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Abstract—The distribution of natural light in an interior space
can be controlled via an array of mirrors (a catoptric surface),
e.g., mounted on the interior of a large, southern-facing window.
We describe the operational characteristics of a catoptric surface
constructed on campus, including the use of computational vision
techniques for active control of individual mirrors and for
ensuring safe operation. We show that: (1) the approach we use
can be effective, and (2) there is significant sensitivity to external
factors requiring additional development for it to be robust.

I. INTRODUCTION

The illumination of an environment with natural light pro-
vides tangible health benefits, economic benefits, and energy
benefits [1], [2], [3], [4], [5], [6], [7], [8], [9]. By exposing
individuals to more natural light, they have lower levels of
cortisol as well as higher levels of melatonin at 10pm, both of
which result in lower levels of depressive symptoms and an
increased quality of sleep [10]. Furthermore, the use of natural
light can alter one’s spatial perception in the environment [11].
The beneficial effects of natural light supplies designers with
another mechanism through which to alter the experience of
occupants in an interior environment.

Fig. 1. Catoptric surface.

Figure 1 is an image of a
catoptric surface installed in
the atrium of Steinberg Hall
on the campus of Washing-
ton Univ. in St. Louis. In the
image, the camera is facing
east, the southern exposure
is to the right, and the build-
ing atrium is to the left. The
surface (almost all of which
is visible in the image) is
comprised of just over 600
mirrors that are each indi-
vidually under pan/tilt con-
trol. By judicious orienta-
tion of the mirrors, one can
send natural light into the
building’s atrium, position-
ing it where desired.

*Equal contribution; ordered alphabetically by last name.

The goals to be achieved with the control of natural light
can be multi-fold [12], a number of which are quite relevant in
an industrial environment. First, we can alter the illumination
levels in the interior space so that individuals that desire more
natural light (e.g., reading a paper report) can have a higher
light level while individuals that desire less natural light (e.g.,
reading a laptop screen) can have a lower light level. This goal
is relevant to an office workspace. Second, we can provide
natural light to plants that are located in the space to facilitate
their health. Third, we can position spots of light in specific
locations on the ceiling or wall to create an artistic image in
light. This goal is appropriate wherever we wish to improve
the environment for the people present. Fourth, we can target
excess light at components of the HVAC system (e.g., a heat
exchanger) to harvest energy and thereby decrease heating
costs. Finally, on a factory floor, it can be quite advantageous
to fine-tune the ambient lighting, particularly with natural
light, as has been documented for 100 years [13].

To help reduce the cost associated with so many mirrors,
the pan/tilt control is implemented using inexpensive stepper
motors that do not incorporate shaft encoders for positive
feedback of their position. As a result, there is a need for
an alternative mechanism to provide positional feedback to
the control system that is managing the mirrors’ orientation.
This paper investigates the application of computer vision
techniques to provide this feedback. Given positional feed-
back, the control system can then ensure that there is never
too much light at any individual position. Our goal is not to
develop new computer vision algorithms, but rather to assess
the applicability of existing algorithms to the application of
providing positional feedback to the control system of the
catoptric surface.

The outline of the paper is as follows. Section II provides
the operational characteristics of the catoptric surface and its
components. This motivates the use of computer vision in
the system. Section III articulates the algorithms used and
effectiveness of using images of the mirrors to assess their
current orientation. Section IV follows with a discussion of
using images of the reflected light for fine-tuned pointing
control. Section V concludes and provides direction for the
further work needed to enable the system to operate safely
and effectively.



II. OPERATIONAL CHARACTERISTICS

The initial operational question for the catoptric surface is,
does it work? I.e., does it provide enough difference in light
levels to make a difference. Figures 2 and 3 show images taken
between 11am and 1pm on a sunny day in the building atrium,
with the camera facing north and positioned in the center of
the south wall (in the doorway visible in Figure 1, pointing
to the left). In Figure 2, the mirrors have been commanded to
direct light away from the ceiling (to lower the illumination
level in the room), and in Figure 3, the mirrors have been
commanded to illuminate the ceiling (to raise the illumination
level).

Fig. 2. Non-illuminated ceiling.

Fig. 3. Illuminated ceiling.

A light meter was positioned on a table between the
support columns, and Figure 4 shows the results of those
measurements. Clearly, the room was significantly brighter
at the position of the light meter when the mirrors were
illuminating the ceiling right above it. This effectiveness was
corroborated by the informal perceptions of the individuals in
the room. The space was perceived to be noticeably brighter
when the ceiling was being illuminated using the catoptric
surface.

The next set of experiments were aimed at quantifying the
ability to perform fine-tuned positioning of individual mirrors.
Here, the test setup was a 2×2 prototype system in which the
4 mirrors were mounted using the same cabling system as used
in the full installation. The experiment only used one of the
four mirrors. An LED pointer was aimed at the center of the

Fig. 4. Illumination data.

mirror and the mirror oriented so that (initially) the LED light
was normally incident to the mirror surface. The mirror was
then panned fully to the left, reaching the hard stop provided
by the mount.

Figure 5 shows the raw data representing reflected LED light
positions on a wall 2 m in front of the mirror as the mirror
was panned first to the right (10 steps, pause, record data)
and then back to the left (10 steps, pause, record data). The
grid on the wall is marked with 1⁄8-in. spacing. In the figure,
the blue dots represent measurements moving left-to-right and
the orange dots represent measurements moving right-to-left.
If the mechanical subsystem were free of hysteresis, the blue
and orange dots would be at the same positions. Clearly this
is not the case, there is a noticeable amount of hysteresis in
the mirror movement mechanics.

Fig. 5. Raw data illustrating hysteresis.

The implications of this are significant. To accurately con-
trol the mirrors’ orientation, a feedback mechanism is needed
to indicate the actual orientation of each mirror. Even more
importantly, the lack of knowledge (on the part of the control
software) of the precise orientation of each mirror implies that
the system is inherently unsafe. If too many mirrors point
sunlight at a specific position, it is quite possible to generate
a heating hazard that could be damaging to whatever is at that
position.

We address these issues with a pair of applications of



computer vision techniques. First, we image the mirrors in
the catoptric surface so as to ascertain their orientation via
direct observation. We use this information for course-grained
control of each mirror’s orientation. Second, we image the
reflected surface to enable a fine-tuning of the orientation. Our
approaches to computer vision for each of these applications
are described in the following two sections.

III. IMAGING THE MIRRORS

We first consider the application in which the mirrors
themselves are in the image, and we are trying to discern the
orientation of each mirror. Here, we only consider the problem
of orientation discernment, leaving the problem of image
segmentation for later work (which should be straightforward
given that the geometry of the surface is fixed and well
known).

As has already been reported, computer vision is made
more difficult with mirrors in the field of view [14], [15]. We
illustrate this in Figure 6, which shows three images of the
same mirror in three distinct orientations. What happens, as
one would expect, is that the pixels within the mirror’s surface
are dramatically impacted by the mirror’s orientation.

Fig. 6. Example mirror orientations.

While the fact that we are imaging mirrors is a challenge,
we are helped, however, by the fact that the objects we are
seeking to identify and characterize are constrained in size and
shape. We know the distance to the mirrors and also know that
the actual geometry of the mirror itself does not change, just
its orientation. We will exploit these advantages in the image
analysis described next.

A. Image Analysis

Given the complications that can ensue when attempting
to understand reflected imagery in a mirror, our approach is
to avoid analysis of the interior of the mirror as much as is
reasonable. To do this, we search for ovals within the image,
since independent of orientation the mirror’s boundary will
present as an oval, and then limit our consideration to the
boundaries of the oval.

The basic steps in the image analysis pipeline we attempt
when imaging the mirrors are edge detection, connected com-
ponents, and random sample consensus. As stated above, we
are not seeking to develop new computer vision algorithms,
but rather to investigate the use of existing algorithms for our
application. The steps in the pipeline are illustrated in Figure 7,
which has the detected oval boundary superimposed on the
original image on the far right and the output of the various

steps moving left to right. This image is of a prototype pan/tilt
unit mounted on a wooden base.

Edge detection is a fundamental step in many computer
vision tasks, including object detection, image segmentation,
and feature extraction. It involves identifying points in an
image where there is a significant change in intensity or color,
which often correspond to object boundaries or other important
image features. Popular edge detection methods include the
Canny edge detector [16], Sobel operator [17], and the Roberts
operator [18], which have been widely used in computer vision
research and applications.

For our application, the Canny edge detector was quite
effective. The Canny edge detector is a multi-stage algorithm
that involves smoothing the image with a Gaussian filter,
calculating the gradient magnitude and direction, suppressing
non-maximum edges, and finally, applying hysteresis thresh-
olding. The result of the Canny edge detector is a binary image
where the edges are white and the non-edges are black. In
Figure 7, the leftmost image is the output of edge detection.

Connected components [19] are groups of pixels or image
regions that are connected to each other based on certain
criteria, such as having the same intensity value or being
adjacent to each other. Since the output of our edge detection
algorithm is a binary image, the criteria we use is adjacency. In
the figure, the center image shows the output of the connected
components step.

The Random Sample Consensus (RANSAC) algorithm,
proposed by Fischler and Bolles in 1981 [20], is a widely
used robust estimation technique for fitting models to noisy
data. RANSAC is particularly suitable for applications where
the data may contain outliers or noise, such as in our context.
RANSAC iteratively selects random subsets of data points,
fits a model to each subset, and then evaluates the goodness-
of-fit of the model. The process is repeated multiple times,
and the best-fitting model is selected as the final result. In the
example of Figure 7, the rightmost image shows the output of
RANSAC in red superimposed on the original image.

B. Results and Discussion

Figure 8 shows a pair of images (left and center) in which
the algorithm does a very good job of identifying the oval
that bounds the mirror. The detected oval is shown in blue,
superimposed on the original image. This is exactly what we
desire. Even though there are significant artifacts in the mirror
reflection, the algorithm is robust enough to not be misled by
them.

While this result happens for a good fraction of the images
tested, that is not the complete story. The right image in the
figure illustrates what can happen in extreme circumstances.
Here, the mirror is tilted sufficiently high that the face of the
mirror is not visible in the image, and rather than identifying
the oval that represents the back of the mirror, another arbitrary
oval is detected instead.

Upon further investigation, it becomes clear that the ef-
fectiveness of the mechanism depends significantly on the
parameterization of the constituent algorithms, especially in



Fig. 7. Set of images illustrating the output of edge detection, connected components, and RANSAC.

Fig. 8. Good (left, center) and poor (right) identifications.

Fig. 9. Two examples of output from edge detection.

edge detection and RANSAC. This is illustrated nicely in
Figure 9, which shows two results of edge detection with
different tilt angles for the mirror. In the image on the left,
the oval that represents the boundary of the mirror is readily
evident, while in the image on the right, it is completely lost.
In this example, the tilt angle on the right resulted in a lighter
reflection in the mirror, and the threshold parameters in the
edge detection did not support the identification of the mirror’s
boundary.

One optimization we did include is to incorporate some
geometric constraints on the detected ovals. We restrict the
eccentricity of the ellipse that defines the oval, which does
reject a number of negative results. Given knowledge of the
positioning of the camera relative to the mirrors, it should be
possible to add additional geometric constraints to the pipeline.
These might include absolute constraints on the dimensions
of the ellipse (e.g., the major axis length) in addition to the
eccentricity of the ellipse.

In summary, the computer vision techniques we have inves-
tigated do a reasonably good job identifying the orientation
of mirrors the majority of the time. Interestingly, this is
arguably sufficient for the purpose of ensuring safe operation,
as it takes the majority of mirrors pointed at an individual

point for unsafe operation, so as long as the vision algorithm
works more often than not, safety can be ensured. However,
there are examples in which the results are poor, necessitating
additional investigation before we could consider the approach
sufficiently robust for acceptable deployment for orientation
feedback in our application.

IV. IMAGING THE REFLECTED LIGHT

Concurrently with the investigation above, we also assessed
the application of computer vision techniques when imaging
the spots of reflected light. Observing Figure 3, it is apparent
that the reflected natural light shows up on the ceiling primar-
ily as circles of light with significant contrast relative to the
portions of the ceiling that are not illuminated. Our goal here
is to use these reflected natural light images to guide the fine-
tuned control algorithm, enabling the positioning of light as
precisely as the physical apparatus allows. The notion is that
the imaging of the mirrors will enable the control system to
orient the mirrors so that the reflected spot of light is close to
the desired target, and the imaging of the reflected light will
enable the final positioning of the spot of light.

The experimental setup in the laboratory consists of one
of the mirrors in the 2× 2 prototype system, a high-intensity
artificial light source, and a black background that contains
a target for the desired light position. An example image is
shown in Figure 10, which has the reflected spot of light near
the bottom of the image, the target just above the center of the
image, and a red line superimposed showing the difference in
position between the two.

A. Image Analysis

At a high level, the imaging approach is to mask the target
and identify the center of the reflected light spot. The target
is masked so that it doesn’t interfere with identification of the
reflected light spot, which is possible since the target’s position
is static and known beforehand. The target’s location in the
image is determined using scale-invariant template matching.

The initial imaging problem addressed here is the identi-
fication of the brightest spot in the image. For this, we use
the technique described by Rosebrock [21], which includes a
blurring stage as a pre-processing step. This need for blurring
is illustrated in Figure 11, where the image on the left has
no blurring and the image on the right has been blurred. In
both images, the brightest point detected is marked with a blue



Fig. 10. Reflected-light control algorithm, initial condition.

circle. Note that in the zoomed region in the left image the
algorithm focused on a single, abnormally bright point on the
edge of the scene as opposed to the reflected light.

Fig. 11. Brightspot detection.

This method is useful in finding the single brightest point
on an image. However, when considering a scene with a
reflected light on it, the single brightest point is not necessarily
the center point of the reflected light. This is because the
brightness of the reflected light is not uniform across the entire
region of reflected light. The remainder of the development on
bright region detection is focused on finding the center point
of the reflection using the brightest spot as a basis.

Region detection proceeds by thresholding the image with
the threshold set to a fixed fraction of the brightest point.
This is then morphologically closed [22] to address gaps in
the region of interest. The center point of the largest resulting
contour is then identified as the center of the region of interest.

A set of images showing how the bright region detection
algorithm works is provided in Figure 12. Shown from left to
right are the original scene; the blurred, greyscale scene; the
masked scene; the masked scene after morphological closing
has been applied; and the result showing the centers of the
reflected light and goal marker.

The above technique works quite reliably when the ambient
light in the room is at a fixed level, which is easy to maintain
in the laboratory. It is less robust, however, as the ambient light

Fig. 12. Bright region detection algorithm steps.

varies, which will be the case in the actual installation. There
must be sufficient contrast between the reflected light spot
and the target surface for the spot to be identified. Continuing
in the laboratory setting, we next describe the control of the
mirror itself.

B. Mirror Control

For initial testing, a simple control algorithm is adopted.
Once the location of the reflected light is known, the distance
between the target and the center of the reflected spot is
computed. The axis with the greatest absolute distance (in
pixels) is determined, and the mirror is commanded to move
in that axis a fixed amount in the direction that diminishes the
distance. While the axes that are present in the image do not
correspond precisely to the control axes for the mirror, this
simple approximation of correspondence works quite well in
practice.

We next illustrate the control algorithm in action. Starting
from the initial condition illustrated in Figure 10, the sequence
of positions (one per control iteration) is shown in Figure 13
(with each bright region represented by a red dot and a red line
indicating the separation from the target, in yellow). The initial
position is closest to the bottom of the image. Subsequent
positions move up and to the left; then up and to the right;
followed by down and to the left.

Fig. 13. Control algorithm, sequence of positions (left) and end condition
(right).

As can be seen in the figure, commands to the mirror
to move up (tilt up) also cause the reflected light to move
horizontally as well. Similarly, commands to the mirror to
move right (pan right) also cause the reflected light to move
vertically as well. Nonetheless, the resulting orientation of the



mirror has the reflected spot of light overlapping the target.
The final image, after convergence of the control algorithm, is
shown in on the right.

C. Results and Discussion
Under controlled lighting conditions, the techniques de-

scribed here worked quite well at analyzing the reflected light
imagery and controlling the mirror’s orientation. The challenge
going forward will be to make the procedure robust to more
dynamic ambient lighting.

For bright region detection, an iterative approach to the
current method could be explored to increase its robustness. In
this iterative approach, a weighted score based on the area of
the largest region and the distance from the known brightest
point could be used as the threshold is gradually increased to
find the optimal threshold value.

While the simple control algorithm employed was success-
ful, one improvement worthy of investigation is to have a dy-
namic step size in the mirror’s motion. This could substantially
decrease the time required to orient the mirror.

V. CONCLUSIONS AND FUTURE WORK

This paper investigates the use of existing computer vision
techniques to the application of mirror orientation feedback
for a catoptric surface. Imagery of the mirrors and imagery of
the reflected light are both considered, and the conclusions are
similar for both circumstances. In both cases, the techniques
are effective, but not yet robust. When imaging the mirrors,
there is a strong sensitivity to the parameter settings within
the algorithms, especially in edge detection and in random
sample consensus. When imaging the reflected light, there is
strong sensitivity to the ambient light in the room. Further
investigation is needed to address both of these issues.

Also, both imaging techniques are studied here for the case
of a single mirror or a single reflected spot of light. They
need to be generalized to the multiple mirror and multiple
spot cases. Given the fixed position of the mirrors relative to
the camera, segmenting an image into single-mirror subimages
should be straightforward. Generalizing to multiple reflected
spots will be more of a challenge.

When imaging the mirrors, we plan to investigate auto-
tuning mechanisms for parameter setting, incorporating ad-
ditional geometric constraints into the algorithms that are
invariant for our problem context. For example, given the fixed
size of the mirrors, there is a minimum dimension for the long
axis of the edge ellipse that is independent of orientation. By
refusing to accept detected ovals that don’t meet this criterion,
we can adjust algorithm parameters until the constraint is met.

When imaging the reflected light, we plan to investigate
edge detection techniques for recognition of the bright region.
In addition, more sophisticated control algorithms are needed.

A final concern that is relevant to both sets of imagery is
that when using a camera in a public space, it is highly likely
that individuals will at least occasionally end up in the field
of view. This clearly can be a privacy concern, and we plan to
explore the use of the Viola-Jones recognition approach [23]
to identify and mask any faces detected in any of the imagery.
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