
Application of Network Calculus Models to Heterogeneous
Streaming Applications

Clayton J. Faber
Roger D. Chamberlain

Clayton J. Faber and Roger D. Chamberlain, “Application of Network
Calculus Models to Heterogeneous Streaming Applications,” in Proc. of
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), May 2024, pp. 198-201.
DOI: 10.1109/IPDPSW63119.2024.00057

Presented at 26th Workshop on Advances in Parallel and Distributed
Computational Models, San Fransisco, CA, USA.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Application of Network Calculus Models to
Heterogeneous Streaming Applications

Clayton J. Faber*
SimpleRose

clayton@simplerose.com

Roger D. Chamberlain
Dept. of Computer Science and Engineering

Washington University in St. Louis
roger@wustl.edu

Abstract—Network calculus has seen extensive use in the
performance modeling of communications systems. Here, we
apply network calculus techniques to the modeling of streaming
data applications running on heterogeneous computing platforms.
We quantitatively compare the performance predictions from net-
work calculus with predictions from a discrete-event simulation
model and a previously presented queuing theory model.

Index Terms—performance modeling, network calculus,
streaming data systems

I. INTRODUCTION

In streaming data applications it can be difficult to reason

about performance prior to deployment. Moreover, the appli-

cation might need to be expanded to transform data into the

appropriate input format or handle metadata processing. If one

chooses to accelerate stages using heterogeneous hardware,

data movement also becomes a concern when it is migrated

to a new memory domain or the data movement takes place

between physically separate networked compute resources.

When reasoning about performance in streaming applica-

tions it is often helpful to utilize analytical models to gain

insights into how to spend time and development resources

prior to a full deployment test. Queuing models have a long

history for this purpose. One can readily apply queuing theory

models to these streaming applications. Padmanabhan et al. [1]

utilized queuing models to reason about streaming applications

on heterogeneous architectures. These models utilize isolated

measurements of individual compute stages and flow analysis

to identify bottlenecks and identify where developers can

focus their attention for performance improvements. While

this technique provides mean flow analysis, without further

effort to characterize both arrival and service distributions, it

can be difficult to determine bounds on time and buffering

requirements. It can also be difficult to capture the effects of

data bundling between stages, and how the delay of waiting

for jobs effects the overall throughput. To answer these short-

comings we turn to network calculus.

Network calculus is an analytic modeling technique that

applies system theory concepts to computer communication

networks utilizing min-plus algebra [2]–[4]. Although the

technique was originally designed with network elements in

mind, in this paper we propose additions to the network

calculus modeling technique to reason about streaming data

*C.J. Faber’s work was completed during PhD studies at Washington
University in St. Louis.

applications in a heterogeneous environment where the move-

ment of data between memory domains and across network

links is of vital importance. With modifications to support

computational elements, deterministic network calculus mod-

els can give insights into delay due to data aggregation at

nodes (packetization), end-to-end delay, and bounds on data

flow through the overall application or through individual

subsets of stages in the stream. Furthermore, the models retain

the desirable property of being derived from measurements

taken in isolation without a full deployment, similar to the

aforementioned queuing theory models.

Here, we propose the use of network calculus modeling

techniques to analyze the performance of streaming data com-

putations. We include in the network calculus models elements

of both data communication (which is typical of network

calculus) and data computation (which is new). We compare

the proposed network calculus models to a discrete-event

simulation designed to mimic a pair of computation nodes

with multiple stages in a streaming data application. In the

example application we model two types of communication

links: traditional network links and PCIe buses, in addition to

discrete compute components as data streams though them.

Through both modeled results and simulated results we show

the utility of network calculus when considering performance

in streaming data applications.

II. BACKGROUND AND RELATED WORK

Network calculus is a modeling approach that is designed

to analyze systems that utilize queues and has historically

been primarily used to analyze bounds and model performance

in networking systems. It relies on the min-plus and max-

plus algebras. In min-plus algebra, addition is replaced by the

infimum operator and multiplication is replaced with addition.

Similarly in max-plus algebra, addition is replaced by the

supremum and multiplication is replaced with addition. These

two algebras are used in conjunction with the convolution

operator to reason about data as it traverses a system.

In network calculus, data are modeled by a cumulative

function with respect to time to represent the flow in and out

of systems. Systems are modeled in a similar fashion with

curves representing guarantees on flow into and out of the

system, known as arrival and service curves, respectively.

Consider a data flow, in units of bits, r(t), arriving at a

system and let α(t) be a wide-sense increasing function with

198

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00057

α(0) = 0. The flow is constrained by α(t) and is an arrival

curve if and only if for any 0 ≤ s ≤ t:

r(t)− r(s) ≤ α(t− s).

Following a similar logic the system offers a service guarantee

for an output flow r∗(t). Allow β(t) to be a wide-sense

increasing function and β(0) = 0. β(t) is a service curve

given to the flow r(t) with an output curve r∗(t), defined by:

r∗(t) ≥ inf
s≤t
{r(s) + β(t− s)}.

Alternatively, this can be written as the min-plus convolution:

r∗(t) ≥ r(t)⊗ β(t).

Furthermore, we can define an upper-bound on service pro-

vided defined as:

r∗(t) ≤ r(t)⊗ γ(t),

where γ(t) is the maximum (i.e., best case) service curve.

For arrival curves it is common to model the data flow using

an affine curve known as the leaky bucket arrival curve:

α(t) =

{
Rα · t+ b if t > 0

0 otherwise.

Here, Rα represents the rate of arrival and b is a burst, that is,

how much data can be sent instantaneously. When considering

the service curves, these are commonly represented as rate

latency functions with an associated rate, Rβ , and delay, T ,

associated with them:

β(t) =

{
Rβ · (t− T) if t > T

0 otherwise.

By utilizing these models we can reason about bounds on

a specific node such as the backlog generated by the flow

entering the node, the delay data will experience at a given

node, and what is the upper-bound output flow of the node.

Figure 1 displays a data over time plot of a leaky-bucket

arrival curve and two rate latency functions representing both

a maximum and normal service curve adapted from [2]. Also

in this figure horizontal and vertical lines are included that

are meant to represent maximum virtual delay and backlog

respectively. Finally from these two lines we can derive an

output flow bound, α∗(t), which, along with the delay and

backlog, will be further expanded upon below.

The use of network calculus is widespread in networking

systems [5]–[7]. These applications, are mostly concerned with

extensions to other models, such as network firewalls [8]

and job scheduling [9]. Network calculus also has two sub-

branches; one that deals with probabilistic systems, called

stochastic network calculus [10], and the other dealing with

hard real-time deadlines, known as real-time network cal-

culus [11]. In this particular work we use the standard,

deterministic, network calculus and this is, as far as we know,

the first application of these models to streaming computations

that specifically target heterogeneous architectures.

Fig. 1. Plot of a Leaky Bucket Arrival Curve, α, and a Rate-Latency Service
Curve, β, showing the relation of the Backlog, x(t), Virtual Delay, d(t), and
Output Flow, α∗, bounds. Adapted from [2].

There are of course other examples of modeling for hetero-

geneous architectures that use other types of models. Faber et

al. [12] apply a queuing network model to perform flow analy-

sis, estimating roofline performance for the overall application.

In that study, the actual performance was almost 30% lower

than what the roofline model predicted. When considering

queuing theory models it is important to point out that both

network calculus and queuing theory as mathematical models

are designed to reason about queuing systems and there has

been work to explain how one represents network calculus

ideas in a queuing theory space [13], [14].

III. NETWORK CALCULUS MODELING

As mentioned prior we want to use network calculus to

reason about bounds on a given streaming application that

utilizes heterogeneous architectures, however some additional

assumptions and modifications to the standard model must be

made in order to utilize it properly. Firstly network calculus in

its original inception deals with continuous data flows that are

bit-by-bit, however in the modern era a majority of network

equipment work on a per-packet scheme and are similar to jobs

flowing through a streaming application. This packetization

does indeed have an effect on some of the properties that

network calculus models [2] and needs to be accounted for in

our final model as well. These adjustments come in the form

modifying the arrival and service curves with a variable that

describes the size of the maximum packet lmax. Consider a

flow r(t) and a packetizer, PL, the packetized version of the

arrival, service, and maximum service curves are [15]:

PL(r(t)) ≤ α(t) + lmax1t>0

β′(t) = [β(t)− lmax]
+

γ′(t) = γ(t).

where 1t>0 is 0 for t ≤ 0 and 1 for t > 0.

With these adjustments we can now talk about important

bounds previously mentioned and shown in Figure 1, virtual

delay and backlog. The virtual delay, d(t), is a measure of the

maximum amount of time it takes for a system to output the

same amount of data sent to the system. For a leaky bucket

199

arrival curve α and a rate latency service curve β the virtual

delay is given by:

d(t) ≤ T +
b

Rβ
,

where T is the delay in the expression for β and b is the

burst size in the expression for α. The backlog bound, x(t), is

a bound on the maximum amount of data that resides in the

server before output is sent, and is calculated as the maximum

deviation between α and β. In this example it is calculated as:

x(t) ≤ b+Rα · T.
Finally we can make an estimation on the output bound on a

system, α∗(t). This is known as the output flow bound. This is

found by calculating both a min-plus convolution and a min-

plus de-convolution utilizing the arrival curve of the node and

both the maximum and normal service curves:

α∗ = (α⊗ γ)� β.

While these bounds are beneficial to have, it is important to

know that these bounds assume that Rα ≤ Rβ . If Rα > Rβ

it is noted in [2] that the bounds are infinite, which is the

same result predicted by queuing theory if the arrival rate is

greater than the service rate, resulting in an infinite bound on

the queue. Taking this into account, there are three particular

scenarios that we are interested in, when Rα < Rβ or standard

operation, when Rα = Rβ , and finally when Rα > Rβ . While

the bounds are indeed infinite for backlog and virtual delay

over the long run, we hypothesize that we can use values given

by the model to understand estimates on required queue size

for individual nodes as a job traverses a system implementing

a streaming data application.

One important aspect of targeting heterogeneous architec-

tures is the need to gather enough data to make dispatching a

job worthwhile. The inherent overheads associated with initi-

ating a computation on an attached accelerator, for example,

can motivate the aggregation of a minimum data volume at

the input to the accelerator prior to dispatching the job to the

accelerator. We call this metric the job ratio. To reflect this in

the service curve representations, we have made a modification

to how initial delay is calculated at these nodes. For a node n
that collects data of size bn prior to initiation and bn is larger

than the burst rate of the previous node (bn > b∗n−1) then the

latency at node n is:

T tot
n = T tot

n−1 +
bn

Rαn−1

+ Tn.

Intuitively, total latency is the summation of initial delay of

the previous nodes, T tot
n−1, the time to collect a job from the

previous node, bn/Rαn−1 , and finally the initial delay of the

current node, Tn.

IV. MODELING AND SIMULATION

Actual streaming data applications are often modeled as a

chain of nodes interconnected into a directed acyclic graph.

The model nodes in the chain might represent computation

and/or communications (as described in [16]), especially given

that data movement in a heterogeneous environment can be

critical for performance. We believe that network calculus is

well suited for capturing this type of data movement and can

be a viable tool for measuring the effects of data channels in

streaming environments.

Given a set of N nodes representing stages of a heteroge-

neous streaming application, we can create network calculus

maximum and normal service curves to represent the guaran-

tees on service at each node. Along with the actual compute

nodes we can also create service curves to represent grantees

on data movement. These nodes can be concatenated together

to find the overall service curve of the full system. Going

further, we can create models for intermediate systems by

finding service curves for a subset of contiguous nodes.

To test this model we use the BLAST application [17]

described in Faber et al. [12]. Figure 2 illustrates the setup

of this application with nodes representing stages of the

streaming data application.

B C D E F GΛ A ���

��� ��� ������ ���� ���� ���

Node Function Node Function

Λ data source D Network link

A PCIe link E PCIe link

B FPGA computation F GPU computation

C PCIe link G PCIe link

Fig. 2. Data flow diagram for BLAST. Nodes represent computations or
communications, and the job ratio is shown below each node. Node D
decomposes large data blocks from the FPGA for delivery over the network,
and Node E composes even larger data blocks for delivery to the GPU.

We take these nodes as described and model their execution

time in a discrete-event simulator facilitated by the SimPy

library [18] in Python3. Each node is given a maximum and

minimum execution time, a data packet size to consume,

and data packet size to emit when the execution time has

completed. The time chosen for execution is chosen from a

uniform random distribution using the minimum and maxi-

mum times as bounds. Following the approach of Timcheck

and Buhler [19], we normalize the data volumes at each stage

referred to the input, as some stages have a natural lossless

data compression. In the results section we report all of the

following: network calculus predictions on bounds, the results

of the original M/M/1 queuing theory model and empirical

measured performance (from [12]), and our simulated system

performance.

V. RESULTS

The predictions from our network calculus model and

discrete-event simulation are depicted in Figure 3. The service

curve, represented by β(t), corresponds to the lower bound of

predicted performance. The arrival curve, represented by α(t),
corresponds to an upper bound on performance. The output

200

flow bound, represented by α∗(t), is a loose upper bound.

The simulated data output is shown by the stairstep curve that

stays between the two bounds.

Fig. 3. Network calculus model results.

Throughput predictions from the various models and ex-

periments are presented in Table I. As is apparent, the net-

work calculus throughput predictions align well with both

the discrete-event simulation results and the empirical results

reported in [12].

TABLE I
STREAMING DATA APPLICATION THROUGHPUT.

Source Value
Network calculus upper bound 704 MiB/s
Network calculus lower bound 350 MiB/s
Discrete-event simulation model 353 MiB/s
Queuing theory prediction [12] 500 MiB/s
Measured throughput [12] 355 MiB/s

While these throughput results are clearly of interest, they

haven’t yet demonstrated the power of network calculus, since

they are merely confirming the conclusions from previous

models. Additional information we can glean from the network

calculus model include the following:

1) The maximum virtual delay, d, through the system is

modeled to be 46.9 ms.

2) The maximum data occupancy resident in the system (or

backlog bound), x, is modeled as 20.6 MiB.

Points (1) and (2) above are corroborated by the discrete-event

simulation model.

Further capabilities of the network calculus models include

the ability to analyze any desired subset of the streaming

application separate from the rest of the application. For

example, the contributions of the data occupancy bounds

that are due to each node in Figure 2 can be determined

analytically, which can assist a developer in allocating buffers.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented the use of network calculus models

to bound the performance of streaming data applications

executing on heterogeneous execution platforms. The models

provide both upper bounds and lower bounds for throughput

as well as latency and data volume. For an example streaming

application, the bounds are tight enough to be helpful in un-

derstanding the performance implications of candidate design

changes, and appropriately bracket a discrete-event simulation

model of the same application.

In future work, we would like to explore the use of these

models on a wider set of streaming applications, and validate

the models over a wider range of empirical experiments. In

addition, it is possible to use network calculus to guide the

sizing and allocation of buffers within the application.

ACKNOWLEDGMENTS

This research was supported by NSF under grant CNS-

1763503 and a gift from BECS Technology, Inc.

REFERENCES

[1] S. Pamanabhan et al., “Optimal design-space exploration of streaming
applications,” in Proc. of IEEE Int’l Conf. on Application-specific
Systems, Architectures and Processors, Sep. 2011, pp. 227–230.

[2] J.-Y. Le Boudec and P. Thiran, Network Calculus. Springer, 2003.
[3] R. Cruz, “A calculus for network delay. I. Network elements in isola-

tion,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 114–131, 1991.
[4] ——, “A calculus for network delay. II. Network analysis,” IEEE Trans.

Inf. Theory, vol. 37, no. 1, pp. 132–141, 1991.
[5] S. Azodolmolky et al., “An analytical model for software defined

networking: A network calculus-based approach,” in Proc. of Global
Comm. Conf. IEEE, 2013, pp. 1397–1402.

[6] J.-Y. Le Boudec, “Application of network calculus to guaranteed service
networks,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1087–1096, 1998.

[7] J. B. Schmitt and U. Roedig, “Sensor network calculus–a framework for
worst case analysis,” in Proc. of Int’l Conf. on Distributed Computing
in Sensor Systems. Springer, 2005, pp. 141–154.

[8] Z. Wang, J. Zhang, and T. Huang, “Determining delay bounds for
a chain of virtual network functions using network calculus,” IEEE
Communications Letters, vol. 25, no. 8, pp. 2550–2553, 2021.

[9] M. Li, G. Zhu, and Y. Savaria, “Delay bound analysis for heterogeneous
multicore systems using network calculus,” in Proc. of 13th Conf. on
Industrial Electronics and Applications. IEEE, 2018, pp. 1825–1830.

[10] Y. Jiang and Y. Liu, Stochastic Network Calculus. Springer, 2008.
[11] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for

scheduling hard real-time systems,” in Proc. of Int’l Symp. on Circuits
and Systems, vol. 4. IEEE, 2000, pp. 101–104.

[12] C. Faber, T. Plano, S. Kodali, Z. Xiao, A. Dwaraki, J. Buhler, R. Cham-
berlain, and A. Cabrera, “Platform agnostic streaming data application
performance models,” in Proc. of IEEE/ACM Workshop on Redefining
Scalability for Diversely Heterogeneous Architectures, Nov. 2021.

[13] Y. Jiang, “Network calculus and queueing theory: Two sides of one
coin,” in Proc. of Int’l Conf. on Perf. Eval. Meth. and Tools, 2010.

[14] K. Pandit, J. Schmittt, and R. Steinmetz, “Network calculus meets
queueing theory - a simulation based approach to bounded queues,” in
Proc. of 12th Int’l Workshop on Quality of Service, 2004, pp. 114–120.

[15] A. Van Bemten and W. Kellerer, “Network calculus: A comprehensive
guide,” Technical Univ. of Munich, Tech. Rep. 201603, 2016.

[16] J. Beard and R. Chamberlain, “Analysis of a simple approach to
modeling performance for streaming data applications,” in Proc. of
Int’l Symp. on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. IEEE, Aug. 2013, pp. 345–349.

[17] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local
alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3,
pp. 403–410, 1990.

[18] Team SimPy, “SimPy: Discrete event simulation for Python,”
https://simpy.readthedocs.io, 2023, accessed Aug. 2023.

[19] S. Timcheck and J. Buhler, “Reducing queuing impact in streaming
applications with irregular dataflow,” Parallel Computing, vol. 109, p.
102863, Mar. 2022.

201

