
Accelerator Design for Protein Sequence HMM Search

Rahul P. Maddimsetty
Jeremy Buhler
Roger D. Chamberlain
Mark A. Franklin
Brandon Harris

Rahul P. Maddimsetty, Jeremy Buhler Roger D. Chamberlain, Mark A.
Franklin, and Brandon Harris, “Accelerator Design for Protein Sequence
HMM Search,” in Proc. of 20th ACM Int’l Conference on Supercomputing,
June 2006.

Dept. of Computer Science and Engineering
Washington University
Campus Box 1045
One Brookings Dr.
St. Louis, MO 63130-4899

Accelerator Design for Protein Sequence HMM Search

Rahul P. Maddimsetty, Jeremy Buhler
∗
, Roger D. Chamberlain,

Mark A. Franklin, and Brandon Harris
Department of Computer Science and Engineering
Washington University, St. Louis, MO 63130, USA

ABSTRACT
Profile Hidden Markov models (HMMs) are a powerful approach
to describing biologically significant functional units, or motifs, in
protein sequences. Entire databases of such models are regularly
compared to large collections of proteins to recognize motifs in
them. Exponentially increasing rates of genome sequencing have
caused both protein and model databases to explode in size, placing
an ever-increasing computational burden on users of these systems.

Here, we describe an accelerated search system that exploits par-
allelism in a number of ways. First, the application is function-
ally decomposed into a pipeline, with distinct compute resources
executing each pipeline stage. Second, the first pipeline stage is
deployed on a systolic array, which yields significant fine-grained
parallelism. Third, for some instantiations of the design, parallel
copies of the first pipeline stage are used, further increasing the
level of coarse-grained parallelism.

A naı̈ve parallelization of the first stage computation has serious
repercussions for the sensitivity of the search. We present a pair of
remedies to this dilemma and quantify the regions of interest within
which each approach is most effective. Analytic performance mod-
els are used to assess the overall speedup that can be attained rela-
tive to a single-processor software solution. Performance improve-
ments of 1 to 2 orders of magnitude are predicted.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—pipeline
processors; J.3 [Computer Applications]: Life and Medical Sci-
ences; H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Design, Performance, Algorithms

Keywords
protein motif, hidden Markov model, HMMER

∗Corresponding author, jbuhler@cse.wustl.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS06 June 28-30, Cairns, Queensland, Australia.
Copyright c© 2006 ACM 1-59593-282-8/06/0006 ...$5.00.

1. INTRODUCTION
Determining the biological functions of DNA and protein se-

quences is a computationally challenging problem. Over the last
decade, the advent of high-throughput techniques for DNA sequenc-
ing has caused an exponential growth in the size of biosequence
databases (e.g., NCBI’s GenBank [11]). Before these sequences
are used in biological research, they must first undergo annotation,
a computational process that recognizes and labels parts of a se-
quence with known functions or similarity to other, well-studied
sequences. The explosion of new sequences has placed progres-
sively greater demands on the computational tools used for annota-
tion, with current techniques often taking hours or days to process
batches of newly acquired sequence.

The last decade has also seen steady improvement in computer
power. Basic computing technology has roughly doubled in speed
every 1.5-2 years. At the same time, specialized architectures now
permit relatively easy direct hardware implementation of applica-
tions. Field-programmable gate arrays (FPGAs), while typically
operating at lower clock frequencies than standard processors, ex-
ploit both application parallelism (direct and pipelined) and direct
functional logic implementation to outperform general-purpose pro-
cessors on selected applications.

This paper studies an important, widely used biosequence an-
notation algorithm based on the mathematical formalism of profile
hidden Markov models [10], subsequently referred to as HMMs.
We describe the design of a specialized hardware-software pipeline
tailored to execute this algorithm – Viterbi decoding [15] of a pro-
tein against an HMM – one to two orders of magnitude faster than
standard processor-based approaches while producing an equiva-
lent result.

HMMs are used in bioinformatics to represent a sequence pat-
tern, or motif, common to several evolutionarily related protein se-
quences. The HMM formalism describes this pattern using a prob-
abilistic model. As more proteins have been functionally charac-
terized, the number of known motifs has grown, so that the Pfam-A
and Pfam-B motif databases [1] now contain HMMs for 104 and
2× 105 motifs, respectively.

Biologists compare newly obtained protein sequences to HMMs
in a database to determine whether the proteins contain known mo-
tifs. Key to this process is the Viterbi decoding algorithm, which
evaluates how well any portion of a given protein matches a given
motif. Because new protein sequences are usually obtained through
whole-genome sequencing and gene finding, it is often necessary to
to identify motifs in an organism’s entire proteome, ranging from
5× 103 proteins for bacteria to 2× 104 for human.

General-purpose CPU-based search tools exist to perform motif
searches [5, 8], but these tools have limited speed with large protein
sets and HMM databases. One such tool, the HMMER software [5]

Figure 1: schema of a special-purpose FPGA-based accelerator
for protein motif search.

requires 10−3 to 10−2 seconds on a modern CPU to compare a typ-
ical model and protein, and hence 1-500 CPU-days for the above
problem sizes. These costs drive demand to increase the perfor-
mance of HMM search using specialized architectures, such as chip
multiprocessors [21], graphics processors [7], or FPGAs, as in the
commercial implementation of [17] and this paper.

The work presented here investigates a pipelined design, follow-
ing the schema shown in Figure 1, that uses both specialized and
general-purpose processors to exploit the fine- and coarse-grained
parallelism in the Viterbi algorithm. Accessing this parallelism is
challenging because the HMMs used in practice induce data de-
pendencies that serialize the algorithm. High-performance search
solutions therefore use only a simplified approximation to these
HMMs, which lowers the search’s sensitivity to biologically mean-
ingful motifs. We address this problem, giving two distinct designs
that achieve useful parallelism (and hence high performance) while
maintaining high sensitivity. The choice of which design to use
in practice depends on the speed and available parallelism of the
special-purpose hardware. We quantitatively estimate the perfor-
mance of each design to project its speedup over a single-processor
software solution, obtaining projected speedups of 1-2 orders of
magnitude.

The remainder of the paper is organized as follows. Section 2
provides background on use of HMMs for protein motif finding.
Section 3 presents the design for a HMM search accelerator, iden-
tifies the key serialization problem, and measures the loss of sen-
sitivity incurred by a naı̈ve solution. Section 4 describes the two
alternative designs for removing serialization with minimal sensi-
tivity loss. Section 5 compares the two designs and estimates their
abilities to speed up HMM search. Finally, Section 6 summarizes
our contributions and concludes.

2. APPLICATION: HMM SEARCH
This section reviews how HMMs model motifs common to mul-

tiple proteins and how search tools use the Viterbi algorithm to
compare a protein to an HMM. More detailed background may be
found in [4]. We note that use of HMMs to recognize patterns in
sequential data is common to many domains besides bioinformat-
ics, including computer vision [19], speech processing [15], and
computer security [14]; all these domains are potential targets for
search acceleration using techniques like those described here.

2.1 HMMs for Protein Motifs
To identify the function of an unannotated protein, biologists

search for strings of amino acids in its sequence (i.e., motifs) that
resemble the sequences of proteins with known function. The amino
acids that make up proteins constitute a twenty-letter alphabet; here-
after, we refer to them abstractly as symbols.

Because a motif’s exact sequence is rarely critical to its biolog-
ical function, it may be encoded by slightly different sequences of
symbols in different proteins. For example, Figure 2 shows five

Protein Motif Sequence
RA25 SCHPO RENSVYLAKLAEQAERYEEMVENMKKVACSND . . KLSVE
BMH1 YEAST REDSVYLAKLAEQAERYEEMVENMKTVAS SGQ . . ELSVE
1434 LYCES REENVYLAKLAEQAERYEEM I EFMEKVAKTADVEELTVE

143T HUMAN KTEL I QKAKLAEQAERYDDMATCMKAVTEQGA . . ELSNE
1433 XENLA AKLSEQAERYDDMAASMKAVTELGA . . ELSNE

1

Figure 2: a protein motif as it appears in five different proteins.
Bold-faced symbols are invariant across all 5 instances; a dot
indicates a missing symbol in an instance.

proteins with a common motif. All instances of the motif have
some symbols in common (shown in bold), but evolutionary change
may cause some of an instance’s symbols to vary, may delete some
of its symbols, or may insert new, irrelevant symbols into its se-
quence. Computational motif finding tools must allow for such
variations. Furthermore, several distinct instances of a motif, each
with its own variations, may appear sequentially in one protein.

An HMM summarizes the observed variations in a motif across a
group of proteins (in the example of Figure 2, across five proteins).
An HMM M is a finite state diagram in which each directed edge
from state qi to state qj is assigned an integer transition score τ(qj |
qi), associated with movement from qi to qj . States are either non-
emitting or emitting. If qi is an emitting state, passing through it
emits one symbol; each symbol a has an emission score ε(a | qi)
associated with this state.

Given an HMM, one can align a protein s to it as a sequence of
symbols. Alignment begins at the HMM’s initial state q0 and traces
a path to the final state that passes through |s| emitting states (pro-
ducing |s| symbols), plus perhaps some non-emitting states (pro-
ducing no symbols). Given this path, the score of the aligned se-
quence is the sum of the scores for all the path’s state-to-state tran-
sitions, plus the emission scores for each symbol from the state that
emitted it. Roughly speaking, sequences emitted via higher-scoring
paths correspond to motif instances that are more likely to appear
in real proteins and are therefore more “desirable;” a precise prob-
abilistic interpretation is given in [4].

Figure 3 shows the structure of a “Plan7” HMM used by the
HMMER software. A motif of length m (m = 4 in the figure) con-
tains m “match states” M1 . . . Mm, where Mi emits the motif’s
ith symbol. A parallel sequence of non-emitting “deletion states”
states D2 . . . Dm−1 allows any substring of the motif to be skipped,
while another parallel set of “insertion states” I1 . . . Im−1 can emit
symbols between any two motif positions. The non-emitting states
B and E act as the model’s initial and final states. Finally, state J
emits non-motif symbols between successive instances of the mo-
tif. The model can therefore describe a string of multiple motif in-
stances in one protein. Note that there exists a feedback path from
state E to B, which presents hardware architectural difficulties that
we address later in the paper.

We note that the Plan7 model as shown in Figure 3 does not
align symbols before a protein’s first motif instance or after its last
instance. An alignment can therefore cover any substring of a pro-
tein. To simplify exposition, this work omits the (computationally
simple) model elaboration needed to score the unaligned ends of a
protein.

2.2 The Viterbi Algorithm
To determine whether protein sequence s contains a motif that

matches model M, HMM search finds the highest-scoring path
through M that matches s. If the score L(s,M) of this path is
high enough, the match is reported to the user. In such a case, M
is said to hit s, and the path indicates which symbol of the protein
(if any) corresponds to each position of the motif.

Figure 3: Plan7 HMM structure for a motif of length m = 4.
Dashed lines indicate feedback path.

The Viterbi algorithm [15] calculates L(s,M) by the following
dynamic programming recurrence. Let λ(q, j) be the highest score
for any path through M from initial state q0 to a later state q that
emits the string of symbols s[1..j]. Then for any q and j,

λ(q, j) =

Pe(q, j) if q is emitting
Pn(q, j) otherwise. (1)

where

Pe(q, j) = max
q′∈M

ˆ
λ(q′, j − 1) + τ(q | q′) + ε(s[j] | q)

˜
Pn(q, j) = max

q′∈M

ˆ
λ(q′, j) + τ(q | q′)

˜
.

The Viterbi recurrence states that the best path ending at state q
ends with a single move to q from some predecessor state q′. If q
is emitting (top case), it is assumed to emit the last symbol s[j];
otherwise (bottom case), s[1..j] was already emitted by the time
the predecessor q′ was reached. Any path through M must end at
the unique end state qe of the model after emitting all of s; hence,
L(s,M) = λ(qe, |s|) is the score of the best path through M
emitting s.

For the Plan7 model of Figure 3, the maximizations of Equa-
tion (1) are taken over only a constant number of predecessor states;
hence, L(s,M) can be computed in time Θ(|s||M|), where |M|
is the number of states inM. If only this score is desired, the com-
putation requires O(|M|) space; however, reconstructing the path
of this best motif uses space Θ(|s||M|).

The highest-scoring path is considered a hit only if its score ex-
ceeds a threshold ρ. This threshold is set as a function of s,M, and
a user-supplied E-value parameter E that controls how stringently
potential hits are filtered1. Lower E-values result in higher (i.e.,
more stringent) thresholds. E typically ranges from a permissive
high of 10 to a stringent low of 10−3 or less.

3. AN HMM SEARCH ACCELERATOR
In this section, we describe how to decompose HMM search into

a pipeline of operations. We identify the bottleneck operation and
show how this operation must be simplified to expose its paral-
lelism for acceleration in hardware. Simplifying the algorithm and
mapping it to efficient hardware while producing nearly the same
result as software alone are key challenges addressed in this work.

3.1 Two-Stage Pipeline Design
We decompose the comparison of protein s to motifM into two

stages. The first stage, hit detection, runs (a limited version of) the
1Threshold ρ is derived from E using Karlin-Altschul statistical
theory [9].

Figure 4: architecture of a two-stage HMM search pipeline.

i,jV
λ (Mi , j)

λ (D i , j)

λ (I , j)i V1,1

V2,1

V3,1

V4,1

λ (B, 0)

V1,2

V2,2

V3,2

V4,2

λ (B, 1)

V1,3

V3,3

V4,3

λ (B, 2)

V1,4

V2,4

V3,4

V4,4

λ (B, 3)

λ (E, 1) λ (E, 2) λ (E, 3) λ (E, 4)

V2,3

m
ot

if
po

si
tio

n

protein positionBA C

Figure 5: organization of the Plan7 Viterbi recurrence as a dy-
namic programming matrix. (A) values grouped into one ma-
trix block Vi,j; (B) example matrix illustrating data dependen-
cies between blocks; (C) division of a large matrix into horizon-
tal bands.

Viterbi algorithm to compare M to s, generating a score σ1. This
score is compared to a threshold ρ1 to determine if the motif hits
s; if not, the pair is discarded. If M hits s, this pair is passed to
a second stage, path generation, that runs Viterbi again, this time
both producing a score σ and identifying the location(s) of the mo-
tif in s. Because the two stages use different variants of the Viterbi
algorithm, σ may be different from σ1 and may be compared to its
own threshold ρ; if σ ≥ ρ, the hit is reported to the user. Figure 4
illustrates this two-stage design.

Dividing search into hit detection and path generation exposes
an opportunity to place each stage on the most appropriate com-
puting resource. Hit detection must be run for every pair (s,M),
making it a computational bottleneck; in a comparison of 1200 pro-
teins against 7700 motifs in software, we found that search spent
over 99% of its time in this stage. However, because hit detection
inspects only the score of a potential hit, it can be implemented
using only O(|M|) space (tens of kilobytes). In contrast, path gen-
eration runs on only the small fraction of pairs (s,M) that reach
it but requires O(|M||s|) space (megabytes) to locate the motif in
the protein. We therefore perform hit detection using a special-
purpose hardware architecture that has limited storage but offers
the potential for dramatic parallelism, while placing path genera-
tion on a slower but more flexible general-purpose processor. The
hit detection architecture can economically be realized on an FPGA
platform.

3.2 Hit Detection by Hardware
Dynamic Programming

The special structure of Plan7 HMMs leads to a fruitful approach
to accelerating the Viterbi algorithm. We organize the values to be
computed by the algorithm into a dynamic programming matrix
V . Rows of the matrix correspond to positions i in a motif, while
columns correspond to amino acid positions j in a protein. Figure 5
illustrates this matrix for the example model of Figure 3.

For a motif of length m and a sequence s of length `, the matrix
V contains m` blocks. As shown in Figure 5A, each block Vi,j

holds the values λ(Mi, j), λ(Ii, j) and λ(Vi, j) computed by the
Viterbi algorithm. The structure of the model and Equation (1) to-
gether imply that the values in Vi,j can be computed given the value
λ(B, j − 1) and the three blocks Vi−1,j−1, Vi,j−1, and Vi−1,j .
These four dependencies are shown for block V3,3 in Figure 5B by
solid arrows flowing into it. They correspond to four sets of tran-
sitions in the model: from B to M3; from M2, I2, and D2 to M3;
from M3 and I3 to I3; and from M2 and D2 to D3. Transitions to
M3 or I3 emit a symbol and so advance j from 2 to 3.

The feedback path in Figure 3 introduces additional data depen-
dencies (shown as dotted lines) into the computation. The value
λ(B, j − 1) depends on λ(E, j − 1) via the path E → B; it may
also depend on λ(E, k) for k < j−1 via paths that detour through
the J state. To satisfy all dependencies, including those induced by
the feedback path, the matrix V must be filled one block at a time,
in column-major order. This restriction eliminates most opportuni-
ties to compute multiple matrix blocks at once.

To make the Viterbi algorithm amenable to hardware accelera-
tion, we delete the feedback path from the model, thereby removing
the dependencies indicated by the dashed lines. The values λ(B, j)
can now be precomputed for all j, and the remaining data depen-
dencies are all downwards and to the right. This more localized
dependency structure permits simultaneous computation of an en-
tire diagonal band of blocks at once. The first step of computation
computes V1,1; the second computes both V1,2 and V2,1; the third
computes all of V1,3, V2,2, and V3,1, and so forth, with the dth step
computing Vi,d−i+1 for all rows i.

The feedback-free Viterbi recurrence for Plan7 models is similar
to that of the well-known Smith-Waterman algorithm [16] for com-
puting the edit distance between two biosequences. Various groups,
including our own, have previously used systolic array designs to
to accelerate the Smith-Waterman algorithm [6, 12, 13, 18, 20, 22].
Unlike these implementations, however, the Viterbi algorithm uses
different scoring parameters for each step of the dynamic program-
ming algorithm, as well as requiring a larger number of computa-
tions per cell of the dynamic programming matrix.

The feedback-free recurrence can be computed in only m + `
steps (proportional to the input size), compared to m` steps for the
original recurrence. This speedup requires sufficient hardware re-
sources to compute an entire diagonal band of the matrix at once.
These resources consist of min(`, m) copies of a logic circuit to
compute one block, organized as a systolic array. In practice, real
protein sequences are too long to fit a full ` copies of this basic cir-
cuit on today’s FPGA platforms, so the computation may be split
into horizontal bands as shown in Figure 5C. Bands are processed
serially, with the values in the last row of each band used to initial-
ize the computation in the first row of the next.

The diagonal lines of Figure 5C illustrate the blocks that can be
concurrently computed by the systolic array (i.e., in parallel within
the hardware). At each end of the band, the systolic array will ex-
tend beyond the actual array bounds, as illustrated in the figure.
This unnecessary (wasted) computation impacts the overall perfor-
mance of the algorithm and will be explicitly considered in the per-
formance model described in Section 5.

If the size of the systolic array is large compared to the model
size m, the above edge effect causes the implementation to become
inefficient. To mitigate this effect, one may partition the hardware
resources into multiple independent hit detection pipelines, each
with a smaller array size, that all run in parallel. We will consider
this trade-off between fine- and coarse-grained parallelism as part
of our performance model.

3.3 Accelerated Hit Detection as a Filter

E-value Total motif Instances lost Est. instances lost
E instances with using one-pass over Swiss-Prot

Plan7 models hit detection database
0.001 7577 173 4788
0.01 8130 208 5757
0.1 9628 246 6808
1 17367 562 15544

10 77645 2612 72324

Table 1: loss of sensitivity using one-pass hit detection with
ρ1 = ρ in comparison of Pfam-A to Swiss-Prot.

Removing the feedback path from the Plan7 model significantly
changes its assumptions about motifs. The feedback path expresses
the fact that a single sequence can contain multiple instances of
a particular motif. This expressiveness is important: many bio-
logically important motifs in real proteins do occur in multiple in-
stances. In contrast, removing the feedback path allows only one
instance of the motif to appear in a protein. We therefore refer to
such reduced models as one-pass, in contrast to the full multipass
models with feedback.

In our search pipeline, hit detection uses Viterbi with one-pass
models as a filter to discard most of its input, while path genera-
tion uses multipass models to check the filter’s output. Because hit
detection does not use the same models as existing software (i.e.,
HMMER), it may produce false positives – pairs (s,M) where
software would report that s does not contain M – and may incur
false negatives – pairs for which software would have found M in
s, but which are discarded. The path generation stage recognizes
and discards any false positives from the filter but cannot detect its
false negatives.

We measured the false negative rate of our pipeline on a com-
parison of 7677 motif models from Pfam-A to a set of 5898 pro-
teins randomly sampled from the Swiss-Prot protein database [2].
HMMER 2.3.2 was used to generate two copies of each motif model,
one with a feedback loop and one without, which were respectively
used by path generation and by a software simulation of hit de-
tection. The results were then compared to those of the HMMER
software itself, and the false negative rate was quantified for val-
ues of ρ corresponding to E-values between 10 and 10−3. In these
experiments, we set ρ1 = ρ.

Table 1 illustrates the loss of sensitivity, measured as the number
of missed motif instances, incurred when hit detection is restricted
to one-pass models. Although the fraction of misses is small, their
absolute number is significant. Extrapolation of our results to the
full Swiss-Prot database (1.6×105 proteins) implies that thousands
of significant motif instances would be missed, even for stringent
E-values. These lost motifs represent missed opportunities to rec-
ognize potential biological functions in proteins. The next section
therefore explores strategies to reduce the false negative rate in hit
detection to nearly zero, without reducing its throughput or unduly
increasing the number of false positives processed by path genera-
tion.

4. REDUCING FALSE NEGATIVES IN
HIT DETECTION

In this section, we consider two approaches to recover the sen-
sitivity lost by using one-pass models in hit detection. The two
methods make different tradeoffs between the amount of hardware
resources used and the computational burden placed on software
path generation.

Figure 6: (A) one-pass simplification of Plan7 model of Fig-
ure 3. (B) two-pass simplification, obtained by unrolling the the
feedback path of M once. Linker state L emits any non-motif
symbols between the two instances of the motif.

4.1 Two Ways to Recover Sensitivity
The pipeline of Figure 4 discards a pair (s,M) when the score

σ1 of the highest-scoring path for protein s through the one-pass
version of model M fails to reach the user-supplied threshold ρ1.
One approach to improving sensitivity is to make threshold ρ1 less
stringent by setting ρ1 < ρ.

Reducing ρ1 can recover false negatives caused by a motif M
that occurs several times, each time with a low score, in one pro-
tein s. The full Viterbi algorithm computes the total score of all
instances of M in s, but the one-pass algorithm scores only the
single best instance, which may be responsible for only a fraction
of the total score. Reducing ρ1 compensates for this deficiency.
On the other hand, reducing ρ1 also increases the number of false-
positive pairs (s,M) that pass hit detection but would not pass if
the full multipass model were used with the original threshold ρ.
These false positives are discarded in the path generation stage, but
they add to that stage’s computational cost.

A second approach to reduce false negatives is to modify hit de-
tection to detect specifically those cases in which the one-pass al-
gorithm is likely to err. False negatives occur when a protein s
contains two or more instances of a motif M, but no one instance
scores highly enough to pass hit detection’s threshold ρ1. To ad-
dress this problem, we therefore compute the total score of the best
two instances of motif M in s. If this score exceeds the one-pass
score, we believe that s contains multiple instances of M, and so
we pass (s,M) through to path generation regardless of its one-
pass score. We call this approach two-pass hit detection.

Two-pass hit detection minimizes false negatives while permit-
ting a lesser reduction in hit detection’s threshold ρ1 compared to
ρ. It therefore eliminates many false positives that would otherwise
be incurred by a large reduction in ρ1, reducing the burden on path
generation.

4.2 Implementing Two-Pass Hit Detection
Two-pass hit detection may be viewed as running the Viterbi al-

gorithm on an extended version of a one-pass Plan7 HMM. The
difference between the original one-pass model and this extended
version is illustrated in Figure 6. The two-pass model of Figure 6B
consists of two copies of the one-pass model of Figure 6A, joined
by a linker L that permits any number of symbols to be skipped
between the two motif instances.

A key observation for efficiently implementing two-pass hit de-
tection is that it is computationally equivalent to running one-pass
hit detection twice. Looking more closely at Figure 6B, the score

Figure 7: Modification of hit detection to implement the two-
pass heuristic. The three computational phases are described
in Section 4.2. A motif (s,M) is passed on to path generation
if σ1 > ρ1 (as before) or if the two-pass score σ2 is greater than
σ1.

max1≤j≤|s| λ(E′, j) is the one-pass score, so it is not necessary
to implement the one-pass algorithm separately. Moreover, we can
divide the Viterbi algorithm on a two-pass model into three phases:
computation of λ(E′, j) (the first pass), computation of λ(B′, j)
(the linker), and computation of λ(E′, j) (the second pass), each
for all 1 ≤ j ≤ |s|. Each phase’s computation depends only on the
result of the previous phase, so the three phases can be pipelined.

The logical structure of efficient two-pass hit detection is shown
in Figure 7. Phases 1 and 3, the passes through the two motif in-
stances, are implemented using the dynamic programming design
of Section 3.2, while phase 2 uses a simplified version of the same
design to score all possible paths from E′ to B′. The one-pass score
is available after phase 1, while the two-pass score is available after
phase 3. Pipelining the three phases lets them run simultaneously
on different models, and no one phase executes more slowly than
the computation of the one-pass score alone, so the overall through-
put is identical to that of one-pass hit detection.

4.3 Sensitivity of One- versus Two-Pass
Hit Detection

To assess the behavior of one-pass and two-pass hit detection, we
extended our software simulation of hit detection to implement the
two-pass algorithm and compared both its sensitivity and its cost in
path generation to those of one-pass hit detection.

Sensitivity of hit detection on a set of input pairs (s,M) is mea-
sured relative to the output of the HMMER 2.3.2 software with full
Plan7 models, which we take to be our standard of correctness.
Any pair (s,M) designated as a hit by HMMER but not by our
search pipeline is considered a false negative. Because path gener-
ation performs the same computation as HMMER, the full pipeline
does not produce false positives relative to HMMER, but the false
positive rate is reflected indirectly in the computational cost of path
generation.

We evaluated one- and two-pass hit detection on a comparison
of four sets of 5898 randomly selected sequences from Swiss-Prot
against 7677 models from Pfam-A. Evaluation used a 2.8 GHz
Intel Pentium 4 CPU running Linux. We measured the behavior
of both implementations while varying score thresholds ρ (overall
stringency of the search) and ρ1 (stringency of hit detection). Fol-
lowing standard practice for HMMER, these these thresholds were
not set directly but were derived (using HMMER’s own code) from
E-values E and E1. For a variety of E-values, we empirically deter-
mined for each hit detection strategy the smallest (most stringent)
parameter E1 for which we observed sensitivity of 1.0, that is, no
false negatives relative to HMMER. For these parameters, we mea-
sured time spent by the pipeline in unaccelerated path generation.

Table 2 gives the parameters and corresponding average times over
the four sets. Variation between sets was less than 5%.

We achieved software-equivalent sensitivity using substantially
more stringent (lower) thresholds E1 for two-pass than for one-
pass hit detection. Whereas the one-pass method can recognize
weak multi-instance motifs only by raising E1 enough to detect at
least one instance of the motif, the two-pass method can recover
motifs in which no one instance is recognized by itself. The two-
pass method’s more stringent threshold translates to less work for
path generation, as indicated by this stage’s lower observed run-
ning time. The difference between the two implementations be-
comes more pronounced when the user’s threshold E is itself fairly
stringent; that is, when the detected motifs are strong.

5. RESULTS

5.1 Modeling Accelerator Performance
In this section, we model the performance of accelerators for

HMM search based on the one- and two-pass hit detection pipelines
of Figures 4 and 7. We assume that hit detection is accelerated
using the systolic array design of Section 3.2, while path generation
is implemented in software.

5.1.1 Hit Detection Performance Model
We first estimate for the one-pass implementation tH , the mean

time (over a collection of proteins and models) to perform hit de-
tection for one protein s of length ` and one model M of size m.
We quantify execution time in terms of cell updates, where a cell is
defined as the computation of a single λ value from Equation (1).
Note that the blocks Vi,j of Figure 5 each contain 3 cells. Each
cell update requires constant time, and a systolic array of size A
can perform A updates in parallel. Hence, we model the time to
process (s,M) as tH = C

R
, where C is the average number of cell

updates required, and R is the number of updates per unit time.
We estimate the rate of cell updates, R, as A · fCLK , where A

is the number of concurrent cell updates as above, and fCLK is the
clock rate. A is proportional to total implementation area.

The number of cell updates C includes both the necessary com-
putation to process (s,M) and the wasted cell updates due to the
edge effects illustrated in Figure 5C. The computation to process
(s,M) depends on the protein and model sizes. A Plan7 modelM
for a motif of length m contains 3m − 3 core states (Mi, Ii, and
Di) and three non-core states {E, J, B}. The one-pass version of
the model used in hit detection need not perform any computation
for states J or B. For all remaining states q 6= E, λ(q, j) can be
updated in constant time per j; λ(E, j) alone requires Θ(m) op-
erations per j. If we treat each update of E as a collection of m
updates, then the total number of cell updates is 4m per symbol of
s.

The wasted computation at the end of each band is proportional
to the length A of the systolic array. As noted at the end of Sec-
tion 3.2, this waste can be reduced by partitioning the hardware
resources into multiple, smaller pipelines. Let np be the number
of such pipelines; then the total wasted computation is 4A/np cell
updates per symbol of s.

Combining the costs of necessary and wasted computation above,
we derive a cell update count for the one-pass model of

C1 = 4

„
m +

A

np

«
`.

For two-pass hit detection, the cell update count is computed for
the extended model of Figure 6B. In this model, states E and E′

require Θ(m) updates for each symbol of s, while states L and B′,

like the two model cores, are updated once per symbol. We charge
edge-effect cycles separately to each of phases 1 and 3 (which as-
sumes that they are implemented by separate arrays) but neglect
these cycles for phase 2, since it is not deeply pipelined. The total
number of cell updates is therefore

C2 =

»
4

„
m +

A

np

«
+ 4

„
m +

A

np

«
+ 2

–
`

= 8

„
m +

A

np

«
` + 2`.

5.1.2 Path Generation and Combined
Performance Models

Let tS be the mean time to process a pair (s,M) in path genera-
tion. To estimate tS , we use a linear model tS = αm` + β, which
is empirically justified by our observations of path generation times
on our test workstation.

We also need the fraction fhit of work that hit detection passes
on to path generation. For a one-pass implementation, this is sim-
ply the fraction of pairs (s,M) that pass the hit detection thresh-
old, while for a two-pass implementation, it also includes pairs that
yield a higher score after two passes than after one. In our tests,
fhit empirically ranged between 10−4 and 10−2, with lower val-
ues corresponding to more stringent thresholds E1.

We estimate overall accelerator performance as follows. Con-
sider an all-to-all comparison of Nseq sequences to Nmod models.
The total time in hit detection is TH = tH ·NseqNmod, while the
total time in path generation is TS = tS · fhitNseqNmod. Be-
cause these two stages run on different computational resources,
we pipeline them. The total cost of the computation is therefore
Ta = max(TS , TH). For comparison, T0 = tS · NseqNmod is
the time for an unaccelerated comparison without a separate hit de-
tection stage. The ratio T0/Ta is therefore the speedup obtained
through acceleration.

5.1.3 Parameter Estimates
We use as our benchmark the comparison of Swiss-Prot to Pfam-

A, which determines mean values for sequence length ` and model
size m, as well as Nseq and Nmod. The values α and β for path
generation are inferred from the same set of comparisons, using lin-
ear regression from path generation times measured for HMMER
2.3.2 on a 2.8 GHz Intel Pentium 4 workstation with 1 GB RAM,
running Linux 2.4.

We estimate our cell update rates for hit detection from a survey
of recent literature on systolic arrays for biosequence comparison.
The systolic array design technique has been deployed on FPGAs
by a number of groups to implement the Smith-Waterman algo-
rithm for biosequence comparison, which has a dynamic program-
ming structure similar to that used in HMM search and is therefore
an appropriate basis for performance estimation. Table 3 lists pub-
lished performance numbers for these previous designs (including
our own [20]) and details the technology used, the concurrency A
achieved, the clock frequency fCLK , and the resulting cell update
rate R. The range of performance values represents variation in the
hardware generation used as well as the specific formulation (affine
or linear) of the problem solved.

Given the availability of the newer Virtex 4 line, with its faster
clock rates and greater capacity (49,152 slices in the XC4VLX100),
cell update rates of R = 5 to 20 GCUPS (billion cell updates/second)
should be readily achievable in a single FPGA part. Because the
systolic array is linear, with limited stage-to-stage communication,
we may cascade multiple parts to increase the concurrency A.

E
One-pass Two-pass

E1 for Time in Path E1 for Time in Path
Sensitivity 1.0 Generation (hours) Sensitivity 1.0 Generation (hours)

0.001 5 2.161 0.003 0.625
0.01 20 5.417 0.02 0.657
0.1 20 5.417 2 1.488
1 30 7.440 9 3.220
10 40 9.410 40 9.411

Table 2: comparison of thresholds E1 required to obtain perfect sensitivity on test computation with one- and two-pass hit detection.

Concurrent cell Clock Freq. Cell update
Group FPGA (slices) updates per fCLK rate, R

clock, A (MHz) (GCUPS)
VanCourt

and Herbordt [18]
XC2VP30 (13,696) 57 to 126 39 to 77 2.2 to 9.7

Oliver et al. [12, 13] XC2V6000 (33,792) 119 to 252 44 to 55 5.2 to 13.9
West et al. [20] XCV1000E (12,288) 152 25 3.8

Table 3: published performance of systolic-array Smith-Waterman implementations on Xilinx FPGAs. One slice ≈ 2 4-input LUTs
+ 2 FFs + carry logic. We show total slices available in each part, not the number used by the design. GCUPS: 109 cell updates per
second.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.001 0.01 0.1 1 10

S
pe

ed
up

E-value Threshold

1-pass, A=25 updates/clock
2-pass, A=25 updates/clock

1-pass, 6 x A=50 updates/clock
2-pass, 6 x A=50 updates/clock

1-pass, 12 x A=50 updates/clock
2-pass, 12 x A=50 updates/clock

Figure 8: Speedup of accelerated HMM search over software-
only version. Execution times for a range of E-values E are
estimated by performance modeling for various levels of FPGA
resources. For each design, we give the number of independent
hit detection pipelines and the number A of concurrent updates
associated with the systolic array. All designs assume fCLK =
200 MHz. Software times are for HMMER 2.3.2 on a 2.8 GHz
Intel Pentium 4 system with 1 GB RAM, running Linux 2.4.

5.2 Estimated Speedup
Figure 8 presents the overall speedup estimated from our perfor-

mance model for HMM search. Different curves represent different
assumed cell update rates for the hardware and different implemen-
tations (one-pass or two-pass) of hit detection. The points on each
curve give speedups for specified E-values E , assuming that the
corresponding E1 is set as in Table 2.

While the X axis is plotted with threshold E increasing from
left to right, it is more helpful to examine the points of each series
in order of increasingly stringent hit detection (i.e., from right to
left). We begin by examining the most conservative assumption for
FPGA resources, 25 concurrent cell updates (i.e., A = 25). For

these two curves, the pipeline throughput is completely dominated
by the hit detection (i.e., hardware) stage, and therefore the one-
pass design, with its lower FPGA resource requirements, outpaces
the two-pass design.

The next two curves plot the predicted performance with FPGA
resources sufficient to support 300 concurrent cell updates (orga-
nized as 6 parallel copies of a length A = 50 systolic array). For
this pair of curves, as we move away from the least stringent thresh-
old on the right towards more stringent thresholds, the one-pass
design becomes path generation (i.e., software) limited. This al-
lows the two-pass design, which puts lesser demands on the path
generation stage, to outperform the one-pass design. For the most
stringent threshold, E = 0.001, the one-pass design again outper-
forms the two-pass design, as the two-pass design is again limited
by hardware resources while the processing requirements placed
on the software stage have decreased relative to the less stringent
thresholds.

The trend continues when the available FPGA resources are suf-
ficient to support 600 concurrent cell updates (organized as 12 par-
allel copies of a length A = 50 systolic array). Here, the additional
hardware resources are effectively exploited by the two-stage de-
sign, while the one-pass design is software-limited over most of
the range of E-values.

Generalizing the above observations, the results of the figure in-
dicate that there are two regimes for design of hit detection. For
lower FPGA resources (readily achievable using only one FPGA),
the cost of hardware hit detection dominates that of software path
generation. Hence, for a fixed amount of area, the one-pass im-
plementation, which can achieve greater parallelism, outpaces the
two-pass implementation, despite the latter’s reduction in the cost
of path generation. However, as the hardware becomes relatively
faster, the cost of path generation becomes a more significant part
of the overall running time. For higher FPGA resources (likely
requiring multiple FPGAs), path generation costs dominate, throw-
ing the advantage to two-pass hit detection. Overall, the expected
speedup over software alone ranges from tens to hundreds of times.

An important caveat in estimating accelerator performance is
that both sequences and pHMM parameters must be delivered to
the accelerator fast enough to sustain the estimated rate of com-

putation. To determine the feasibility of delivering data to the
FPGA, we consider an implementation in which protein sequences
are cached on-chip, and the (much larger) block of pHMM param-
eters is streamed through it. The pHMMs in Pfam have an average
size m = 215, and a pHMM of size m requires 98m bytes for its
parameters. Hence, the total size of the 7767 models in Pfam is
159 MB.

An average-sized protein from Swiss-Prot can be compared to an
average-sized pHMM from Pfam in 0.003 s on our baseline soft-
ware platform. Hence, the entire Pfam database can be processed
in 23.3 s, implying that the pHMM database is consumed at a rate
of 6.82 MB/s. To run 200-fold faster than this, an accelerator would
have to deliver pHMM parameters to the FPGA at 1.33 GB/s. This
could be achieved by, e.g., streaming the model database from one
or more DRAM memories attached to the FPGA. If, as we have
suggested above, the hardware is organized in np > 1 pipelines
that compare the same model to np proteins in parallel, only hun-
dreds of megabytes per second must be transferred to obtain com-
parable speedup. In this case, the pHMM parameters could be de-
livered from the host processor over a PCI-X bus [3].

6. CONCLUSIONS
Useful acceleration of HMM motif search requires substantially

faster computation with minimal loss of sensitivity versus an unac-
celerated implementation. We have described a hardware-software
pipeline to parallelize the key bottleneck in the search computa-
tion. Our design includes two alternative ways to achieve high per-
formance with essentially no loss of sensitivity in our experiments,
even after simplifying the Plan7 HMM structure. Our two strategies
allocate work differently to the hardware and software stages of the
search engine, so they are suited to implementations with different
relative hardware and software speeds. At the same time, we find
that in high-performance search implementations, it is important to
balance coarse- and fine-grained parallelism in the hardware stage
to obtain the highest overall throughput. Our FPGA-based designs
are projected to achieve greater than 100-fold speedup over soft-
ware HMM search implementations.

The speed and area limitations of current-generation FPGA hard-
ware imply that single-chip designs can likely achieve cell update
rates of 5-20 GCUPS. At this speed, and with a single modern
general-purpose CPU performing path generation, hit detection re-
mains a performance bottleneck, and the less area-intensive one-
pass design is preferred. However, given an order of magnitude
better FPGA performance, the CPU becomes the bottleneck, and
the two-pass implementation delivers better performance by reduc-
ing the load on path generation. This level of FPGA performance
is likely achievable today through a combination of careful design
for fast clocking and multiple-FPGA solutions.

Our work suggests several avenues for future study. First, we
plan to elaborate our high-level design to produce a more complete
implementation of FPGA-based hit detection, which we can use
to validate our performance model. A complete design will ad-
dress not only the fundamental issues discussed here but also the
costs associated with storing data on the FPGA and delivering it to
the systolic array blocks. Second, the trade-off between fine- and
coarse-grained parallelism should be optimized for best overall per-
formance. We chose a somewhat arbitrary maximum size for each
systolic array; higher performance may be possible by optimizing
this size for a given overall chip area. Finally, we wish to reap-
ply the lessons learned from this work to accelerate HMM-based
search applications in other problem domains, such as knowledge
extraction from databases of stored video, audio, or text.

7. ACKNOWLEDGMENTS
This work was supported by NSF awards ITR-427794 and DBI-

0237902.

8. REFERENCES
[1] A. Bateman, L. Coin, R. Durbin, R. D. Finn, V. Hollich,

S. Griffiths-Jones, A. Khanna, M. Marshall, S. Moxon,
E. L. L. Sonnhammer, D. J. Studholme, C. Yeats, and S. R.
Eddy. The Pfam protein families database. Nucleic Acids
Research, 32:D138–41, 2004.

[2] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter,
A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud,
C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider. The
Swiss-Prot protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Research, 31:365–70, 2003.

[3] R. Chamberlain and B. Shands. Streaming data from disk
store to application. In Proc. 3rd Int’l Workshop on Storage
Network Architecture and Parallel I/Os, pages 17–23, St.
Louis, MO, 2005.

[4] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis. Cambridge University Press, New York,
1998.

[5] S. Eddy. HMMER: Sequence analysis using profile hidden
Markov models, 2004. http://hmmer.wustl.edu.

[6] D. T. Hoang. Searching genetic databases on Splash 2. In
Proc. of IEEE Workshop on Field-Programmable Custom
Computing Machines, pages 185–192, 1993.

[7] D. R. Horn, M. Houston, and P. Hanrahan. ClawHMMER: a
streaming HMMer-search implementation. In Proc. IEEE
Supercomputing 2005, Seattle, WA, 2005.

[8] R. Hughey and A. Krogh. Hidden Markov models for
sequence analysis: extension and analysis of the basic
method. CABIOS, 12:95–107, 1996.

[9] S. Karlin and S. F. Altschul. Methods for assessing the
statistical significance of molecular sequence features by
using general scoring schemes. Proc. Nat’l Acad. Sci.,
87(6):2264–2268, Mar. 1990.

[10] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and
D. Haussler. Hidden Markov models in computational
biology: applications to protein modeling. Journal of
Molecular Biology, 235:1501–31, 1994.

[11] National Center for Biological Information. Growth of
GenBank, 2005.
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.

[12] T. Oliver and B. Schmidt. High performance biosequence
database scanning on reconfigurable platforms. In Proc. of
4th IEEE Int’l Workshop on High Performance
Computational Biology, Apr. 2004.

[13] T. Oliver, B. Schmidt, and D. Maskell. Hyper customized
processors for bio-sequence database scanning on FPGAs. In
Proc. of ACM/SIGDA 13th Int’l Symp. on
Field-Programmable Gate Arrays, pages 229–237, Feb.
2005.

[14] D. Outston et al. Application of hidden Markov models to
detecting multi-stage network attacks. In Proc. 36th Hawaii
Int’l Conf. on System Sciences, pages 334–44, 2003.

[15] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of
the IEEE, 77:257–86, 1989.

[16] T. F. Smith and M. S. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,

147(1):195–97, Mar. 1981.
[17] Timelogic DeCypherHMM solution, 2004.

http://www.timelogic.com/decypher hmm.htm.
[18] T. VanCourt and M. C. Herbordt. Families of FPGA-based

algorithms for approximate string matching. In Proc. of 15th
IEEE Int’l Conf. on Application-Specific Systems,
Architectures, and Processors, pages 354–364, Sept. 2004.

[19] J. Vlontzos and S. Kung. Hidden Markov models for
character recognition. IEEE Transactions on Image
Processing, 1(4), 1992.

[20] B. West, R. D. Chamberlain, R. S. Indeck, and Q. Zhang.

An FPGA-based search engine for unstructured database. In
Proc. of 2nd Workshop on Application Specific Processors,
pages 25–32, Dec. 2003.

[21] B. Wun, J. Buhler, and P. Crowley. Exploiting coarse-grained
paralellism to accelerate protein motif finding with a network
processor. In Proc. 14th Int’l Conf. Parallel Architectures
and Compilation Techniques, pages 173–84, St. Louis, MO,
2005. IEEE.

[22] Y. Yamaguchi, T. Maruyama, and A. Konagaya. High speed
homology search with FPGAs. In Proc. of Pacific Symp. on
Biocomputing, pages 271–282, 2002.

