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Abstract—High-Level Synthesis (HLS) tools are aimed at
enabling performant FPGA designs that are authored in a
high-level language. While commercial HLS tools are available
today, there is still a substantial performance gap between most
designs developed via HLS relative to traditional, labor intensive
approaches. We report on several cases where an anticipated
performance improvement was either not realized or resulted in
decreased performance. These include: programming paradigm
choices between data parallel vs. pipelined designs; dataflow
implementations; configuration parameter choices; and handling
odd data set sizes. The results point to a number of improvements
that are needed for HLS tool flows, including a strong need for
performance modeling that can reliably guide the compilation
optimization process.

Index Terms—HLS, FPGA, High-Level Synthesis, Field-
Programmable Gate Array.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are receiving
considerable attention in recent years as computational ac-
celerators [1], [2]. Multiple orders of magnitude performance
improvements are possible relative to traditional software
executing on processor cores [3]–[6]. A significant challenge
to their adoption, however, is the fact that historically FP-
GAs have been programmed at an extremely low level of
abstraction. Hardware Description Languages (HDLs) such as
VHDL or Verilog were (and still are) used to specify both
the computational data path as well as the detailed schedule
(what happens on each clock cycle). While this can result in
highly-performant designs, the process is quite inefficient in
human terms [7] and is also fairly error prone [8].

High-Level Synthesis (HLS) is an approach to alleviating
this challenge, by allowing application authors to describe their
computation using high-level languages. While HLS research
has been ongoing for some time [9], [10], the technology
has now reached sufficient maturity that both major FPGA
manufacturers, Intel and Xilinx, offer HLS tools for developers
using their parts. The availability of the tools, however, has
not totally alleviated the challenge of producing performant
designs [11]–[13].
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Here, we describe a number of circumstances where the
HLS tool flow gives counter-intuitive results. A programming
construct, parameter setting, design choice, pragma, or other
feature of the tools is applied to an application; the application
is built and deployed on an FPGA, and performance mea-
surements are taken; and rather than the performance benefit
that was anticipated, in many cases a substantial performance
degradation is experienced.

We provide examples from sixteen distinct implementations
of four different applications, some of which have been de-
scribed previously in the literature and some of which are first
being documented here. In each case, we give a description
of the performance optimization attempted (including why we
believed, at the time, that it was a good idea) and measured
performance results both before and after the optimization
is applied. In a number of cases, we can discern why the
performance was disappointing, and when that is the case, we
report it. In other cases, the resulting performance degradation
is still a mystery.

II. BACKGROUND AND RELATED WORK

Since the adoption of HLS tools by the major manufacturers,
the majority of research in this field has been focused on
closing the gap between programmability and performance.
Most HLS systems target an algorithm written in C, C++,
or extensions like OpenCL or SystemC to generate an HDL
kernel for synthesis. This allows designers to utilize the
power of custom hardware along with high-level abstractions
that allow for either ease in programming or use of code
blocks already written for general execution. However, it is
often in this translation from higher-level algorithms into their
hardware implementation that performance is lost.

Numerous researchers have demonstrated that the process of
going from a high-level language to HDL is not a guaranteed
speed up and in some cases can end up performing worse than
single-threaded implementations executing on a traditional
processor [9]. To assist in porting efforts, manufacturers have
released a set of best practices and programming guides that
help developers maximize the HLS tool’s potential [14], [15]
and researchers have demonstrated the benefit of re-writing
code tuned to these guidelines [16]. However, somewhat
counter-intuitively, there have been situations where applying



said advice causes no change or in some cases even worse
performance [17].

In light of these problems, much of the research today
falls into two categories: design space exploration (DSE) and
development of tools that are used as additional steps in the
HLS process. In the DSE space there are many examples of
studying the effects of various parameters that change how
hardware is generated for the HLS system. One example is
the various #pragma commands that are available to change
the parameters for code blocks. Sohrabizadeh et al. [13]
describe a “simple” CNN HLS code (of 24 lines) that runs
80× slower than a single thread on an individual core. After
inserting 28 #pragmas, it speeds up 7000×. This example
illustrates the challenge before us, the number of #pragmas
used to achieve the best performance exceeds the number
of lines of code in the initial implementation. Other works
doing design space exploration for HLS include [17], [18]. A
recent approach, investigated by Sun et al. [19], uses machine
learning approaches.

Beyond pure HLS DSE, other research tools focus on
either on looking at domain specific changes [20] or general
code changes at the source [21], [22] and/or the Intermediate
Representation (IR) level [23], [24]. These types of tools
have been extremely important in filling in some of the gaps
that are missed by the HLS tools, however, they add another
engineering burden on the developer.

III. DESIGN CHOICES AND APPLICATIONS

The design choices available to an application developer
using HLS come in a number of different forms. We re-
port instances of unanticipated poor performance results in
four distinct categories of design choices: (1) programming
paradigm choices between data parallel vs. pipelined designs;
(2) dataflow implementations; (3) configuration parameter
choices; and (4) how to handle odd data set sizes. Each of
these is described in turn next.

A. Data Parallel vs. Pipelined Implementations

For the most part, achieving improved performance on
FPGAs is primarily an exercise in identifying and exploiting
parallelism. In OpenCL (supported by both major FPGA
manufacturers), this primarily happens in two forms. The first,
which is the common approach for deployment on graphics
engines, is data parallelism (often called Multiple Work Item,
or MWI), in which multiple copies of the data path are driven
via common control, and different data elements are deployed
across the data paths. This is akin to the Single-Instruction,
Multiple-Data (SIMD) terminology of Flynn [25]. The second
is pipeline parallelism (often called Single Work Item, or
SWI), in which a stream of data elements’ computations are
deeply pipelined in a single data path. For both manufacturers,
the SWI approach is recommended for applications expressed
in OpenCL [14], [15].

Our experience has not been consistent with this guid-
ance. We have experience with a number of applications for
which the MWI implementation performs better than the SWI

implementation. Figure 1 shows the speedup of the MWI
implementation relative to the SWI implementation for four
applications (data from [26]–[28]). These four applications
can be split into two categories: compute intensive applica-
tions in the form of a standard matrix-matrix multiplication
and streaming computations drawn from the Data Integration
Benchmark Suite (DIBS) [29], [30]. To factor out issues with
I/O, the input and output data reside in main memory. For the
matrix-matrix multiply applications, the MWI implementation
outperforms the SWI implementation by more than two orders
of magnitude, and the performance of MWI over SWI is more
than one order of magnitude for the two applications chosen
from DIBS. It should be noted that for the streaming applica-
tions from DIBS the computation is primarily memory-bound.
The measured data throughput for each of the applications is
shown in Table I.

Fig. 1. Speedup of MWI over SWI implementations. Applications are
2k×2k and 4k×4k matrix-matrix multiply plus data integration applications
ebcdic_txt and fix_float from DIBS [29].

TABLE I
MEASURED THROUGHPUTS FOR MWI AND SWI IMPLEMENTATIONS.

Application SWI MWI
(MiB/s) (GiB/s)

2k MMM 8 4.2
4k MMM 8 3.1

ebcdic_txt 260 5.5
fix_float 400 6.5

This first set of examples is a case where the advice
provided by the device manufacturers did not result in a more
performant implementation. Manufacturers in their program-
ming guides recommend a SWI approach for a programming
model [14], [15], whereas a MWI model appears to be more
preferred when porting these codes into the FPGA space.
We have previously investigated the use of memory access
patterns as a predictor of which paradigm results in more
performant designs [27], that study was limited to a small
set of applications within a restricted class (data integration
applications).



B. Dataflow

In both OpenCL and C variant HLS tools, manufacturers
suggest the use of SWI work items instead of their MWI
counterparts. This often involves deeply pipelining unrolled
loops within the kernel code executing on the FPGA. When
working with the SWI approach, it is important to have each
loop be as independent as possible across iterations so as to not
cause loop dependence, which can increase the loop iteration
interval resulting in a longer running time. In this approach,
it can sometimes be difficult to separate reads and writes in
such a way that enables the pipeline parallelism to work well.
The Xilinx Vitis toolchain has attempted to address this with a
programming strategy available for both OpenCL and C HLS
kernels known as dataflow optimization.

In the documentation, dataflow optimization is described as
a way to implement “task-level pipelining,” which allows for
code blocks contained in functions to be scheduled in a way
to achieve pipeline parallelism, similar to the approach that
loop unrolling does within a loop. As shown in Figure 2, the
idea is to create a collection of tasks or functions that would
normally run in sequence and allow the compiler, with the
help of #pragma directives, to create hardware that allows for
execution of downstream tasks to start before their preceding
task has completed. This is achieved through the use of first-
in-first-out (FIFO) buffers to pass data elements from one code
block to the next. These code blocks could be some type of
read from global memory, general compute functionality, then
a write back to global memory, which allows the hardware to
take advantage of blocked reads and writes. Ideally, this type
of coding style, as the name suggests, can work well for data
streaming applications such as the previously mentioned data
integration applications.

Fig. 2. Illustration of dataflow execution with 3 tasks. The top diagram
illustrates a sequential execution timeline, while the bottom diagram illustrates
a pipelined execution timeline.

Using this technique, we have seen success deploying a data
integration application as a dataflow kernel, with performance
better than the MWI and even the initial SWI implementation
using an AWS F1 system utilizing a UltraScale+ Virtex VU9P
card [31]. However, in other data integration applications we
see that this style of kernel does not perform quite as well
as expected. In an experiment implementing a handwriting
database from an ASCII picture representation to a bit array
representation (essentially the optidigits application from
DIBS [29]) on an UltraScale+ Alveo U250, we find that the
best performance is with the original SWI programming model

with a throughput of 221 MiB/s. Believing that the dataflow
approach would result in better performance, we made a pair of
attempts using it. With our first attempt at the dataflow model
we observed a slight reduction in throughput to 218 MiB/s,
and on a second version, removing a write back to global
memory at the end of the computation, we observed a more
significant slowdown to 29 MiB/s. While we have a general
understanding of why the second revision of the dataflow
kernel is dramatically slower (the replacement of a bulk global
memory write and replacing it with an iterative write back), it
is still unclear to us why the first approach using the dataflow
model is slower than the initial SWI version given our previous
success with this model, algorithm type, and porting methods.

Furthermore, the dataflow model allows programmers to
isolate and focus in on the computation step of a streaming
application, isolating the data movement (reading and writing
to both data streams and global memory) to separate tasks that
are then combined in a larger kernel. This benefit of abstraction
can sometimes be a frustration to a newcomer to HLS tools
as it can become harder to determine where exactly the origin
of the slowdown is located as it requires intricate knowledge
of what is being created and why one method works over
the other. It is our hope that developing effective performance
models that inform the costs and benefits of deployments will
cut down on development time.

The instances of unexpected poor performance described
in the previous two sections are the result of programming
paradigm choices, in effect, how the application developer
expresses the available parallelism in the code. We next
explore an example relating to the setting of configuration
parameters.

C. Setting Configuration Parameters

Whenever an FPGA kernel is specified, there are a number
of configuration parameters that impact the low-level details
of the kernel’s execution. For many of these configuration
parameters, they impact fundamental tradeoffs in the design
space, often between execution speed and FPGA resources
consumed. Examples of this include loop unrolling depth, data
path replication, etc.

Figure 3 illustrates the performance, shown in terms of
execution time, for six separate implementations of the
fix_float DIBS application implemented on the Intel
HARPv2 platform using the Intel FPGA SDK for OpenCL.
They are:

1) CPU Seq – a sequential implementation on a traditional
processor core.

2) CPU OpenMP – a parallel implementation on processor
cores of the HARPv2 using data parallelism expressed
using OpenMP compiled using -O3.

3) FPGA Naive – A naive SWI kernel deployed on an
FPGA with no pipeline flags installed.

4) FPGA SIMD – An MWI kernel deployed on an FPGA
with the largest work-group size supported. Example in
Listing 1.



Fig. 3. Performance of several implementations of the fix_float application. Time and data set size are presented on a log/log scale.

5) FPGA Pipe – An SWI kernel that has been aggressively
pipelined. Example in Listing 2.

6) FPGA OverOpt – An MWI kernel that has been maxi-
mally optimized for parallelism. Example in Listing 3.

__attribute__((reqd_work_group_size(64,1,1)))
__kernel void computation(...){

size_t gid = get_global_id(0);
//Perform kernel computation

}

Listing 1. OpenCL kernel using a MWI programming style. Here, a global
work ID (gid) determines what data piece a kernel works on. This kernel is
queued with a range value equal to the number of elements to be computed.

__attribute__((reqd_work_group_size(1,1,1)))
__kernel void computation(...){

#pragma unroll
for(unsigned int i = 0; i < n_items; ++i)

//Perform kernel computation
}

}

Listing 2. An OpenCL kernel using an SWI programming style. In this style,
a for loop is used to iterate through elements with a #pragma unroll to
let the compiler know to agressively pipeline the computation.

The two CPU implementations are included in the figure to
illustrate the performance of the FPGA implementations rela-
tive to traditional processor cores. The best-performing FPGA
implementations are substantially faster than the fastest CPU
implementation. The naive kernel has comparable performance
to the sequential CPU implementation stressing the fact that
the tools will not give you free performance on the FPGA and
a number of configuration tweaks are needed. The performance

__attribute__((num_compute_units(2)))
__attribute__((num_simd_work_items(16)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void computation(...)
{

size_t gid = get_global_id(0);
//Perform kernel computation

}

Listing 3. Listing for the OverOpt kernel, similar in operation to the MWI
kernel in Listing 1 however the attributes are added in an attempt to improve
kernel performance.

of the naive kernel is not surprising, as we would expect such
a simple kernel to not necessarily perform well on an FPGA
given the current state of the design tools.

Our primary interest, however, is in the performance of the
last kernel. Here, an MWI kernel has the largest work-group
size supported (64 work-items), two compute units, and a
SIMD work-item count of 16. Essentially, at every opportunity,
the area-performance tradeoff was set to use area in an attempt
to improve performance (primarily by increasing parallelism).

While this configuration performs well for small data sets,
as the data set size grows its performance lags significantly
behind the best performing implementations and even runs
comparable to our naive FPGA implementation. For 512 MiB
data sets, it runs a full order of magnitude slower than the
regular MWI and SWI kernels. A developer could look at
small data set size runs and make an incorrect choice in
implementation strategy, strengthening the need for ways to
evaluate the effects of configuration parameters before full
synthesis runs. In general, how to set these configuration
parameters is the research goal of a number of groups [13],
[17]–[19].



D. Non-integral Data Size

There are a number of seemingly simple things within
designs that can ultimately result in substantial performance
implications (both to the good and to the bad). Here, we
illustrate one of them, based on the size of the input data.

When designing an MWI kernel in OpenCL (in this case
targeting the Intel FPGA Arria 10), the work-group size needs
to evenly divide into the global number of work-items (so
that work-groups each have the same number of local work-
items). If the total amount of work to be done (the global
number of work-items) doesn’t divide evenly, it is common to
pad the input appropriately so that it does. This necessitates
the inclusion of a conditional bounds checking test within the
code, as illustrated by Listing 4.

...
unsigned int i = get_global_id(0);
if (i < total_work_items) {
// perform work for item i

}
...

Listing 4. Bounds checking for proper termination. The if statement guards
against doing unnecessary work that arises due to inflating the input buffer
so that it is a multiple of the work-group size.

Figure 4 shows what happens in the synthesized hardware,
via the control data flow graph (CDFG), when this condi-
tional is added to the design (the example is from DIBS’s
ebcdic_txt [29] and has 4 copies of the data path). The
figure shows the cycle-by-cycle schedule (moving top to bot-
tom), and while the CDFG on the left (without the conditional)
has coalesced the accesses to memory, they have turned into
sequential accesses in the CDFG on the right. What was
intended to be a parallel operation has been transformed into a
sequential operation, simply by the inclusion of a conditional
statement.

We have previously described a workaround for this issue,
in which the full data set is not processed by the FPGA, but
rather, most of the data set is processed by the FPGA (an
amount that is evenly divisible into work-groups) and the rest
is the responsibility of a traditional processor core [32]. A
cleaner solution, which could be implemented by the compiler
rather than requiring action by the application developer,
would be for the conditional to be moved (via loop unswitch-
ing) outside of the primary execution path automatically, even
if still executed on the FPGA.

IV. DISCUSSION

We believe that all of the above issues can, ultimately, be
addressed by better tools. In particular, tool flows that have a
more robust understanding of the performance implications of
design choices that are made during the compilation process
can make better decisions as to what choices to make. The
needed tool improvements come, however, in two forms,
which we discuss in turn below.

A. Immediately Fixable Issues

A number of the needed tool improvements are things
that are known (i.e., reasonably well described in the current
literature), but are not yet incorporated into the current tool
flows. An example of this type of issue is illustrated in
Section III-D, in which a performance degradation (in this
case, serialization of memory accesses) is clearly known to
the compiler, there is a well understood transformation that
can mitigate it (loop unswitching [33]), and yet the current
instantiation of the compiler didn’t do so. There are any
number of compiler optimizations that are readily available in
standard software compilers but are seeming absent from HLS
compilers. However, including them in the HLS tool flow can
take a considerable amount of time and effort, which needs to
be spent making sure that optimizations and their interactions
are realizable in hardware.

While there might be other instances of this type of issue
existing in the current tools, the majority of the issues we
report on here are of the second type.

B. Issues That Require Additional Research

In virtually all of the tool improvements we believe are
needed to address the issues we expose above, the compiler
(and associated tools) is aware of the possible implementations
that can be chosen to be deployed. Analysis of the problem and
listing potential solutions (within the compiler’s analysis steps)
isn’t the real issue. The majority of the time, the compiler can
reasonably understand the options. What it can’t do, today, is
make good choices among those options, because it poorly
predicts the performance implications of each option.

In particular, what is lacking are good performance models
that the compiler can use to assess the performance implica-
tions prior to instantiation and empirical measurement. Clearly,
for the issues identified in Section III-C, there is ongoing
research that is attempting to address this issue (e.g., see [13],
[17]–[19]). For the SWI vs. MWI choice, previous work has
hinted that memory access patterns might be informative [27],
and for the dataflow analysis, queueing theory has been
used in the past with some success [31], [34]. All of the
above work, however, has various limitations, e.g., it has only
been validated empirically, its breadth of utility is currently
not known, etc. This is clearly an area that warrants future
research. It gets even more complicated when one considers
that the models we desire will also depend on the particulars
of the FPGA board that is being targeted. For example, High-
Bandwidth Memory (HBM) is now available with FPGAs,
and the use of HBM has clear performance implications for
deployed applications [35]–[37].

V. CONCLUSIONS AND FUTURE WORK

While there are many ways that HLS tools have improved
and come a long way since their humble beginnings, it can
sometimes feel like there is still a lot to be desired when
using HLS to program FPGAs in a heterogeneous computing
environment. Here we have expressed a few of the pain
points and issues from working in this space, but from those



Fig. 4. Schedule of the control data flow graph when bounds checking is absent (left) and present (right) [32].

challenges arise opportunities for improvement. A good first
step has been the open-sourcing of portions of the HLS
toolchains by both manufacturers, allowing researchers the
opportunity to tweak and improve upon an already rich tool
set.

In our opinion, the way that the research community can
be most helpful is in the development and validation of
models that are truly predictive of performance using the
information that is available at compile time. This would
enable the compilers to make well informed decisions with
the information that they have at their disposal.
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