168–15175,
1990.

[10] Genes in Yeast. http://www.yeastgenome.org/cache/genomeSnapshot.html.

[11] Growth of GenBank Database. http://www.ncbi.nlm.nih.gov/Genbank/

genbankstats.html.

68

[12] Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A quantitative analysis of the
speedup factors of FPGAs over processors. Proceedings of the 2004 ACM/SIGDA
12th international symposium on Field programmable gate arrays, pages 162–170,
2004.

[13] U.I. Gupta, D.T. Lee, and J.Y.T. Leung. Efficient algorithms for interval graphs
and circular-arc graphs. Networks, 12(4):459–467, 1982.

[14] J.M. Hancock and J.S. Armstrong. SIMPLE34: an improved and enhanced im-
plementation for VAX and Sun computers of the SIMPLE algorithm for analysis
of clustered repetitive motifs in nucleotide sequences. Bioinformatics, 10(1):67–
70, 1994.

[15] C.T. Harbison et al. Transcriptional regulatory code of a eukaryotic genome.
Nature, 431:99–104, 2004.

[16] M.C. Herbordt, J. Model, Y. Gu, B. Sukhwani, and T. VanCourt. Single Pass,
BLAST-Like, Approximate String Matching on FPGAs. Field-Programmable
Custom Computing Machines, 2006. FCCM’06. 14th Annual IEEE Symposium
on, pages 217–226, 2006.

[17] G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with statisti-
cally significant alignments of multiple sequences. Bioinformatics, 15(7):563–577,
1999.

[18] J.D. Hughes, P.W. Estep, S. Tavazoie, and G.M. Church. Computational identi-
fication of Cis-regulatory elements associated with groups of functionally related
genes in Saccharomyces cerevisiae. Journal of Molecular Biology, 296(5):1205–
1214, 2000.

[19] Human Genome Project. http://www.ornl.gov/sci/techresources/Human

Genome/home.shtml.

[20] A. Jacob. Design and Analysis of an Accelerated Seed Generation Stage for
BLASTP on the Mercury System. 2006.

[21] A. Jacob, J. Lancaster, J. Buhler, and R.D. Chamberlain. FPGA-accelerated
seed generation in Mercury BLASTP. Proc. of Symp. on Field-Programmable
Custom Computing Machines, pages 95–104, 2007.

[22] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, A. Jacob,
and J. Lancaster. Biosequence Similarity Search on the Mercury System. The
Journal of VLSI Signal Processing, 49(1):101–121, 2007.

[23] J. Lancaster, J. Buhler, and R.D. Chamberlain. Acceleration of ungapped ex-
tension in Mercury BLAST. International Journal of Embedded Systems, 2007.

69

[24] CE Lawrence, SF Altschul, MS Boguski, JS Liu, AF Neuwald, and JC Woot-
ton. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple
alignment. Science, 262(5131):208–214, 1993.

[25] Y. Liu, X.S. Liu, L. Wei, R.B. Altman, and S. Batzoglou. Eukaryotic Regulatory
Element Conservation Analysis and Identification Using Comparative Genomics.
Genome Research, 14(3):451–458, 2004.

[26] K.D. MacIsaac, T. Wang, D.B. Gordon, D.K. Gifford, G.D. Stormo, and
E. Fraenkel. An improved map of conserved regulatory sites for Saccharomyces
cerevisiae. BMC Bioinformatics, 7(1):113, 2006.

[27] A.M. Moses, D.Y. Chiang, M. Kellis, E.S. Lander, and M.B. Eisen. Position
specific variation in the rate of evolution in transcription factor binding sites.
BMC Evolutionary Biology 3:19., 3(19), 2004.

[28] Multiple Alignment Format. http://genome.ucsc.edu/FAQ/FAQformat.html/
format5#format5.

[29] Number of Human Genes. http://www.ornl.gov/sci/techresources/Human
Genome/faq/genenumber.shtml.

[30] R. Siddharthan, E.D. Siggia, and E. van Nimwegen. PhyloGibbs: A Gibbs
sampling motif finder that incorporates phylogeny. PLoS Comput. Biol, 1(7):e67,
2005.

[31] S. Sinha, M. Blanchette, and M. Tompa. PhyME: A probabilistic algorithm for
finding motifs in sets of orthologous sequences. BMC Bioinformatics, 5(170),
2005.

[32] J.D. Thompson, D.G. Higgins, T.J. Gibson, et al. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,
22(22):4673–4680, 1994.

[33] Timelogic, Inc. Timelogic DeCypher BLAST. http://www.timelogic.com.

[34] E. van Nimwegen. Scaling laws in the functional content of genomes. Trends in
Genetics, 19(9):479–484, 2003.

[35] T. Wang and G.D. Stormo. Combining phylogenetic data with co-regulated genes
to identify regulatory motifs. Bioinformatics, 19(18):2369–2380, 2003.

[36] T. Wang and G.D. Stormo. Identifying the conserved network of cis-regulatory
sites of a eukaryotic genome. Proceedings of the National Academy of Sciences,
102(48):17400–17405, 2005.

70

Vita

Justin Tyler Brown

Date of Birth October 23, 1983

Place of Birth Springfield, MO

Degrees B.S. Summa Cum Laude, Computer Science, May 2006

August 2008

71

Accelerating PhyloNet on FPGAs, Brown, M.S. 2008

