
Decomposition Techniques for Optimal Design-Space 
Exploration of Streaming Applications 
 
 
 
 
Shobana Padmanabhan 
Yixin Chen 
Roger D. Chamberlain 
 
 
 
 
 
 
 
 
 
 
 
Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain, 
“Decomposition Techniques for Optimal Design-Space Exploration of 
Streaming Applications,” in Proc. of 18th ACM SIGPLAN Symposium on 
Principles and Practice of Parallel Programming (PPoPP), Feb. 2013, pp. 
285-286. 
 
 
 
 
 
 
 
 
 
 
 
Dept. of Computer Science and Engineering 
Washington University in St. Louis 



Decomposition Techniques for Optimal
Design-Space Exploration of Streaming Applications

Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain

Dept. of Computer Science and Engineering, Washington University in St. Louis

{spadmanabhan, ychen25, roger}@wustl.edu

Abstract

Streaming data programs are an important class of applications, for
which queueing network models are frequently available. While
the design space can be large, decomposition techniques can be
effective at design space reduction. We introduce two decomposi-
tion techniques called convex decomposition and unchaining and
present implications for a biosequence search application.

Categories and Subject Descriptors B.8.2 [Performance and Re-
liability]: Performance Analysis and Design Aids

General Terms Design, Performance, Theory

Keywords Optimization, Domain-specific branch and bound

1. Introduction

High performance streaming data applications are frequently de-
ployed on architecturally diverse or hybrid systems (employing
chip multiprocessors, graphics engines, and reconfigurable logic).
Searching the design space of possible configurations, commonly
referred to as design-space exploration, is challenging because: a)
the number of configurations is exponential in the number of design
parameters; b) the design parameters may interact nonlinearly; and
c) the goals of the exploration are often multiple and conflicting.

We approach the design-space exploration of streaming appli-
cations as an optimization problem that searches for a globally
optimal configuration. Cost functions are derived from queueing
network (QN) models of the application, in particular, BCMP net-
works. Consider Figure 1. A four-stage pipelined application is
modeled with a QN consisting of four service centers. A service
center comprises a queue and one or more servers. The applica-
tion stages represent functions in the biosequence search applica-
tion BLAST [1]. It is conventional to denote the mean arrival rate
at service center j as λj ∈ R and the mean service rate as µj ∈ R.

The optimization problem formulations tend to be mixed-
integer, nonlinear and NP-hard. We have developed domain-
specific branch and bound techniques that exploit topological
information about the application’s pipelining embodied in the
QNs [3, 4]. More precisely, we identify Jordan block form and
solve the blocks independently. We define a block as the group of
variables associated with a single service center. We call these vari-

Supported by NSF under grants CNS-0905368 and CNS-0931693.

stage 1 stage 2 stage 3

word

match

ungapped

extension

gapped

extension

1 2 3

alignments

stage 0

word

match

0

database

Figure 1. BLAST application and its queueing network model.

ables single variables and the ones associated with more than one
block as complicating variables.

After such decomposition, however, the search space size can
still be considerable. To reduce the search space further, here we
present two decomposition techniques that we call convex decom-
position (extended from [4]) and unchaining (novel here). We ana-
lyze the impact of these decomposition techniques by quantifying
the reduction in the number of configurations (leaf nodes) to be
evaluated during branch and bound search.

2. Convex Decomposition

We define a convex variable as a design parameter for which the
optimization problem’s objective function is convex when all other
parameters are held constant (even when the problem itself is non-
convex). In convex decomposition, we decompose the optimization
problem to exclude the convex variable and solve for the remaining
variables as a new problem (with a new objective function). The
solution is substituted back in the original problem which is then
solved for the convex variable. We guarantee that the resulting
configuration is globally optimum.

Previously [4], we identified sufficient conditions for a convex
variable to result in convex decomposition when each normalized
performance measure remains the same or improves (“not worsen”)
with increasing any µj in Equation (2) below. Below, we present
sufficient conditions for a convex variable to lead to convex de-
composition when some normalized measures do not worsen and
others remain the same or worsen (“not improve”), as expressed in
(1). An increase in the value of a measure is not always the desired
goal. An example is power usage. We denote the measures that we
wish to decrease by ~ρ and the ones that we wish to increase by ~τ .

Notation. When an optimization problem satisfies the sufficient
conditions for a convex variable (an example of which is λin de-
noting the application’s data ingest rate) to lead to convex decom-
position, it takes the form shown below. We denote such a problem
as P . nm denotes the number of measures in the objective function.
Let there be n variables in ~v (corresponding to the design param-
eters); these variables may be integer or real-valued. Let us denote

variables other than λin in ~v by ~v′. ~λ denotes the vector of the mean
job arrival rates at the different stages of the queueing network and

~µ, that of the mean service rates. Functions ~g and ~h are any user-

specified constraints; ~ρ, ~τ , ~u,~l, ~g, and ~h may not be convex, differ-

Copyright is held by the author/owner(s). 
PPoPP’13, February 23–27 2013, Shenzhen, China.
ACM 978-1-4503-1922-5/13/02. 
 

285



entiable, or continuous but are assumed to have closed-form. The
problem formulation of P is:

min
~v

x
∑

k=1

Wk · ρk
(

~v′
)

−

nm
∑

k=x+1

Wk · τk (λin) (1)

subject to ~µ = ~u
(

~v′
)

(2)

λj = lj

(

~v′
)

· λin, j = 1, 2, . . . , n (3)

~λ < ~µ; ~g
(

~v′
)

≤ 0; ~h
(

~v′
)

= 0

The sufficient conditions for a convex variable to result in con-
vex decomposition are: a) each ρk in (1) is independent of λin and
~λ while each τk depends only on λin; b) each ρk does not improve
with increasing any µj while each τk does not worsen; c) variables

in ~µ are independent of λin and ~λ as shown in (2) whereas variables

in ~λ depend on ~v′ and λin as shown in (3); and d) variables in λin

and ~λ are not involved in the bound of any other design variable,
while these variables can be bounded themselves.

Reduction in the number of configurations: If each variable in
~v has d values, the number of leaves in a branch and bound tree is
dn. However, with a convex variable, the number reduces to dn−1.

3. Unchaining

When there is chaining of service centers in a queueing network,
the corresponding Jordan blocks (JBs) get chained as well. We
define a chaining variable as a derived variable (one that depends
on one or more of the design parameters) that connects two adjacent
JBs that are otherwise independent. A set of k−1 chaining variables
would then chain k adjacent JBs. Our unchaining solves the blocks
independent of each other, while preserving feasibility. We require
only a feasible solution here because we expect to have branched
on all the parameters not associated with the chained blocks and we
expect this to determine the value of the objective function.

To apply unchaining, we identify the following sufficient condi-
tions: a) the only variables remaining in the optimization problem
are the single variables associated with each of the chained blocks;
and b) the value of the objective function is known.

Notation. Let k adjacent Jordan blocks be chained. We in-
dex these JBs as JBi, i = 1, 2, · · · , k. Let PF be the feasi-
bility (a.k.a. satisfiability) problem in the general form shown
below. Design variables are denoted as ~v = (~y1, ~y2, . . . , ~yk).
Each ~yi = (y1i, y2i, . . . , yini

); ni denotes the number of ele-
ments in each ~yi and the variables may be real or integer valued.
~µ = (µ1, µ2, . . . , µk) are derived variables and are real-valued.
~µ, with the exception of µ1, are the variables that chain the blocks
as shown in PF below. An example of this is illustrated using
three blocks in Figure 2 where µ3 chains JB3 and JB2 while µ2

chains JB2 and JB1. Functions ~g and ~h are any user-specified

constraints; ~u,~g, and ~h may not be convex, differentiable, or con-
tinuous but are assumed to have closed-form. The form of PF is:

Find a feasible solution for ~v

subject to µi = ui(~yi, µi+1), i = 1, 2, . . . , k − 1

µk = uk(~yk)

µi > Li, i = 1, 2, . . . , k;Li are given constants

~gi (~yi) ≤ 0; ~hi (~yi) = 0, i = 1, 2, . . . , k

We refer to the block where a chaining variable gets defined as its
right-block and the block where it gets used as its left-block. E.g.,
in Figure 2, the right-block of µ3 is JB3 and its left-block is JB2.

Figure 2. Chaining of blocks.

We unchain the blocks as follows. We begin by finding the
upper and lower bounds of every chaining variable in its right-
block and using the bounds to constrain the selection of a range
of feasible values of the chaining variable in its left-block. Bounds
are determined by formulating a pair of maximization and min-
imization problems for each of µk, µk−1, . . . , µ2. Then, we as-
sign feasible values for the single variables of JB1. We then pro-
ceed with assigning values to variables associated with each of
JB2, JB3, . . . , JBk, using the solution of the chained variable se-
lected in its left-block to assign feasible values for the variables of
its right-block. We guarantee that these solutions together consti-
tute a feasible assignment to all variables ~v in PF .

Reduction in the number of configurations: When there are
chaining variables, the number of subproblems to solve is linear
in the number of chained blocks (denoted by k) (i.e., 3k − 1).
Without unchaining, the number of configurations is the product
of the number of values of each variable in ~v.

4. Empirical Results

For the BLAST models in [2, 3], the number of configurations
from the single variables of Jordan blocks 0, 1, 2, and 3, and
the complicating variables are 155 × 100 × 100 × 4 × 72 ×
106 ≈ 2 × 1018. Our earlier techniques [3] reduce the number
to 15 × 5 × (100 + 100 + 4) × 72 × 106 ≈ 1012. The reduction
in JB0 comes from the assumption that the substages have infinite
buffers making the servers independent [2].

In this work, convex decomposition of λin (in the BLAST
model of [2]) reduces 72 × 106 configurations to 72 × 104. The
total search space size is reduced to about 1010 configurations.

Accounting for dependency arising from finite buffering among
the service centers within stage 0 [3], the number of configurations
reverts to the original product of configurations at each service
center rather than their sum. Even using the techniques described
in [3], the search space is only reduced to approximately 1016

configurations. Unchaining, however, allows the 155 configurations
within JB0 to be reduced to 15×5×2. The multiple of 2 is because
at each step one must solve for both a minimum and a maximum
value of the chaining variable. This results in a search space size of
approximately 2× 1012, and we have almost returned to the search
space size of the model in [2].

References

[1] S. F. Altschul and W. Gish. Local alignment statistics. Methods: a

Companion to Methods in Enzymology, 266:460–80, 1996.

[2] R. Dor et al. Using queuing theory to model streaming applications. In
Symp. on Application Accelerators in High Perf. Computing, 2010.

[3] S. Padmanabhan, Y. Chen, and R. D. Chamberlain. Optimal design-
space exploration of streaming applications. In Int’l Conf. on

Application-specific Systems, Architectures and Processors, Sept. 2011.

[4] S. Padmanabhan, Y. Chen, and R. D. Chamberlain. Convexity in Non-
convex Optimizations of Streaming Applications. In IEEE Int’l Conf.

on Parallel and Distributed Systems, Dec. 2012.

286




