
Feature-Oriented FSMs for FPGAs 
 
 
 
 
Justin Deters 
Peyton Gozon 
Max Camp-Oberhauser 
Ron K. Cytron 
 
 
 
 
Justin Deters, Peyton Gozon, Max Camp-Oberhauser, and Ron K. Cytron, 
“Feature-Oriented FSMs for FPGAs,” in Proc. of IEEE High-Performance 
Extreme Computing Conference (HPEC), September 2023. 
DOI: 10.1109/HPEC58863.2023.10363511 
 
 
 
 
 
 
SimpleRose 
St. Louis, MO 
 
Dept. of Computer Science and Engineering 
Washington University in St. Louis 
 



Feature-Oriented FSMs for FPGAs
Justin Deters∗, Peyton Gozon†, Max Camp–Oberhauser†, and Ron K. Cytron†

∗SimpleRose
St. Louis, MO, USA

justin@simplerose.com
†Department of Computer Science and Engineering

Washington University
St. Louis, MO, USA

{peyton.gozon, c.max, cytron}@wustl.edu

Abstract—In this paper we consider a feature-oriented ap-
proach for specifying finite-state machines, which form the
basis of cache controllers (and other components) for RISC-V
implementations, and which are commonly found in hardware
designs. Using a library we constructed for Chisel, developers
can apply features at will, with the resulting machine containing
only the circuitry needed to support the desired features.

Our library offers two constructs for building features. The
first, inspired by aspect-oriented programming, applies incre-
mental changes to the states and edges of a finite-state machine
to alter and customize its behavior in response to features of
interest. The second construct couples the behavior of separate
finite machines into a single machine that processes its inputs
simultaneously. We illustrate each construct separately using a
vending machine and the game of Nim, respectively.

Our approach offers significant leverage in supporting both
the number and size of the generated designs. We present
results from synthesis that show the size of the design endpoints
compared with the much smaller size of their specification.

I. INTRODUCTION

Projects such as RocketChip [3] and RISC-V Mini [8] allow
customization of RISC-V [4] processors that can then be
deployed economically on FPGAs. These resulting systems
can offer better power and area performance than general-
purpose processors while achieving a price point well below
generation of an ASIC (application-specific integrated circuit).

While some portions of the RISC-V characterization are
easily included or excluded at will, based on a given appli-
cation’s needs, components such as cache features, branch-
prediction circuitry, and superscalar support are much more
difficult to weave in or excise from a given characterization.

In the RISC-V implementations cited above, components
of the processor such as its cache and bus protocols rely on
finite-state machines (FSMs) to control the sequencing of the
associated logic. Hardware implementations commonly rely
on FSMs at the core of their design, due to their simplicity
and efficiency.

In this paper, we consider FSM controllers in which fea-
tures should be included based an application’s needs. In a
system with n such independent features, there are 2n possible
endpoint designs that could be generated. Maintaining those
as distinct projects is unwieldy and inefficient. Instead, we

Supported under NSF CISE award CNS-1763503 Performant Architec-
turally Diverse Systems via Aspect-oriented Programming

use techniques from aspect-oriented programming to weave
features into a design on demand. The resulting code base is
significantly smaller, while maintaining the ability to generate
any endpoint. The resulting characterization must still undergo
synthesis, but the system in its feature-factored form is easier
to maintain. Moreover, testing of all feature combinations can
be easily automated.

Hardware-generation languages such as Chisel [2] allow
a designer to write a program whose execution generates
the hardware design. The program can be authored using
paradigms that promote efficiency, reuse, rigorous testing,
and clarity of expression. Our work builds on the hardware-
generation language Chisel [15], which is in turn built on
Scala [12]. Chisel is a Scala-embedded domain-specific lan-
guage with libraries that generate Verilog [1] when a Chisel
program is executed.

In this paper, we consider a feature-oriented programming
(FOP) approach to generating hardware, specifically finite-
state machines (FSMs). Our contributions are as follows:

• In Section III-A, we describe an approach to formulating
features in FSMs based on aspect-oriented programming
(AOP). We apply this idea to a featureful vending ma-
chine in Section IV and present results on the auto-
matically generated FSMs with specific feature sets in
Section VI-A.

• In Section III-B we describe a generative cross-product
technique (due to Harel [6]) that composes larger FSMs
from smaller, behavior-specific machines, illustrated us-
ing the game of Nim. Results from its application to
variations of Nim are shown in Section VI-B.

• The code we have developed for this work integrates with
Chisel and is available via github.

The FSMs generated using our approach enjoy benefits similar
to feature-oriented software systems:

• Smaller footprints than the fully-featured design are ob-
tained by including only those features of interest. The
resulting hardware designs have fewer states and less
logic, supporting only the features of interest.

• Logic related to inactive features is completely absent
from the resulting designs. Since the clock rate of a
hardware system is determined in part by the amount



of logic that must complete in a clock cycle, less logic
could lead to faster clock rates.

II. PRIOR WORK AND MOTIVATION

We review here the concepts and prior work upon which
our work is based.

A. Aspect-oriented programming

Our work builds on a programming paradigm available in
the software community that efficiently supports the expres-
sion and application of cross-cutting concerns in a software
system. Aspect-Oriented Programming (AOP) [7] and its re-
alization in systems such as AspectJ [5] allow developers to
express ideas that affect multiple components of a system in
support of a common idea or feature.

Aspects have been applied to finite-state machines for
sequence diagrams in a modeling (UML) setting [14]. Our
use of aspects extends that work by taking advantage of types
in Scala to formulate advice and guide FSM modifications.

B. Benefits of feature-oriented programming

Our work concerns the generation of FSMs that incorporate
desirable subsets of features. We show that FSMs can be
specified much more efficiently using this approach. Moreover,
the FSMs ultimately generated by the Chisel toolchain contain
only those features of interest, requiring fewer resources
than would a full-featured, monolithic specification whose
undesirable features are disabled.

An example from the software world of the benefits ob-
tainable from an FOP approach to a featureful system con-
cerns the CORBA [10] Event Channel [11]. The standard
implementation was monolithic, offering all possible features
in all allowable combinations. A decomposition of the Event
Channel in terms of its features has demonstrated that useful
subsets of those features use significantly fewer resources
when formulated generatively [13].

III. GENERATIVE FSM SPECIFICATIONS

We next illustrate our two FOP constructs for generating
complex FSMs. The first uses aspect-oriented advice to incor-
porate features selectively into an FSM. The second builds
a cross-product FSM from the synchronous simulation of
smaller FSMs.

A. Feature introduction via AOP

As an example of a featureful hardware design, we consider
an FSM implementation of a vending machine. A state in our
design carries the necessary (Scala) traits to represent its role
in the machine’s operation: the funds inserted and the potential
products dispensed. Our generative approach described below
offers the following advantages over a monolithic design:

• The design itself is simpler and clearer when described
using FOP. A monolithic design that includes all features
can be realized, but the resulting FSM does not readily
make the features apparent. Moreover, the work to create
and maintain that monolithic implementation is tedious
and error-prone.

• Modification of the FSM is greatly simplified. For exam-
ple, introduction of a new value of coinage automatically
creates the necessary additional states and transitions.

• Scala traits allow elegant expression of an application’s
behaviors in support of FOP hardware design.

For this example and the results we present, the features of
interest for a vending machine are as follows:

• Add Currency introduces a value of coinage.
• Dispense Product introduces a vendible item and its

price.
• Print Funds causes the machine to display the total funds

after each state change.
• Insufficient Funds introduces a prompt to advise the

consumer to insert more funds to buy a particular item.
• Change Return introduces a button (input to the FSM)

that causes the machine to return unspent funds.
• Peanut Warning requests confirmation of purchase for

items that contain peanuts.
• Buy More allows the consumer to continue purchasing

items if funds remain in the machine. The Change
Return feature, if present, allows the consumer to request
return of the remaining funds.

The dependencies of these features are shown in Figure 2,
but this graph is not needed for construction: the advice for
a given feature is applicable only when its associated join
points exist in the FSM. As is typical with aspect-oriented
approaches, all advice is presented to a weaver (our runtime
library for Chisel), and the aspects are continually applied until
no changes occur.

For example, the advice for Add Currency of coinage k
specifies that for any state representing that n cents have been
inserted, a state representing n + k cents must exist, with a
transition from state n to state n + k based on the insertion
of coinage k. This advice fails to terminate if not capped by
some upper bound on funds, which could be related to the
most expensive product sold. For example, Figure 1 shows a
machine that

• Accepts only 5 cent coinage
• Accepts up to 15 cents
• Vends peanuts that cost 10 cents

The FSM is automatically generated by the advice for Add
Currency and Dispense Product. Continuing with this ex-
ample, consider the Buy More feature, intended to incen-
tivize consumers to spend more money. This feature causes
the machine to retain remaining funds after a purchase to
encourage subsequent purchases. Without this feature, the
machine in Figure 1 would return 5 cents if 15 cents are used
to purchase peanuts costing 10 cents. With the feature, the
5 cents of remaining value would be held by the machine
for subsequent purchases. The advice for this feature modifies
every purchase to move to a state representing currently held
funds. In Section IV we discuss application of other features
to this FSM.

A monolithic approach requires designers to specify all
states and transitions for each feature subset, which is tedious



and error-prone. With our approach, designers can verify the
correctness of much smaller designs using standard FSM
verification techniques and then obtain much larger generative
designs that are correct by their construction.

In terms of leverage, consider an FSM for which there
are n orthogonal and independent features. A valid system
could thus be written or generated with or without each of
those n features. This leads to 2n feature-specific implemen-
tations. While it is unlikely that each of those implementations
would find an application, the ability to generate any of them
automatically offers significant leverage.

B. Generating FSMs via cross-product composition

Nim [17] is a broad class of impartial mathematical strategy
games, which traditionally involve multiple heaps of tokens
(e.g., sticks) and two or more alternating players. The current
player removes an allowable number of sticks from a subset of
the heaps. The winner is usually defined as the player taking
the last token. In a misère version of the game, that player
would lose.

In contrast with the usual monolithic solution, even the
most basic game of Nim can be regarded as the composition
or simultaneous operation of two simpler machines: one that
represents only the allowable subtractions of tokens in a heap
(such as the 5-token heap shown in Figure 4(a)) and one that
represents only the alternation of players (such as the two-
player alternation shown in Figure 4(b)). Transitions not shown
in those machines are errors, such as Player A taking two
consecutive turns.

Following is our feature decomposition of Nim:
• Heap Bounds encodes the initial and winning number of

tokens for each heap.
• Legal Moves encodes permissible combinations of

adding or removing tokens from each heap.
• Num Players specifies how many players take turns in

the game.
• Win Type specifies whether the game is misère play or

normal play.
The dependencies of these features is shown in Figure 3.

The game is won when both conditions are met:
• Players alternate correctly, as in Figure 4(b). For example,

the sequence ABA leads to an accept, but the sequence
AAB cannot.

• All tokens have been taken, for example using the se-
quence 212 in Figure 4(a).

Using a construction technique due to Harel [6] and well
documented in Ptolomy [9], we obtain the basic game of Nim
shown in Figure 5. That algorithm simulates the simultaneous,
lock-step execution of the machines shown in Figures 4(a)
and (b).

In terms of leverage, consider the cross-product genera-
tion of an FSM from two identical FSMs each of size m
(states+transitions). The resulting machine’s worst-case size
is O(m2). An n-way cross product generates a machine of
size O(mn), where m is viewed as a constant here. The

structures we can generate with this approach are (in the limit)
exponential in the size of their specifications.

IV. FORMALISM FOR CROSS-CUTTING FEATURES

We begin with an FSM M , typically defined as follows:

M = (Q,Σ, δ, q0, F )

where Q is a set of states, Σ is a set of tokens, δ is the
transition function, q0 is the start state, and F is the set of
accepting states. A state is typically denoted by an upper-
case letter; lower-case letters denote tokens and strings. The
symbol λ denotes the empty string. When an FSM is drawn
as a graph, the start state receives an edge with no sources,
and an accepting state is drawn with two concentric circles.

The formalism presented here is implemented in Chisel as
a library we call Foam, described in Section V. The examples
and results presented in this paper were created using Foam.

We follow [14] in the treatment of aspects for FSMs.
Essentially, a state is like a method and a transition between
states is like a method call. The usual forms of before, after,
and around advice are available (cf. AspectJ [16]). A cross-
cutting feature is implemented using advice that modifies an
FSM’s behavior before, after, or during a transition between
states.

As described below, a feature is comprised of advice applied
to pointcuts of an FSM, which can formally change the
language of the machine. More broadly and usefully, the
advice can affect actions taken by the machine as its inputs
are processed.

a) Pointcuts: These specify where advice should be
applied in a targeted FSM. The generative nature of Chisel
eliminates any need for new syntax to express pointcuts.
Instead, we can select states or symbols using simple set
quantifiers and predicates, written in Chisel/Scala and executed
along with the rest of the Chisel code that generates a circuit.
For example, the Print Funds feature can be generated in a
vending-machine FSM through after advice applied to any
token that adds value to the machine. Such properties are
supported nicely in Scala using traits. To implement this
feature, the base code likely requires refactoring to include
the value trait. However, the effort is worthwhile because the
refactoring and associated advice make the resulting product
both clearer and more easily able to exclude or include actions
taken at different inputs.

In AOP terminology, a pointcut yields a set of join points
at which advice is applied. A join point associated with the
above example would be a single token “5”, such at the one
between state “10” and “15”, at which the value increases in
the machine by “5” cents. Because this is an after pointcut, the
join point has context that includes the state “15” that follows
the token “5”, as shown in Figure 1.

b) Advice: This specifies what changes to the FSM
should be applied at a join point. In the Print Funds feature, a
new state is inserted following each token “5” in the FSM. The
exact print statement generated by the advice is determined
by the context contained within the join point. For example,



Start  0λ  10

 15
 5

 0 Dispense PeanutPeanut

Peanut

 5  5

Peanut

 5

Peanut

Fig. 1. FSM for a vending machine that accepts 5 cent coins and dispenses peanuts that cost 10 cents.

Add
Currency

Dispense
Product

Print Funds Change
Return

Insufficient
Funds

Peanut 
Warning

Buy 
More

Fig. 2. Dependencies between vending machine features.

Heap Bounds

Players

Legal Moves

Win Type

Fig. 3. Dependencies between Nim features.

 

Start

[5]

λ

[4]

Take 1

[3]

Take 2

Take 1

[2]

Take 2

[1]

Take 2

Take 1

[0]

Take 1

Take 1

Take 2

 

Start

Player A

A

Player B

B A

(a) (b)
Fig. 4. (a) FSM for a 5-token heap that allows one or two tokens to be
removed in a turn; (b) FSM specifying alternation of Players A and B.

 

Start and Start

Player A and [5]

A and λ

Player B and [4]

B and Take 1

Player B and [3]

B and Take 2

Player A and [2]

A and Take 2

Player A and [3]

A and Take 1

Player B and [0]

B and Take 2

Player B and [1]

B and Take 1

Player B and [2]

Player A and [0]

A and Take 2

Player A and [1]

A and Take 1

Player A loses

λ

A and Take 1

A and Take 2

B and Take 1

Player B loses

λ

B and Take 1B and Take 2

A and Take 1

Fig. 5. The resulting Nim finite-state machine. The edge transitions are
labeled with the player who acts to take the specified number of tokens. The
state is labeled with the player who just completed a turn and the number of
remaining tokens.



Start  0λ

 15 Print ¢15

 15
λ

 0 Dispense Peanut

Peanut

 10

 5

Peanut 5

Peanut

 10 Print ¢10 5 λ

Peanut

 5 Print ¢5 5 λ

Fig. 6. The resulting FSM of the application of Print Funds to the FSM from
Figure 1.

Start  0λ  10

 15

 5

 10 Contains Nuts!

Peanut

 15 Contains Nuts!
Peanut

Peanut

 5 5

 Reject  0 Dispense Peanut Accept

 5

Peanut

 Reject

 Accept

Fig. 7. The resulting FSM of the application of Peanut Warning to the FSM
from Figure 1.

Print ¢15 is generated because the state “15” follows the
token “5” discussed earlier. Furthermore, to prevent unending
application of features, the advice for Print Funds checks to
see if the context in the join point is already a printing state.
If so, no advice is applied. Like pointcuts, advice is written
in Chisel/Scala.

Not only can advice insert new states, but it can also insert
new symbols as well. Consider the Peanut Warning feature as
an example. The pointcut is predicated upon a dispense state
having a “peanut” trait. Because this is a before pointcut, each
join point has context that includes transition information that
targets the state. In Figure 7 this is 10

Peanut−−−→ and 15
Peanut−−−→.

The advice will insert a new “Contains Nuts!” state and
“Accept” token for each of the join points. It also inserts
a new transition on the “Reject” token whose destination is
determined by the context contained in the join point.

V. ASPECT-ORIENTED FINITE-STATE MACHINE LIBRARY

We have implemented an aspect-oriented finite-state ma-
chine library in Scala that we call Foam. Here we discuss the
library as well as code generation.

While Foam is not realized as a domain-specific language,
we have modeled the interface after the well-established
aspect-oriented extension to Java, AspectJ [5]. The intention is
to provide aspect-oriented practitioners a familiar interface for
interacting with the FSMs. Because the library is implemented
in ordinary Scala, we have access to and can utilize the full
power of its type system.

We provide a series of extendable base classes to rep-
resent FSMs. The library builds pointcuts, applies aspects,
and performs the cross-product construction. Like AspectJ,
our library provides access via reflection to a join point and
its context. For examples, our full library can be found at
https://github.com/wustl-frisc/faust.

A. Code Generation

The library currently supports emitting DOT and Verilog
code. Since the library produces Verilog, standard validation
techniques can be applied. Code generation is decoupled from
the creation of the FSMs, as the library generates code based
off the internal data structures, not the Scala code itself.

VI. CASE STUDIES AND RESULTS

Here we present three case studies to demonstrate the
generative ability of our framework: a Vending Machine, the
game of Nim, and a SIMD cache with a coherence protocol.

A. Vending Machine

We implemented all the features from Section III-A in our
library. The resulting FSMs were then emitted as Verilog. The
Verilog was synthesized on a xc7a35tcpg236-1 FPGA using
Vivado 2022.1. Below we report the number of generated
states, transitions in the FSM, and the space in LUTs used
by the FSM on the FPGA.

Figure 8 shows the results for different endpoints generated
by our library. For our tests, we held the currency threshold
at 100. Every machine contains 5, 10, and 25 value coins;
and 4 products of value 25, 50, 75, and 100. This is captured
by feature set “None”. In the first set of results, each feature
is shown by itself. Even single features can greatly increase
the components in the FSM. The Buy More feature (denoted
B) by itself more than doubles the number of states and
transitions. This impressive leverage is further exemplified
when combining features.

In these cases the number of states increase by 2.5x in
the simplest endpoint, up to 4.6x in the most complex, and
the transitions by 2.5x and 5x respectively. Recall, this is
a relatively simple vending machine that can only accept
up to 100 units of value. Simply doubling the amount of
accepted value to 200 creates a machine with 284 states (10.5x
increase over the base) and 3113 transitions (16x increase over
the base). However, this is accomplished in our library with
relatively few lines of code. The largest feature in terms of
code is Peanut Warning, which is implemented in just 39
lines.

Despite the growing number of generated states and tran-
sitions as the features increase in Figure 8, the resulting
hardware resources, in this case Look Up Tables (LUTs),
used by the FSM are relatively modest. This is because
hardware synthesis tools can represent states using a linear
encoding scheme. For an FSM with n states, each state takes
only O(log n) space when encoded as an integer. However,
the specification of that circuit to a synthesis tool must be
expressed state-by-state. If the number of transitions per state
is bounded by a constant, then the specification (e.g., lines of
Verilog) takes O(n) space. Our generative approach to speci-
fying FSMs allows designers to implement much larger FSMs
than are currently sustainable with a hand-coded approach.



Features States Transitions LUTs

None 27 208 24
P 47 368 38
I 47 368 46
C 48 423 70
W 33 320 60
B 57 448 60
PI 67 528 73
PICB 118 1053 186
PICW 94 1023 160
PICWB 124 1353 220

Fig. 8. Number of generated states, transitions, and LUTs depending on
selected features. The features are as follows: P = Print Funds, I = Insufficient
Funds, C = Change Return, W = Peanut Warning, and B = Buy More.

B. Nim

We implemented all the features described in Section III-B
and present two variations of Nim: traditional Nim and circle
Nim. All results assume each game is misère play with at least
one heap and one player. We further assume that the players
alternate in a round-robin fashion. The details of each variation
are described below, along with the number of generated states
and transitions within the created FSMs.

a) Traditional Nim: The classical game of Nim contains
two players and three heaps, though there are no restrictions
on the number of players or quantity of heaps. The defining
characteristic of traditional Nim is that, each turn, the current
player may only remove sticks from a single heap of their
choosing, and must take between 1 and all the remaining sticks
within that heap. The game ends when all heaps contain zero
sticks.

Figure 9 shows the results for different endpoints of the
traditional game of Nim, varying both the quantity of heaps,
the number of sticks within each heap, and the number of
players. In the simplest variation, containing only a single
heap with three sticks and one player, a total of six states and
30 transitions were generated. Juxtapose this with the most
complex variation, containing three heaps – with three, four,
and five sticks, respectively – and four players: this variation
contains 419 states and 20950 transitions. With minimal
changes to the specification of the game, this represents a
nearly 70x increase in the number of states and 698x increase
in the number of transitions. For a fixed number of players,
the number of transitions experiences growth by an order of
magnitude moving from 3 to 4 to 5 heaps.

b) Circle Nim: Circle Nim is given its name due to the
layout of its heaps: the heaps are placed around a circle, with
their adjacencies affecting gameplay. It is traditionally played
with a finite number of heaps, each containing a single stick,
and two players. Each turn, the current player is allowed to
take the sticks from between one and a pre-set number of
consecutive heaps. We allow the player to take from between
one and three consecutive heaps.

Figure 10 shows the results for different endpoints of circle
Nim, varying both the number of players and the number
of heaps. In the simplest variation, with three heaps and a

Heaps Players States Transitions

3 4 5

✓ 1 6 30
✓ 2 9 63
✓ 4 11 88
✓ ✓ 1 22 198
✓ ✓ 2 39 624
✓ ✓ 4 60 1800
✓ ✓ ✓ 1 112 1708
✓ ✓ ✓ 2 235 6110
✓ ✓ ✓ 4 419 20950

Fig. 9. Number of generated states and transitions by selected features for
traditional Nim.

Heaps Players States Transitions

3 1 10 110
3 2 15 255
3 4 17 340
6 1 66 1320
6 2 113 4294
6 4 150 11100
9 1 514 14906
9 2 951 53256
9 4 1429 157190

Fig. 10. Number of generated states and transitions by selected features for
Circle Nim. Each heap contained one stick; players could take from between
one and three consecutive heaps.

single player, 10 states and 110 transitions are generated. In
the most complex variation, with nine heaps and four players,
1429 states and 157190 transitions are generated, representing
a 143x and 1420x increase, respectively. Only two numbers
were changed in code to realize this exponential increase in
output complexity.

VII. SUMMARY AND FUTURE WORK

We have described an FOP approach to constructing com-
plex finite-state machines from much simpler ones. We have
illustrated our ideas using two pedagogical examples and one
real-world setting, namely an SIMD cache. We have presented
an algorithm that creates a cross-product FSM, which sim-
ulates the lock-step simultaneous execution of its two input
FSMs. Our results confirm that this FOP approach provides
significant leverage in terms of the size of the generated
products, as compared with the relatively smaller effort of
authoring the individual features.

We are currently working to create a fully feature-oriented
cache using our system. Hardware caches are ripe for feature-
oriented design as they contain many orthogonal features. For
example, if we wanted to build a cache model even closer to
the RDNA architecture, the original cache FSM would need
to be write-through, 4-way set associative, and utilize an LRU
replacement policy. Instead of forcing hardware designers
into choosing an initial design and refactoring, write policy,
allocation policy, replacement policy, and associativity could
all be selectable features of the microarchitecture.



REFERENCES

[1] IEEE Standards Association et al. Ieee standard for verilog hardware
description language (ieee 1364-2005). http://standards. ieee. org/, 2006.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
Chisel: Constructing hardware in a scala embedded language. In
Proceedings of the 49th Annual Design Automation Conference, DAC
’12, page 1216–1225, New York, NY, USA, 2012. Association for
Computing Machinery.

[3] UC Berekely. Rocketchip generator, 2022.
https://github.com/chipsalliance/rocket-chip/blob/master/README.md.

[4] UC Berkeley. RISC-V international, 2023. https://riscv.org/.
[5] Eclipse Foundation. Aspectj, 2022. https://www.eclipse.org/aspectj/.
[6] David Harel. Statecharts: a visual formalism for complex systems.

Science of Computer Programming, 8(3):231–274, 1987.
[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Proceedings of the 11th European Conference
on Object-Oriented Programming, pages 220–242, June 1997.

[8] Donggyu Kim. riscv-mini. https://github.com/ucb-bar/riscv-mini, 2022.
[9] Edward A. Lee. Finite state machines and modal models in ptolemy

ii. Technical report, Electrical Engineering and Computer Sciences,
University of California at Berkeley, 2009. Technical Report No.
UCB/EECS-2009-151.

[10] Object Management Group. The Common Object Request Broker:
Architecture and Specification, 2.4 edition, October 2000.

[11] Object Management Group. Notification Service Specification. Object
Management Group, OMG Document formal/2002-08-04 edition, Au-
gust 2002.

[12] Martin Odersky and al. An overview of the scala programming language.
Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[13] Ravi Pratap, Frank Hunleth, and Ron Cytron. Building fully cus-
tomisable middleware using an aspect-oriented approach. Software,
151(4):199–218, 2004.

[14] Roy Rønmo, Ragnhild Kobro Runde, and Birger Møller-Pedersen.
Confluence of aspects for sequence diagrams. Software & Systems
Modeling, 12:729–824, 2013.

[15] Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing,
2019.

[16] The AspectJ Organization. Aspect-Oriented Programming for Java.
www.aspectj.org, 2001.

[17] Wikipedia contributors. Nim — Wikipedia, the free encyclopedia, 2022.
[Online; accessed 9-August-2022].


