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Abstract—Streaming computing is a paradigm of dis-
tributed computing that features networked nodes con-
nected by first-in-first-out data channels. Communica-
tion between nodes may include not only high-volume
data tokens but also infrequent and unpredictable control
messages carrying control information, such as data set
boundaries, exceptions, or reconfiguration requests. In
many applications, it is necessary to order delivery of
control messages precisely relative to data tokens, which
can be especially challenging when nodes can filter data
tokens. Existing approaches, mainly data serialization
protocols, do not exploit the low-volume nature of control
messages and may not guarantee that synchronization of
these messages with data will be free of deadlock.

In this paper, we propose an efficient messaging system
for adding precisely ordered control messages to streaming
applications. We use a credit-based protocol to avoid
the need to tag data tokens and control messages. For
potential deadlocks caused by filtering behavior and global
synchronization, we propose deadlock avoidance solutions
and prove their correctness.

I. INTRODUCTION

Streaming computing is a paradigm for parallel and

distributed computing. A streaming application is a

network of computing nodes connected by first-in-

first-out (FIFO) data channels. Each node processes

incoming data in streaming (equivalently, online or one-

pass) fashion. Streaming can exploit common types of

parallelism in applications, such as task parallelism, data

parallelism, and pipeline parallelism.

If a node emits no data on an output channel in

response to some input, we say that the node has filtered

the input on that channel. Filtering is a natural behav-

ior in applications such as machine learning [1] and

biological sequence comparison [2]. Other applications

do not naturally filter data but can be implemented in

a filtering way for higher performance. We consider a

classic statistics problem, computing variance of pixel

intensities in an image, as a compelling example.

The canonical formula for population variance, de-

noted by σ2, is

σ2 =
1

N

N∑

i=1

(zi − z)2, (1)

where z is the average of the N values. Equation 1

seems to requires a two-pass calculation process: one

pass to compute the mean, and the second to compute

the variance using the mean. However, we can convert

this computation to a one-pass algorithm [3], [4] that is

more streaming-friendly:

σ2 = z2 − z2 (2)

We can implement Equation 2 as a streaming computa-

tion as in Figure 1. The source node u duplicates input

data to v and w, which compute z2 and z2 respectively.

These quantities are then merged at node x to compute

variance values.
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Figure 1. A streaming computation for variance. It occurs as part
of large streaming computing systems, including the next generation
of VERITAS [5], a ground-based gamma-ray observatory system.

A typical way of computing variances for a stream

of images is to process every pixel value until an image

boundary is reached, then emit the image’s variance. For

sparse images, a lot of pixel values are zero. There is no

need for node u to send those zeroes, which consume

communication bandwidth and processing time at v and

w. Instead, u can filter out all zeroes; however, this

means that the number of values received by v and w

varies from image to image, and u must promptly notify

v and w when an image boundary is reached.

Notifications of image boundaries are a type of con-

trol messages that are distinct from the stream of pixel

values. They are inserted by a node into the filtered

stream unpredictably and infrequently, and they impact

the behavior of downstream nodes when they arrive.

Importantly, control messages must be precisely ordered

relative to the data stream – it is incorrect for a node to

group a pixel from before a boundary with the image

after the boundary, or vice versa.

Precisely ordered control messages arise in many

streaming computations to ensure correctness and/or



to boost performance. The variance example is one

case of communicating boundaries between finite-length

streams. Exceptions in out-of-order CPUs are another

common case where precise ordering is needed relative

to an instruction stream, only parts of which are sent

to each functional unit. In streaming applications with

filtering and synchronization, control messages can also

be used to avoid deadlocks [6]. These examples involve

nodes that can filter their inputs, though precise ordering

is also useful for non-filtering paradigms like SDF.

In this work, we describe an efficient strategy for

adding precisely ordered control messages to streaming

applications with filtering behavior. We pay particular

attention to applications in which the communication

channels connecting compute nodes have small, stat-

ically determined buffer sizes, and in which control

messages are kept separate from the data stream for

reasons of performance or ease of implementation.

Under these circumstances, careful attention must be

paid to preserve the desired semantics and to avoid

the possibility of deadlocks if buffers become full. We

give protocols to ensure precise ordering and deadlock

freedom. Due to space constraint, we omit proofs in this

paper. The interested reader can find them in [7].

II. BACKGROUND

This section describes the synchronized filtering

dataflow (SFDF) computing model that forms the basis

of our work. We introduced SFDF in [6]; this work

extends that model to accommodate separate control and

data paths between nodes.

A. Application Topology

An application consists of compute nodes organized

in a directed acyclic multigraph. Nodes are connected by

one-way channels, each of which reliably delivers data

from a sender to a receiver in FIFO order. However,

channels have no timing guarantee. Each channel has

a known, finite buffer capacity that does not change at

runtime. We denote by |q| the buffer size of channel q.

There are two types of channels: data and control,

which carry data tokens and control messages respec-

tively. For each data channel q connecting two nodes,

there is a parallel control channel q′. (We refer to this

pair of channels as the edge between the nodes.) A node

can listen for input on at most one channel at a time;

once a channel is chosen for listening, the node can take

no further action until input appears on that channel.

B. Filtering and Data Channel Synchronization

When a node of an SFDF application receives and

processes input data, it may produce zero or one data

token on each of its output data channels. If no token is

produced for some input on a given output channel, we

say that the node has filtered its input on that channel.

When a node takes as input two or more data streams,

each of which may be subject to filtering by upstream

nodes, the semantics of joining these multiple streams

must be clearly defined.

In SFDF, data tokens emitted into a channel bear

strictly increasing integer indices. In a single compu-

tation, a node may consume only data tokens with a

common index i, and any output tokens produced by this

computation will also have index i. Moreover, the node

may not begin computing on data tokens with index

i until, for each of its input channels, either the next

token on that input has index i, or it is known that no

token with index i will ever appear. These semantics

ensure that, even though different channels are not

synchronized, all tokens with a common index, and only

such tokens, are processed together by a single node. In

other words, in a single computation, a node should only

consume data tokens with the same index, and all data

tokens with the same index must be consumed by the

node in only one computation.

Note that, if it is possible for a node to receive inputs

on only a subset of its input channels due to filtering,

then the application designer must specify the meaning

of the node’s computation for all such possible subsets.

C. Control Channel Behavior

Control channels carry control messages, which have

one of a finite set of types and can contain arbitrary con-

tent. The order in which control and data are processed

is precise: if a node sends a data token with index i on

data channel q of an edge, followed immediately by a

control message on the associated control channel q′,

then this message should be processed by the receiving

node after computing on all input data with index i but

before consuming data with any index > i. A node may

send multiple control messages on an edge between two

consecutive data indices.

Intuitively, control messages are sent only rarely

compared to data tokens. By splitting these messages

out into their own channels, we avoid multiplexing them

with the data tokens in the higher-volume data channels.

This separation permits strong typing assumptions about

data channels, which may lead to more efficient im-

plementation; moreover, it simplifies the common case

of sending and receiving data between nodes, which

may benefit the application’s latency and throughput.

Unfortunately, while multiplexing data and control in

one channel trivially guarantees precise ordering, the

same is not true for separate, unsynchronized control

and data channels.

In what follows, we first give a protocol to ensure

precise ordering of control messages and data tokens on

a single edge. We then show how to extend our protocol



to ensure that SFDF applications with control channels

execute safely without global deadlock.

III. ENSURING PRECISE CONTROL-DATA ORDERING

Consider an edge e consisting of two nodes connected

by data and control channels q and q′. We will enforce

precise ordering of control messages and data tokens

on this edge through the use of credits. The sender and

receiver each maintain internal credit balances, which

are integer values that are initially zero. When a receiver

receives some number c of credits on e, its credit

balance RCBe is incremented by c; when it consumes

a data token on e, RCBe is decremented by one. The

sender’s credit balance SCBe is incremented by one

whenever it sends a data token; when it sends c credits

to the receiver on e, SCBe is decremented by c.

Credits can be attached to any control message. If

credits must be sent but no other control message is

pending, the sender may send a credit message with

no intrinsic content but its attached credit. When the

receiver sees a control message, it immediately incre-

ments its credit balance and may then switch to the

data channel and attempt to read data tokens without

first processing the control message itself.

A. Credit Balance Protocols

Intuitively, a credit represents permission from the

sender for the receiver to consume a data token. It

implies that there are no pending control messages

that must be processed before consuming the next data

token. The receiver may consume data tokens as long

as its credit balance is positive, but when the balance

goes to zero, it must wait for the sender either to

supply more credits or to send control messages that

should be processed before the next data token. The

formal protocol followed by the receiver is given in

Algorithm 1.

Algorithm 1: Receiver Credit Balance Protocol

while RCB = 0 do

wait for a control message on q′

let c be credit value carried by message

if c = 0 then

consume message

else

Detach c credits from message

RCB← RCB+ c

wait for a data token on q

consume token

RCB← RCB− 1

The sender, for its part, must issue credit to consume

a pending data token only after it knows that no control

message should precede that token. Algorithm 2 gives a

sender’s protocol parametrized by a threshold T , which

should be set less than the buffer size of the outgoing

data channel. When the threshold is exceeded with no

intervening control messages, the sender issues credit

to drain the data channel’s buffer. Note that, in this and

all following protocols, all emit operations block until

the output channel is not full.

Algorithm 2: Sender Credit Balance Protocol

if token is ready then

emit token on q

SCB← SCB+ 1
while control message is ready OR

SCB > T do

emit message on q′ with SCB credits

SCB← 0

B. Correctness and Safety

We argue that the sender and receiver protocols

ensure precise ordering of control messages vs. data

tokens. Please see [7] for proofs.

Theorem III.1. If a receiver and sender are connected

by an edge and behave as in Algorithms 1 and 2, and

the sender issues a data token d followed by a control

message m, then the receiver will process m after d but

before the next token following d.

The above argument assumes that the sender and

receiver are always able to make progress. Because

the data and control channels have finite buffers, the

sender could at some point be blocked trying to send

a data token or control message into a channel with

a full buffer, or the receiver could be blocked waiting

for tokens or messages when none are yet visible to

it. If both the sender and the receiver are blocked

indefinitely, the system is deadlocked. We now verify

that our protocol makes such a deadlock impossible.

Theorem III.2. If a receiver and sender are connected

by an edge and behave as in Algorithms 1 and 2, this

pair of nodes will never deadlock.

IV. COMBINING SFDF WITH PRECISE CONTROL

We now explore how to combine SFDF’s synchro-

nization of multiple, possibly filtered input streams with

the use of separate data and control channels. Recall that

an SFDF application is a directed acyclic multigraph.

Each edge e of this multigraph now consists of two

channels: a data channel qe, and a control channel q′
e
.

Each edge also holds variables sufficient to implement

the credit protocols of the previous section, including

sending and receiving credit balances SCBe and RCBe



and a threshold Te that is smaller than data channel

buffer size |qe|.

Algorithm 3 describes how to combine SFDF with

control channels. To ensure precise data and control

ordering, each node implements Algorithm 1 on each

of its input edges and Algorithm 2 on each of its

output edges. Edges are processed sequentially in an

arbitrary order. To synchronize across data channels,

the receiving protocol is split into two parts: part one

ensures that data tokens are available on all input edges’

data channels, while part two decides which tokens to

read (based on their indices) in order to start the next

computation. The common index i of tokens consumed

by a computation at a node is called the computation

index. Note that no attempt is made to synchronize

control messages across edges.

Not every node in an application may have inputs

or outputs. In particular, source nodes have no inputs

but rather generate tokens and messages spontaneously,

following only the output part of the protocol.

Algorithm 3: Single-node behavior in SFDF with

control messages.

foreach input edge e do

while RCBe = 0 do

wait for a control message on q′
e

let c be credit value carried by message

if c = 0 then

consume message

else

Detach c credits from message

RCBe ← RCBe + c

wait for a data token on qe
let i be least index among data tokens on all edges

foreach input edge e do

if token on qe has index i then

consume token

RCBe ← RCBe − 1
perform computation for index i

foreach output edge e do

if token is ready on e then

emit token on qe with index i

SCBe ← SCBe + 1
while control message is ready on e OR

SCBe > Te do

emit message with SCBe credits

SCBe ← 0

Unfortunately, this straightforward combination of

SFDF and the credit protocols is prone to deadlock.

We explore this issue and its remediation next.

A. Deadlocks Due to Full Data Channels

To further focus the discussion, we make two simpli-

fications. First, we will assume until otherwise stated

that no control channel ever becomes full during a

computation. This is intuitively reasonable if control

messages are sent much less frequently than data to-

kens. Second, we observe that, because a node always

sends the credit to receive a data token after the token

itself, a node cannot block indefinitely on an empty

data channel. Indeed, if a node is waiting on a data

channel, then it has unexpended credit, which means

the corresponding data token is already in flight.

With the above simplifications, a blocking cycle must

contain only two types of edges: full data channels and

empty control channels. The following example shows

that such a deadlock is possible. Consider four nodes

connected as in Figure 1 above, with edges uv, vx, uw,

and wx. Every computation of u produces data tokens

on quv and quw, and every computation of v produces

a data token on qvx; however, w filters more than half

of its inputs on qwx. Assume the data channels on all

four edges have the same buffer size 32, the threshold

for scheduling credit messages is T = 31 (recall that a

credit message is prompted if buffered tokens are more

than T ), and that no control messages are sent other than

credit messages. After some computations, the system

reaches the state shown in Figure 2.
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Figure 2. A deadlock example. w filters 46 of 64 consumed data
tokens and no other node filters data. Now data channels uv and vx

are full, blocking u and v; SCB values for uw and wx are not big
enough to prompt credit messages, blocking w and x.

At this point, if u does one more computation (and

w filters the resulting data token), then we have that (1)

u is blocked by v on a full quv; (2) v is blocked by x

on a full qvx; (3) x is blocked by w waiting for credit

on an empty control channel q′
wx

; and (4) w, which has

no pending tokens and hence no credit, is blocked by

u waiting for credit on the empty control channel q′
uw

.

Hence, the system is deadlocked with a blocking cycle.

This example actually illustrates two related but dis-

tinct causes of deadlock. If w sends no data on qwx,

then deadlock occurs because x has no input on this

channel but does not know that none will arrive. This

kind of deadlock also occurs in SFDF networks without

control channels [6]. If, however, w sends some data



on qwx, x has enough data to make progress, but in

the absence of control messages, nothing prompts w to

send its stored credit to enable x to use the data. This

kind of deadlock is a side effect of the credit protocols.

Below, we propose a modified protocol to avoid both

causes of deadlock.

B. Avoiding Deadlocks with Periodic Communication

To avoid deadlock, we modify our protocol in two

ways. First, we periodically flush pending credit from

the sender to the receiver, so that data tokens cannot

linger indefinitely at the receiver with no credit. Second,

we periodically notify the receiver if tokens with con-

secutive indices have been filtered by upstream senders,

using a new kind of control message called a dummy

message that carries the index of the sender’s most

recent computation.

The augmented protocol is shown in Algorithm 4.

The receiver’s protocol is essentially unchanged, except

that, instead of a data token with index i, an edge

may present a dummy message with index j ≥ i,

which implies that no token with index i will ever be

received on that edge, and it should therefore not block

computation i from proceeding.

The sender’s protocol is augmented with two state

variables: LastSentIdxe, which tracks the index of

the last data token actually sent by the sender, and

LastRecvIdxe, which tracks the last index for which

the receiver has permission to consume inputs with that

index from e. If the sender does too much work (as

measured by the size of the gap between the index i of

the most recent computation and LastRecvIdxe) without

enabling the receiver to proceed, then it either flushes

its pending credit for any data tokens sent in this gap,

or, if no tokens were sent, transmits a dummy message

with index i to tell the receiver not to expect them. The

largest permissible gap size for an edge e is called its

heartbeat interval, denoted in the protocol by [e].
The remaining question is how large to make the

heartbeat interval for each edge. It would be trivially

safe to set [e] = 0 for every e, but doing so would flush

credit or send a dummy after every computation, which

would add excessive communication overhead. Instead,

we utilize the following scheme adapted from [8]. Given

a dataflow graph G, for each undirected cycle C of G,

suppose the set of clockwise edges is H1 and the set of

counterclockwise edges isH2. We enforce the following

inequality constraints for cycle C:

Σe∈H1
[e] < Σe∈H2

|qe| (3)

Σe∈H2
[e] < Σe∈H1

|qe|. (4)

An application graph may have more than one undi-

rected cycle, in which case each such cycle generates a

pair of constraints as described. We also need to avoid

Algorithm 4: Adding dummy messages to SFDF

with control.

foreach input edge e do

while RCBe = 0 do

wait for a control message on q′
e

let c be credit value carried by message

if c = 0 then

if message is a dummy then
break

consume message

else

Detach c credits from message

RCBe ← RCBe + c

if RCBe > 0 then

wait for a data token on qe
let i be least index among tokens on edges with

RCB > 0 and dummies on edges with RCB = 0
foreach input edge e do

if RCBe > 0 AND token on qe has index i then

consume token

RCBe ← RCBe − 1
else if dummy on q′

e
has index i then

discard dummy

perform computation for index i

foreach output edge e do

if token is ready on e then

emit token on qe with index i

SCBe ← SCBe + 1
LastSentIdxe ← i

if SCBe = 0 AND i−LastRecvIdxe > [e] then
emit dummy on q′

e
with index i

LastRecvIdxe ← i
while control message is ready on e OR

i− LastRecvIdxe > [e] do
emit message on q′

e
with SCBe credits

SCBe ← 0
LastRecvIdxe ← LastSentIdxe

local deadlocks, so the following constraint, which we

specified for the sender’s protocol of Section III, is

added for each edge e:

[e] < |qe|. (5)

The union of all these constraints defines a feasible

polyhedron of heartbeat intervals for the application,

and we select a set of intervals from this feasible region.

Theorem IV.1. Assuming that control channels never

become full, if every node in an SFDF application

behaves as Algorithm 4 with heartbeat intervals con-

strained by Inequalities (3), (4), and (5), then the

application cannot deadlock.



V. RELATED WORK

The control messaging system proposed in this paper

is based on synchronized filtering dataflow (SFDF),

which can be viewed as Homogeneous Synchronous

Dataflow (HSDF) [9] with the addition of node filter-

ing. HSDF is a special type of Synchronous Dataflow

(SDF) [10] where the data rate (the number of items

a node reads/writes from its input/output channels) is

1 for all channels. SFDF applications are vulnerable

to deadlocks with finite buffer capacity due to filtering

and synchronization. We previously described the use

of dummy messages, a special type of control message,

sent in-band with data streams to avoid deadlock [6],

[11], [12], [8]. The system in this paper incorporates

dummy messages but instead delivers them through

dedicated control channels.

Synchronizing data streams and control messages is

also common in network protocols. The Internet Control

Message Protocol (ICMP) is designed to exchange

control messages between two Internet devices during

data transmission [13]. The work most closely related to

ours is StreamIt’s Teleport Messaging system [14]. Both

their work and our work address the problem of sending

infrequent and irregular control messages for streaming

applications computing on regular data streams. The key

difference is that Teleport Messaging is based on the

SDF model and uses dependence analysis for precise

event handling, while our precise control mechanism,

the Credit Balance Protocol, does not rely on any

specific model.

VI. CONCLUSION AND FUTURE WORK

Precisely ordered control messages are important to

the correctness and performance of streaming appli-

cations. In this work, we have designed a messaging

system that works for streaming computations in which

nodes can filter their inputs. It can work even in stream-

ing pipelines that require global synchronization, as in

SFDF. We have given protocols and sufficient design

constraints to avoid deadlocks while delivering precise

control even in the presence of filtering.

In the future, we plan to investigate how to efficiently

find the highest-throughput set of heartbeat intervals

that satisfy the constraints of Inequalities (3), (4), and

(5). Currently, computing a satisfactory (not necessarily

maximal) set of intervals given the buffer sizes re-

quires superpolynomial time in the application size. We

will investigate faster interval selection algorithms with

stronger guarantees.
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