
Unchaining in Design-space Optimization of
Streaming Applications

Shobana Padmanabhan
Yixin Chen
Roger D. Chamberlain

Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain,
“Unchaining in Design-space Optimization of Streaming Applications,” in
Proc. of Workshop on Data-Flow Execution Models for Extreme Scale
Computing (DFM), September 2013.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Unchaining in Design-space Optimization of

Streaming Applications

Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain

Dept. of Computer Science and Engineering, Washington University in St. Louis

{spadmanabhan, ychen25, roger}@wustl.edu

Abstract—Data-streaming applications are frequently
pipelined and deployed on hybrid systems to meet performance
requirements and resource constraints. With freedom in the
design of algorithms and architectures, the search complexity
can explode. A popular approach to reducing search complexity
is to decompose the search space while preserving optimality.

We present a novel decomposition technique called unchaining
that partitions the problem such that the resulting subprob-
lems are less complex. Thanks to unchaining, the number of
subproblems from the decomposition is linear in the number
of chained blocks in the variable-constraint matrix (instead of
being their product). Finally, we present a queueing network
model and the quantitative search space reduction for a real-
world implementation of a biosequence search application called
BLASTN.

Keywords-design-space exploration; domain-specific branch
and bound; decomposition of queueing networks

I. INTRODUCTION

In course-grained data-flow applications, application data

is fed over a pipeline of computational and communication

elements to achieve high performance. Such streaming data

applications abound in the areas of biosequence analysis, com-

puter networking, signal processing, video processing, image

processing, and computational science. These applications are

sufficiently widespread that several programming languages

such as Brook [3], StreamIt [22], and X [9] and deployment

platforms such as Auto-Pipe [9] and System S [10] have been

developed for them.

One of the attractions of the streaming programming

paradigm is that it represents one form of “safe” parallelism. In

contrast to being concerned with threads, locks, and races [16],

the application developer is allowed to express the semantics

of the computation in a manner quite similar to a sequential

program. The operations on each data element are sequen-

tially applied as the element moves down the pipeline. The

parallelism comes from the pipelining itself.

High performance streaming applications are frequently de-

ployed on architecturally diverse (hybrid) systems employing

chip multiprocessors, graphics engines, and reconfigurable

logic. Typically, there are many design parameters that impact

application performance and resource utilization. The number

of options available to the designer is further increased signif-

icantly when considering application-specific systems, as the

Sponsored by NSF under grants CNS-0905368 and CNS-0931693.

Fig. 1: Constraint-variable matrix illustrating decomposability

from independent blocks; ~vi denotes variables and Obj

denotes the objective function being optimized.

parameter space increases to include architecture parameters

as well (e.g., custom datapath designs, cache sizes, instruction

sets, etc.).

Searching the design space of possible configurations, com-

monly referred to as design-space exploration, is challenging

because: (1) the number of configurations is exponential in

the number of design parameters, (2) the design parameters

may interact nonlinearly, and (3) the goals of the design-space

exploration are often multiple and conflicting.

We have approached the design-space exploration of stream-

ing applications as an optimization problem that searches for

a globally optimal configuration [18]. We use cost functions

derived from queueing network models of the applications, in

particular, BCMP networks [2]. Such optimization problem

formulations tend to be mixed-integer nonlinear (MINLP)

problems that are frequently non-convex and NP-hard. To

reduce the search complexity, we exploit topological infor-

mation about the application’s pipelining that gets embodied

in the queueing network models. More precisely, we use the

topological information to identify independent blocks in the

variable-constraint matrix (see Figure 1) and solve the blocks

separately [5], thereby reducing the size of the search space.

When the BCMP independence property is violated how-

ever, service rates of the service centers are not independent.

An example is when the buffers at the service centers in a

queueing network are “bounded,” service rate of a service

center (node) will be affected by the queue occupancy at the

downstream node in the network [19]. We call such service

centers and the corresponding blocks in the variable-constraint

matrix as being chained. Here, we focus on blocks that are

chained linearly and unidirectionally through one variable.

We present a novel decomposition technique that we are

calling unchaining to unchain the blocks in such a way that

they can be solved independently, while preserving feasibility.

We require only a feasible solution during unchaining. We

illustrate unchaining using the biosequence search application

BLASTN [1].

The contributions of this paper are as follows: (1) identify

sufficient conditions for unchaining and prove that unchaining

preserves feasibility; and (2) show a queueing network model

and the quantitative search space reduction for a real-world

BLASTN implementation.

II. RELATED WORK

Design-space exploration has been researched extensively

for embedded applications. Search heuristics as well as stan-

dard and modified optimization techniques have been well

investigated [6], [20]. Search heuristics, including evolutionary

algorithms such as simulated annealing (SA), genetic algo-

rithms, and ant colony algorithms, have limited theory to guar-

antee optimal solutions, wherein branch and bound guarantees

an optimal solution. Even when there is theory to guarantee

an optimal solution, as with SA, these approaches can be

unrealistic and not practical for finding a global optimum.

A recent trend has been to model the application’s perfor-

mance analytically (mathematically) and use the model with

search heuristics. Examples of such models include predictive

models [14], [15] and examples of search heuristics include

gradient ascent [15]. Code annotation-based empirical design-

space exploration with search heuristics has been used with

scientific applications [12]. Auto-tuning has been performed

with compiler optimization using search heuristics [23]. For

high-performance distributed streaming applications on Sys-

tem S, efficient operator fusion (through graph partitioning and

using Integer Programming) is used in the physical processing

element graph [24].

Decomposition is popular in existing methods for solv-

ing nonlinear programming (NLP) problems. Many mixed-

integer nonlinear programming (MINLP) methods are based

on subspace partitioning and decompose the search space

of a problem instance into subproblems. Examples include

the following: (a) generalized Benders decomposition (GBD)

decomposes a problem space into multiple subspaces by

fixing the values of its discrete variables, and by using

a master problem to derive bounds and to prune inferior

subproblems [11]; (b) outer approximation (OA) is similar

to GBD except that the master problem is formulated using

primal information and outer linearization [8]; (c) generalized

cross decomposition (GCD) iterates between a phase solving

the primal and dual subproblems and a phase solving the

master problem [13]; and (d) branch-and-reduce methods solve

MINLPs and NLPs by a branch-and-bound algorithm and

exploit factorable programming to construct relaxed prob-

lems [21]. All these methods require the original problem to

have special decomposable structures and the subproblems to

Fig. 2: BLASTN streaming application and example

queueing network model.

have some special properties, such as nonempty and compact

subspaces with convex objective and constraint functions.

Another class of decomposition methods is separable program-

ming methods based on duality [5]. By decomposing a large

problem into multiple much simpler subproblems, they have

similar advantages as our decomposition techniques. However,

they are limited in their general applications because they

have restricted assumptions, such as linearity or convexity of

functions.

III. BACKGROUND

BLASTN is a biosequence similarity search application

where data flows from one kernel to the next as depicted in

Figure 2 (which also shows a queueing network model of the

application’s data flow). Here, we provide a brief overview

of our use of queueing network models using Figure 2. More

details of the application and the queueing network model are

presented in Section V.

The four-stage course-grain data-flow application is mod-

eled with a four-stage queueing network where each stage

represents a service center comprising a server and its buffer.

For a BCMP queueing network, the equivalence property

states that (under steady-state conditions) each service center

can be analyzed independently [2]. In such a network, it is

conventional to denote the mean job arrival rate at every

service center j as λj ∈ R and the mean service rate as

µj ∈ R.

In real-world applications, there are usually design pa-

rameters (i.e., variables) that prevent the decomposition il-

lustrated in Figure 1. Such variables are traditionally called

complicating variables. Complicating variables are variables

that concern more than one block.

We have developed a domain-specific branch and bound

technique to find the optimal configuration. However, for

MINLP optimization problems, standard relaxation techniques

do not work well. Hence, to improve search efficiency, we

exploit topological information about the pipelining to or-

der the branching variables and also reduce the number of

configurations to evaluate [18]. Our ordering heuristic is to

first branch on the complicating variables, followed by non-

complicating variables, and finally, variables associated with

chained blocks.

Fig. 3: Chaining of blocks.

IV. UNCHAINING

We define a chaining variable as a derived variable that

connects two adjacent blocks that are otherwise independent.

A set of k chaining variables would then chain k+1 adjacent

blocks. When applying unchaining, we identify the following

sufficient conditions: (a) the only variables remaining in the

original optimization problem (corresponding to the design-

space exploration) are the variables associated with the chained

blocks; and (b) the value of the objective function in the

original optimization problem is known (for instance, by virtue

of already branching on the design parameters not involved in

chaining). A consequence of condition (b) is that when we

perform unchaining, we need to find only a feasible solution.

In what follows, we prove that unchaining preserves feasibility.

Notation. Let k adjacent blocks be chained. We index these

chained blocks (CBs) as CBi, i = 1, 2, · · · , k. Let PF be the

feasibility (a.k.a. satisfiability) problem in the general form

shown below. Input design variables are denoted as ~v =
(~y1, ~y2, . . . , ~yk). Each ~yi = (y1i, y2i, . . . , yini

); ni denotes

the number of elements in each ~yi and the variables may be

real or integer valued and are non-complicating. ~d = (~µ) are

derived variables where ~µ = (µ1, µ2, . . . , µk). The derived

variables are all real-valued. ~µ, with the exception of µ1, are

the variables that chain the blocks linearly as shown in PF

below. An example of this is illustrated using three blocks in

Figure 3 where µ3 chains CB3 and CB2 while µ2 chains CB2

and CB1. Functions ~u,~g,~h may not even be continuous but

are assumed to have closed-form. The form of PF is:

Find a feasible solution

subject to µi = ui(~yi, µi+1), i = 1, 2, . . . , k − 1 (1)

µk = uk(~yk)

µi > Li, i = 1, 2, . . . , k;Li are given constants

~gi (~yi) ≤ 0, i = 1, 2, . . . , k

~hi (~yi) = 0, i = 1, 2, . . . , k

Note that every chaining variable chains only two adjacent

blocks. We refer to the block where a chaining variable gets

defined as its right-block and the block where it gets used as

its left-block. For example, in Figure 3, the right-block of µ3

is CB3 and its left-block is CB2.

We unchain the blocks as follows. We begin by finding the

upper and lower bounds of every chaining variable in its right-

block and using the bounds to constrain the selection of a range

of feasible values of the chaining variable in its left-block. We

find the bounds by formulating a pair of maximization and

minimization problems for each of µk, µk−1, . . . , µ2. These

problems are denoted as PMAX
i , PMIN

i , i = k, k − 1, · · · , 2.

Then, we assign feasible values for the variables starting

with CB1. We denote this problem as P1. We then proceed

with assigning values to variables associated with each of

CB2, CB3, . . . , CBk, using the solution of the chained vari-

able selected in its left-block to assign feasible values for the

variables of its right-block. These problems are denoted as

Pi, i = 2, 3, . . . , k. The solutions to these problems are de-

noted as ~s1, ~s2, . . . , ~sk. We show that these solutions together

constitute a feasible assignment to all variables ~v in PF . The

form of all the problems and the solutions mentioned above

are described below and summarized in Figure 4.

The form of PMAX
k is as follows. Let µk denote the optimal

value of its objective function.

µk = max
~yk

µk (2)

subject to µk = uk(~yk)

µk > Lk

~gk (~yk) ≤ 0

~hk (~yk) = 0

The form of PMIN
k is similar and is shown below.

µk = min
~yk

µk (3)

subject to µk = uk(~yk)

µk > Lk

~gk (~yk) ≤ 0

~hk (~yk) = 0

For every CBi, i = k−1, k−2, · · · , 2, we let PMAX
i denote

the maximization problem:

µi = max
~yi, µi+1

µi (4)

subject to µi = ui(~yi, µi+1)

µi > Li

µi+1 ≤ µi+1 ≤ µi+1

~gi (~yi) ≤ 0

~hi (~yi) = 0

For every CBi, i = k−1, k−2, · · · , 2, we let PMIN
i denote

the minimization problem:

µi = min
~yi, µi+1

µi (5)

subject to µi = ui(~yi, µi+1)

µi > Li

µi+1 ≤ µi+1 ≤ µi+1

~gi (~yi) ≤ 0

~hi (~yi) = 0

The form of P1 is:

Find a feasible solution

subject to µ1 = u1(~y1, µ2) (6)

µ1 > L1

µ2 ≤ µ2 ≤ µ2

~g1 (~y1) ≤ 0

~h1 (~y1) = 0

The form of Pi, i = 2, 3, . . . , k−1 is provided below. µ∗

i is

the value selected in the solution of Pi−1 as shown in Equation

(9).

Find a feasible solution

subject to ui(~yi, µi+1) = µ∗

i (7)

µi > Li

µi+1 ≤ µi+1 ≤ µi+1

~gi (~yi) ≤ 0

~hi (~yi) = 0

The form of Pk is:

Find a feasible solution

subject to uk(~yk) = µ∗

k (8)

µk > Lk

~gk (~yk) ≤ 0

~hk (~yk) = 0

Solutions

~si = (~y∗i , µ
∗

i+1), i = 1, 2, . . . , k − 1 (9)

denote a feasible assignment to the respective variables. ~sk is

given by:

~sk = (~y∗k) (10)

Claim. When a feasibility problem has k blocks that are

chained as shown in PF , we can unchain the blocks and solve

for solutions ~s1, ~s2, . . . , ~sk as described above. These solutions

together constitute feasible values for all the variables (~v) in

PF .

Proof: To prove our claim, we need to show the follow-

ing: (a) the value selected for every variable satisfies all the

constraints related to that variable in PF and hence is feasible;

(b) ~s1, ~s2, . . . , ~sk together constitute feasible values for all the

variables (~v) in PF . We prove these by induction.

Basis: When k = 1 (i.e.) there is only one block CB1, ~y1
are the only variables in PF . PF takes the form of

Find a feasible solution

subject to µ1 = u1(~y1) (11)

µ1 > L1

~g1 (~y1) ≤ 0

~h1 (~y1) = 0

In this case, there is no decomposition to be done; PF becomes

P1 and its solution, denoted by ~s1, represents a feasible

assignment to ~y1 (denoted by ~y∗1). ~s1 is feasible because P1

satisfies all the constraints related to its variables in PF . ~s1
also constitutes a solution to all the variables in PF because

P1 is the same as PF .

Inductive step: Assuming our claim is true when b blocks

are chained, we show that it holds true when b+1 blocks are

chained.

When there are b blocks, the corresponding variables in

PF are ~v = (~y1, ~y2, . . . , ~yb). Solutions to the b blocks are

~s1, ~s2, . . . , ~sb. By our inductive hypothesis, these solutions

are feasible and when combined together constitute feasible

assignments to all the variables in PF . In particular, the

solutions ~sb−1 and ~sb are (~y∗b−1
, µ∗

b) and (~y∗b) respectively.

When there are b + 1 blocks, the corresponding variables

in PF are ~v = (~y1, ~y2, . . . , ~yb, ~yb+1). By our inductive hy-

pothesis, we already have feasible values for all the variables

with the exception of ~yb+1. We can determine values for

these variables by formulating and solving PMAX
b+1

and PMIN
b+1

and using their solutions to bound µb+1 in PMAX
b and

PMIN
b . We then formulate Pb and Pb+1 whose solutions are

~sb = (~yb
∗

, µ∗

b+1
) and ~sb+1 = (~y∗b+1

) respectively. These

assignments are feasible because ~sb and ~sb+1 satisfy all the

constraints related to the involved variables (~yb, ~yb+1) in PF .

Thus, ~sb and ~sb+1 together constitute feasible assignments to

all the new variables viz. ~yb+1.

Reduction in the number of branch evaluations: Thanks

to our decomposition technique, when there are chaining

variables the number of subproblems to solve is linear in

the number of chained blocks (denoted by k) (i.e.) it is now

2(k − 1) + k = 3k − 2. Without the use of our technique,

in the worst case (i.e.) complete enumeration, the number of

configurations to be evaluated would be the product of the

number of possible values of each variable in ~v. For instance, if

there are k chained blocks with n variables each, the number of

configurations to search without the use of unchaining would

be nk. Use of unchaining, however, reduces the number to

k × n.

V. BLASTN APPLICATION

BLAST, the Basic Local Alignment Search Tool, is the

leading algorithm for searching genomic and proteomic se-

quence data. A variant, BLASTN search heuristic, compares

a query string (composed from the alphabet {A, T , G, C}) to a

Problem Description Variables Solutions

PF Unchaining of k blocks starts here ~yi, i = 1, 2, · · · , k ~y∗
i
, i = 1, 2, · · · , k

PMAX

k
, PMIN

k
Optimization problems of kth block ~yk µk , µk

PMAX
i

, PMIN
i

Optimization problems of ith block, i = k − 1, k − 2, · · · , 2 ~yi µi, µi

P1 Feasibility problem ~y1, µ2 ~s1 = (~y∗
1
, µ∗

2
)

Pi Feasibility problem of ith block, i = 2, 3, . . . , k − 1 ~yi, µi+1 ~si = (~y∗
i
, µ∗

i+1
)

Pk Feasibility problem ~yk ~sk = (~y∗
k
)

Fig. 4: Summary of notation used in unchaining.

Variable Symbol Constraints

Clock freq. f1a,f1b,f2 10 ≤ f ≤ 133.3 MHz
(stages 1a, 1b, 2)
(14 values each)

Processor cores (stage 3) c ∈ Z+ 1 ≤ c ≤ 4
Bloom filter hash functions h ∈ Z+ 2 ≤ h ≤ 10
Bloom filter memory size m 1000, 1004, · · · , 2000
Query length q 40k, 41k, · · · , 65k
Word size w ∈ Z+ 10 ≤ w ≤ 13
Buffer size bi ∈ Z+ 2 ≤ bi ≤ 16, 1 ≤ i ≤ r
Reduction tree size r 5 or 6
Stage 2 threshold p2 10−8 ≤ p2 ≤ .005
(10 values)

Input arrival rate λin ∈ R+ By solving (16)
(100 values)

Fig. 5: Design variables for BLASTN [18].

genomic database, looking for biologically significant approxi-

mate matches. Buhler et al. [4] describe a hardware accelerated

implementation of BLASTN. In this implementation, after the

loading of a query string, the database is streamed in from

the left of the figure. The database flows across the PCI-X

bus into a field-programmable gate array (FPGA) and enters

stage 1a which is decomposed internally into substages 1a1

to 1a6. Database entries that match in the Bloom filter flow

to stage 1b, where they are checked against a hash table built

from the query string. If found in the hash table, hits flow

downstream to stage 2, where they are filtered and hits that

survive stage 2 filtering are moved back across the PCI-X bus

to stage 3 which is executed in software on the processor.

For this implementation, we presented a queueing network

model earlier [18] which extends the model developed and

validated by Dor et al. [7]. In this extension, we model the

substages of 1a as individual service centers so as to model

explicitly the bounded queue sizes within stage 1a.

The set of design variables (corresponding to the design

parameters), along with their descriptions and constraints, are

shown in Figure 5. The topology of the queueing network

model is shown in Figure 6.

Service rates of all the service centers implemented in

hardware (stages 1a through stage 2) are proportional to the

corresponding clock frequencies. The bounded buffer sizes

within stage 1a imply the mean service rate of an upstream

node is scaled by the queue occupancy of its immediate

downstream node as expressed below. Note that substage 1a6

is not affected.

µ1ai =

(

1−

(

λ1ai+1

µ1ai+1

)bi+1

)

· f1a, i = 1, 2, · · · , 5 (12)

Service rates of the remaining stages are shown below where

F1a6
, F1b, and F2 are constants.

µ1a6
= F1a6

· f1a (13)

µ1b = F1b · f1b

µ2 = F2 · f2

Service rate of stage 3 implemented in software is proportional

to the number of processor cores denoted by c, with C denoting

a constant:

µ3 = C · c (14)

p1a and p1b below represent the probability that stages 1a

and 1b respectively pass an input to their downstream neigh-

bor. dCG, qCG, dAT , and qAT are constants that reflect the

fraction of A, T , C, and G characters in the database and the

query.

T =
dCG · qCG+ dAT · qAT

2
(15)

p1 = 1− (1− Tw)q

pF = (1− e−w h

m)h

p1a = p1 + pF

p1b =
p1

p1a

The relationship between the arrival rates at each stage are

given by:

λPCI = λin + λ3 (16)

λ1a1 = λin

λ1a2 = 2 · p1a · λ1a1

λ1a,j = 2 · λ1a,j−1 for 3 ≤ j ≤ r

λ1b = λ1a,r

λ2 = p1b · λ1b

λ3 = p2 · λ2

Given recent technology trends, power has become of

increasing concern to system designers. As a result, there

many circumstances under which balancing the desire to

reduce power consumption with the desire to increase data

throughput is an explicit goal in the development of streaming

applications. The BLASTN is an example of just such a

circumstance. The overall completion time is inversely related

to the data throughput (i.e., the database ingest rate on the left

of the figure) and the total energy required is the product of

completion time and power consumption. As a result, power

and throughput are reasonable choices for a multi-objective

1a1 1a31a2 1a
4

1a
5

21b

3

PCI

Fig. 6: Queueing network-based performance model of BLASTN application [18].

optimization cost function. The FPGA power is modeled as

a combination of dynamic power (linearly related to clock

frequency) and static power (a constant, independent of clock

frequency), resulting in a power equation of the form shown

below. Values for m1a, m1b, m2, and ℘static are derived from

Xilinx Power Estimator, ISE v11.5i [25].

℘ = m1a · f1a +m1b · f1b +m2 · f2 + ℘static (17)

We wish to optimize the combination of throughput (measured

by λin) and FPGA power consumption. The resulting cost

function is a weighted sum (a standard technique [17]) of the

individual optimization goals, i.e.,

minimize W1 · ℘−W2 · λin (18)

where W1 and W2 encode both the weights and normalization

factors. Equations in Figure 5 and Equations 12 through 16

constrain the objective function (Equation 18) in our optimiza-

tion problem formulation of BLASTN.

VI. EMPIRICAL RESULTS

A complete enumeration of the search space requires

6 × 1010 configurations of the complicating variables f1a, h,

m, q, w, r, p2, and λin. For the variables that correspond

to substages of 1a, each of 5 input variables bi has 15

discrete values, resulting in 155 = 759, 375 configurations.

Finally, stages 1b, 2, and 3 comprise 14 × 14 × 5 = 980
configurations (choosing f1b, f2, and c). Overall, this results

in 6× 1010 × 759, 375× 980 ≈ 4× 1018 configurations.

Figure 7 shows the variable-constraint matrix for the

BLASTN application when ~µ chains blocks representing sub-

stages of 1a. Each column corresponds to an individual vari-

able in the problem formulation, and each row corresponds to

an individual constraint. The last row represents the objective

function to be optimized. The matrix is a Boolean-valued

matrix, with a 1 in an entry if the variable associated with the

column is present in the constraint associated with the row.

Complicating variables are enumerated at the left-hand side

of the matrix. Independent blocks in the matrix are indicated

via the rectangular boxes at the far right-hand side of the

figure, corresponding to the constraints of stages 1b, 2, and

3. Each block corresponds to an individual service center in

the queueing network and using our earlier techniques [18],

each block can be optimized independently. This reduces

980 configurations from stages 1b, 2, and 3 down to 33
which reduces the overall search size from 4 × 1018 down

to 6× 1010 × 759, 375× 33 ≈ 1017.

Note that the majority of the middle columns comprise a set

of chained blocks corresponding to the substages of 1a. The

set of equations that relate the µ’s associated with application

stage 1a gives rise to the chain. This relationship is illustrated

in Equation (12). During branch and bound, we branch on all

the other variables (starting with the complicating variables)

before branching on the variables of the chained blocks.

Overall, the intuitive notion one gets from observing this

matrix is that if the structure exposed in the matrix can

be exploited during the design space search process, clear

benefits will accrue. Note that the objective function row in the

variable-constraint matrix does not have entries in the columns

associated with stage 1a. This implies that with a suitable

ordering of branching variables, it is plausible to have fixed

the value of the objective function by the time the variables

associated with stage 1a are being chosen.

Exploiting the chaining structure results in significant bene-

fits. Unchaining allows the 155 configurations associated with

stage 1a to be reduced to 15 × 5 × 2 = 150 configurations.

The multiple of 2 is due to the fact that at each chaining step

one must solve for both a minimum and a maximum value

of the chaining variable. This reduces the overall search size

down to 6 × 1010 × 150 × 33 ≈ 3 × 1013 configurations.

This represents 5 orders of magnitude reduction in the overall

search size relative to complete enumeration.

a) Optimal configuration: The objective function value

of the global optimum is 62.6 which corresponds to the

configuration of Figure 8. The properties of this configuration

are consistent with what is known about the system that has

been physically constructed [4]. Stage 1a is the bottleneck

stage, and the configuration of Figure 8 gives it a high clock

frequency. The latter stages have much less work to perform,

making their lower clock frequency beneficial. Note that the

implementation in [4] made no attempt to simultaneously

lower power consumption, so we would not expect the two

configurations to be identical.

VII. CONCLUSION

This paper has introduced the technique of unchaining to

reduce the search space complexity of streaming applications.

When ~µ variables chain some of the service centers in the

queueing network, we demonstrated how we can perform

unchaining and still preserve feasibility. For BLASTN, we

showed that unchaining reduces the search size from 1017

to 1013 configurations. The reduced space can be searched

in less than 3 hours on 1000 processor cores if each cost

Fig. 7: BLASTN variable-constraint matrix when ~µ chains blocks associated with stage 1.

Variable Value in the solution configuration

r 5
λin 132 MBases/sec
h 3
q 40, 000 bases
w 10 bases
m 1000
p2 4.9× 10−8

f1a 133.3 MHz
b1 3
b2 2
b3 12
b4 2
b5 2
f1b 10 MHz
f2 10 MHz
c 4

Fig. 8: BLASTN: variable values in the solution.

evaluation takes 1 µs. Ongoing work includes the investigation

of unchaining when the value of the objective function is

not determined as well as nonlinear (e.g., tree-structured)

unchaining. An example scenario where nonlinear chaining

would occur is when two or more upstream nodes feed into

a downstream node in a queueing network. Further, we are

investigating whether our unchaining guarantees finding a

feasible solution whenever it exists.

REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers et al., “Basic local
alignment search tool,” J. of Molecular Biology, vol. 215, pp. 403–10,

1990.

[2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open,
closed, and mixed networks of queues with different classes of cus-
tomers,” J. ACM, vol. 22, no. 2, pp. 248–260, 1975.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: stream computing on graphics
hardware,” ACM Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

[4] J. D. Buhler, J. M. Lancaster, A. C. Jacob, and R. D. Chamberlain, “Mer-
cury BLASTN: Faster DNA Sequence Comparison Using a Streaming
Hardware Architecture,” in Proc. of Reconfigurable Systems Summer

Institute, Jul. 2007.

[5] A. J. Coneja, E. Castillo, R. Minguez, and R. Garcia-Bertrand, De-

composition Techniques in Mathematical Programming Engineering and

Science Applications. Springer, 2006.

[6] A. Dasgupta and R. Karri, “Optimal Algorithms for Synthesis of Reli-
able Application-Specific Heterogeneous Multiprocessors,” IEEE Trans.

on Reliability, vol. 44, no. 4, pp. 603–613, Dec. 1995.

[7] R. Dor et al., “Using queuing theory to model streaming applications,”
in Symp. on Application Accelerators in High Perf. Computing, 2010.

[8] M. A. Duran and I. E. Grossmann, “An outer approximation algorithm
for a class of mixed-integer nonlinear programs,” Mathematical Pro-

gramming, vol. 36, pp. 307–339, 1986.

[9] M. A. Franklin, E. Tyson, J. Buckley, P. Crowley, and J. Machmeyer,
“Auto-pipe and the X language: A pipeline design tool and description
language,” in Proc. of Int’l Parallel and Distributed Processing Symp.,
2006.

[10] B. Gedik, H. Andrade, K. Wu, P. Yu, and M. Doo, “SPADE: The System
S declarative stream processing engine,” in Proc. of ACM SIGMOD Int’l

Conf. on Management of Data, 2008, pp. 1123–1134.

[11] A. M. Geoffrion, “Generalized benders decomposition,” J. Optim. The-

ory and Appl., vol. 10, no. 4, pp. 237–241, 1972.

[12] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using Orio,” in Proc. of Int’l Parallel and Distributed

Processing Symp., 2009.

[13] K. Holmberg, “On the convergence of the cross decomposition,” Math-

ematical Programming, vol. 47, pp. 269–316, 1990.

[14] E. Ipek, S. A. McKee, K. Singh, R. Caruana, B. R. de Supinski,

and M. Schulz, “Efficient architectural design space exploration via
predictive modeling,” ACM Trans. Archit. Code Optim., vol. 4, no. 4,
pp. 1–34, 2008.

[15] B. C. Lee and D. Brooks, “Roughness of microarchitectural design
topologies and its implications for optimization,” in Proc. of IEEE Int’l

Symp. on High Performance Computer Architecture, 2008, pp. 240–251.
[16] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp.

33–42, May 2006.
[17] R. Marler and J. Arora, “Survey of multi-objective optimization methods

for engineering,” Structural and Multidisciplinary Optimization, vol. 26,
no. 6, pp. 369–395, 2004.

[18] S. Padmanabhan, Y. Chen, and R. D. Chamberlain, “Optimal design-
space exploration of streaming applications,” in Int’l Conf. on

Application-specific Systems, Architectures and Processors, Sep. 2011.
[19] H. Perros and T. Altiok, “Approximate analysis of open networks of

queues with blocking: Tandem configurations,” IEEE Trans. Soft. Eng.,
vol. 12, pp. 450–461, 1986.

[20] A. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Trans. on Computers, vol. 55, no. 2, pp. 99–112, Feb. 2006.

[21] N. V. Sahinidis, “Baron: A general purpose global optimization software
package,” J. of Global Optimization, vol. 8, no. 2, pp. 201–205, 1996.

[22] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A Language
for Streaming Applications,” Proc. of 11th Int’l Conf. on Compiler

Construction, pp. 179–196, 2002.
[23] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A

scalable auto-tuning framework for compiler optimization,” in Proc. of

Int’l Parallel and Distributed Processing Symp., 2009.
[24] J. Wolf, R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, and K.-L.

Wu, “COLA: Optimizing Stream Processing Applications Via Graph
Partitioning,” in Proc. of ACM/IFIP/USENIX 10th Int’l Middleware

Conf., 2009.
[25] Xilinx Inc., “Xilinx power estimator,” www.xilinx.com/products/design

tools/logic design/xpe.htm.

