Application-guided Tool Development for
Architecturally Diverse Computation

Roger D. Chamberlain
Jeremy Buhler

Mark A. Franklin
James H. Buckley

Roger D. Chamberlain, Jeremy Buhler, Mark A. Franklin, and James H.
Buckley, “Application-guided Tool Development for Architecturally Diverse
Computation,” in Proc. of Symposium on Applied Computing, March 2010,
pp. 496-501.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Application-guided Tool Development for
Architecturally Diverse Computation

R.D. Chamberlain, J. Buhler, M. Franklin
Dept. of Computer Science and Engineering
Washington University in St. Louis

{roger,jbuhler,jbfj@wustl.edu

ABSTRACT

Architecturally diverse computation exploits non-traditional
computing platforms (e.g., field-programmable gate arrays,
graphics processors, heterogeneous chip multiprocessors) to
execute user applications. We have designed the Auto-Pipe
tool set with the goal of easing the task of developing ap-
plications for architecturally diverse systems. Prior to and
during the course of Auto-Pipe’s design, we have developed a
number of real, substantial applications, and the the lessons
learned during the development of these applications has
had a direct bearing on the capabilities of Auto-Pipe. In this
paper, we describe the relationship between our application
development experience and Auto-Pipe. In short, how have
applications guided the tools’ evolution and development?

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other Architecture Styles—

Heterogeneous (hybrid) systems; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
Search process; 1.6.8 [Simulation and Modeling]: Types
of Simulation—Monte Carlo; J.2 [Physical Sciences and
Engineering]: Astronomy; J.3 [Life and Medical Sci-
ences|: Biology and genetics

General Terms
Algorithms, Design, Languages

Keywords

Monte Carlo simulation, encryption, computational finance,
computational biology, computational astrophysics, approx-
imate text search, application development tools

INTRODUCTION

For a number of decades, computing performance gains
were regularly achieved by rapidly increasing clock frequen-
cies. This trend has recently slowed, and alternative ap-
proaches to performance improvement are now required. One

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

496

J.H. Buckley
Dept. of Physics
Washington University in St. Louis

buckley@wustl.edu

approach that has significant promise is the use of alter-
native computing engines, such as field-programmable gate
arrays (FPGAs) and graphics processing units (GPUs), to
execute portions of an application, typically in conjunction
with general-purpose processors. This approach is especially
well suited to applications that process streaming data, such
as from a sensor array from a telescope or other scientific in-
strument. We refer to such systems as architecturally diverse
computing systems, also referred to as hybrid systems.

The embedded systems design community has been an
early adopter of architecturally diverse computing, espe-
cially given the additional constraints on weight, power, and
volume that are typically present in embedded system de-
signs. However, widespread utilization of diverse comput-
ing has been somewhat elusive. Each platform has its own
unique characteristics, both in terms of architecture and ap-
plication development process. In addition, deploying por-
tions of applications across multiple computing components
requires that the different components coordinate their ef-
forts. This imposes additional difficulties on the application
developer, as these disparate subsystems are not typically
well integrated into a coherent whole.

Many of the issues described above can be addressed by
altering the state of practice for application development on
diverse systems. In what follows, we presume that appli-
cations are expressed, either originally by their developers
or as a result of some (semi-) automatic transformation, as
a collection of articulated kernels that execute concurrently
and communicate via explicit messages. Essentially, this is
the streaming computation model.

The above approach is hardly new. Lee [15] has argued
that coordination languages represent a better mechanism
for reasoning about concurrency than traditional thread-
based approaches. Additional languages that fit this model
include Brook [3], Impulse C [17], StreamC/KernelC [5],
Streamlt [19], and Streams-C [10]. Common to all of the
above is the use of dataflow semantics between “kernels”
or “blocks,” undecomposable computations that are to be
mapped to individual computing components.

Our extension to the above idea is to generalize the set
of computing components that can be targets for the de-
ployment of kernels. Auto-Pipe [7] is a tool set that sup-
ports application development of streaming computations
on architecturally diverse systems. Auto-Pipe enables an
application developer to: 1) author the application using
the language(s) of his/her choice for expressing kernel com-
putations and a coordination language, called X, to express
the streaming topology; 2) model the application using a

federated simulation system [8]; and 3) deploy the applica-
tion on a diverse architecture [4].

During initial development and over the course of its ex-
istence the design of the Auto-Pipe tool set has been in-
fluenced significantly by a group of real applications that
span embedded systems, computational science, and un-
structured data search. This paper articulates the lessons
learned from these applications that have guided the design
of the Auto-Pipe tool set. What did we do initially? How
did that succeed, and how did that fail? What did we do to
correct what failed? What remains to be done? Ultimately,
the success of a development environment such as Auto-Pipe
depends on the benefits that it provides to application devel-
opers. Those application developers are primarily interested
in the properties of their applications, not the tool set. This
is probably the most important lesson that can be learned
by a designer of tool sets.

2. APPLICATIONS

In this section, we provide a brief description of five pri-
mary applications that have been used to guide the devel-
opment of of the Auto-Pipe tool set. They are presented in
the order in which they were developed, which will be sig-
nificant in the discussion that follows. There are two points
worth noting here. First, each of these applications is sub-
stantial in its own right. While several “toy” applications
were also constructed during the course of this research, the
primary focus has been on real applications that have signif-
icant user communities. Second, while they all fall into the
class of streaming data applications, there is considerable
diversity among the set.

2.1 Approximate Text Search

The text search application includes the following capa-
bilities: exact matching, approximate matching, regular ex-
pression matching, and combining operations. In our im-
plementation, the three alternative matching operations are
deployed on an FPGA with the combining operations taking
place on the general-purpose processor [6].

Exact match. The exact matching operations are based
upon Rabin-Karp theory [13]. The algorithm is as follows.
The keywords of interest are hashed into positions in a bit
vector. Text to be searched is then hashed and the resulting
bit vector position is checked for the presence of a keyword.
On a hit, there is either a keyword match or a hashing col-
lision. In either event, the hit is delivered from the FPGA
to the processor where software determines whether a true
positive keyword match or a false positive hashing collision
has occurred.

Approximate match. With approximate matching, key-
words in a query can be specified with a number, k, of al-
lowed character substitutions or miss-matches. Keywords
can be specified to be either case sensitive or case insensitive.
Also, individual characters in a keyword can be designated
as “don’t care” and will match any character.

Regular expression match. The algorithm for regular
expression matching operations uses a pipelining strategy
that defers state-dependent logic to the last stage, enabling
single-cycle state transitions [2]. In addition, a regular ex-
pression compiler is used to encode contiguous strings of m
input characters and compress the transition table through
indirection.

Combining operations. While each of the above search

497

engines has a distinct function, upon a keyword match each
returns both the match and match position. Software on the
processor is then used to resolve the combining operations
including the Boolean operators AND, OR, and NOT as well
as proximity operators NEAR and ANDTHEN. The opera-
tors AND, OR, and NOT perform their traditional Boolean
logic functions at the file level. The operator NEAR is equiv-
alent to AND with the additional constraint that the match-
ing keywords must be within a given distance of one another
in the file. The operator ANDTHEN is equivalent to NEAR
with the additional constraint that the first keyword must
occur earlier in the file than the second keyword.

2.2 Biosequence Search

BLAST, the Basic Local Alignment Search Tool [1], is
widely used by molecular biologists to discover relationships
among biological (DNA, RNA, and protein) sequences. The
BLAST application compares a query sequence q to a database
D of other sequences, identifying all subject sequences d € D
such that ¢ and d have small edit distance between them.
The edit distance is weighted to reflect the frequency with
which different mutations, or sequence changes, occur over
evolutionary time. The BLASTN variant of the application
expects both query and database to contain DNA or RNA
sequences, and the BLASTP variant expects both query and
database to contain protein sequences.

The BLAST application is a critical part of many compu-
tational analyses in molecular biology, including recognition
of genes in a genome, assignment of biological functions to
newly discovered sequences, and clustering large groups of
sequences into families of evolutionarily related variants.

BLAST is conceptually a streaming application, composed
of a 3-stage pipeline of increasingly expensive but increas-
ingly accurate search operations performed on a database
stream. Figure 1 illustrates the basic structure. In stage 1,
BLAST detects short exact substrings, or words, that are
common to both the query and a database sequence, using
a hash table of all words in the query. In stage 2, the region
surrounding each word is searched to detect pairs of longer
substrings that differ by just a few character mismatches.
Finally, the small fraction of words that generate such an
“ungapped” pair are passed to stage 3, which searches the re-
gion around them for pairs of substrings with small edit dis-
tance, allowing for substitutions, insertions, and deletions.
Only matches that pass this final stage are reported to the
user.

stage 1 stage 2 stage 3
database seeq seed | ungapped u!wgapped gappgd gapped
sequences matching | matches | extension | alignments | extension | alignments

Figure 1: BLAST functional pipeline.

Mercury BLAST [12, 14] accelerates both the BLASTN
and BLASTP variants of BLAST using a diverse architec-
ture consisting of both FPGAs and general-purpose proces-
SOrs.

2.3 Triple-DES Encryption

Encryption involves transforming unsecured information
into coded information under control of a key. The Data
Encryption Standard (DES) operates on 64-bit data blocks

using a 56-bit key. Triple-DES uses three pipelined DES
stages to increase the key size. Each stage performs a stan-
dard DES encryption using the first, second and third 56-bit
keys (64-bits with parity) respectively, and results in a more
effective key length of 168 bits (versus 56 bits in DES).

Each of the three pipeline stages takes a single 64-bit in-
put and generates a single 64-bit output. The 56-bit key is
handled as a parameter since it is only set once. The per-
formance of our group’s Triple-DES implementation using a
variety of compute resources (including both processors and
FPGASs) is described in [7].

2.4 Gamma-Ray Astronomy

A common experiment in high-energy astrophysics is the
examination and characterization of gamma rays generated
by extraterrestrial sources. Astrophysicists believe these
sources may include pulsars, supernovae, neutron star colli-
sions, and supermassive black holes in galactic nuclei.

The event parametrization task is a computationally in-
tensive step in the ground-based detection of stellar gamma-
ray sources. Gamma rays striking the atmosphere result in
showers of thousands of photons called Cherenkov radia-
tion. In astrophysics experiments such as HESS [11] and
VERITAS [21], these photons are reflected by large (10—
17 m) mirrors onto arrays of hundreds of photomultiplier
tubes. The photomultiplier tubes transduce the Cherenkov
photons, along with the unwanted diffuse background light,
to high-voltage analog waveforms. These waveforms are
then recorded by fast analog-to-digital converters. We con-
centrate on the signal processing that is performed on the
digitized waveforms to improve the signal-to-noise ratio of
Cherenkov photons above background light, and the image
processing that characterizes the resulting images to discover
features indicative of gamma rays and other cosmic rays.

The topology of the application is depicted in Figure 2.
It consists of a configurable number, N, of signal process-
ing pipelines which process each of the digitized waveforms
from the 499 photomultiplier tubes. The Front section in-
puts raw pixel data and distributes them to N parallel pipes
where the bulk of the computationally intensive digital sig-
nal processing is performed. Data from the pipes is merged
into the Back section, which combines the processed pixel
data and performs image-level processing [20].

Pipe[1
pe[1] FET | .|L0\A{Pass| .l FET
Filter
Front : Back
Low Pass
Pipe[N] FFT | 'l Filter | 'l IFFT

Figure 2: Gamma-ray astronomy algorithm.

2.5 Financial Monte Carlo Simulation

An important application in computational finance is the
calculation of value at risk (VAR). The VAR is an indica-
tor of the risk associated with a portfolio of financial in-
struments. It is defined as the maximum loss that is not
exceeded with a given probability over a specified period of
time. The probability is specified as a confidence level. The
two confidence levels frequently used in practice are 95%

498

and 99%. For example, a VAR of $10,000 at 95% confidence
level indicates that the probability that the losses will exceed
$10,000 is less than 0.05.

The VAR is calculated by estimating the value of the port-
folio at the end of the specified time period. Since the un-
derlying models for pricing financial instruments are driven
by stochastic processes, at the end of the time period we
obtain a distribution for the value of the portfolio. We use
the standard Black-Scholes model for the dynamics of the
price of the financial instruments, namely stocks [9].

The Monte Carlo approach to VAR calculation involves
simulation of the value of the portfolio at the end of the
time period. The differences between the value of the cur-
rent portfolio and the simulated future portfolios provide
estimates of the profit and loss (P&L) over the time period.
The VAR then is simply the appropriate value of the sorted
P&L estimates. To simulate the values of the components of
a portfolio under the Black-Scholes model we need to gen-
erate correlated Gaussian random numbers and propagate
them forward under the model. The VAR can then be cal-
culated from the resulting distribution. Figure 3 shows the
functional pipeline for this simulation. Additional details on
the implementation are provided in [18].

stage 1 stage 2 stage 3 stage 4 stage 5
h A N0 s et

Figure 3: Computation pipeline for financial Monte
Carlo simulation.

The pipeline stages are as follows:

e Stage 1: Uniform pseudo-random number generation
— the Mersenne Twister is used to generate random
numbers that are uniformly distributed between 0 and
MAXINT (232 — 1).

e Stage 2: The uniformly distributed random numbers
are transformed into a Gaussian (normal) distribution
with =0 and 0% = 1.

e Stage 3: The vector of independent normally distributed
random numbers is transformed into a vector of corre-
lated random numbers. This is accomplished by mul-
tiplying the vector by a lower triangular matrix. This
lower triangular matrix is obtained by the Cholesky
factorization of the specified correlation matrix.

e Stage 4: The correlated Gaussian random numbers are
used to generate random walks according to the Black-
Scholes model. The values of the portfolio and the
P&L values are also calculated in this stage.

e Stage 5: The P&L values are aggregated and sorted to
obtain the VAR.

With the exception of stage 5, each of the above stages
can be executed in a data parallel manner. We deployed the
application above to a set of processor cores, an FPGA, and
a GPU using a combination of Auto-Pipe and CUDA. The
highest performing mapping is illustrated in Figure 4.

CPU CPU

stage 3 stage 4

FPGA FPGA /‘ N[§

stage 1 stage 2 CPU

Etl‘ _' A \ N stage 5
stage 3 stage 4 N
ND P $ ol

GPU GPU GPU GPU

stage 1 stage 2 stage 3 stage 4

b [P AP a2 s

Figure 4: Financial Monte Carlo simulation de-
ployed on 8 Opteron processor cores, a Xilinx
Virtex-4 FPGA, and an Nvidia GTX 260 GPU.

3. AUTO-PIPE TOOL SET

Auto-Pipe is a performance-oriented development envi-
ronment for architecturally diverse systems. Its focus is on
applications that are represented as dataflow graphs, and
it is especially useful in dealing with streaming applications
placed on pipelined architectures. In Auto-Pipe, applica-
tions are expressed in the X language [7] as acyclic dataflow
graphs. In these graphs, individual computational tasks
called blocks are connected with interconnections called edges
indicating the type and flow of data between blocks. Fig-
ures 1 through 4 are all examples of this type of graph.

The actual implementations of the blocks are written in
various languages for any subset of the available platforms
(e.g., C for general-purpose processors, HDL for FPGAs,
CUDA for graphics engines). Auto-Pipe provides an exten-
sible infrastructure for supporting a wide variety of compu-
tation and interconnection devices, simulators, and native
languages.

The Auto-Pipe tool set includes an X language compiler,
called X-Com [7], the X-Sim federated simulation environ-
ment [8], and the X-Dep deployment tool [4]. These com-
ponents are the basis of the archetypical Auto-Pipe design
flow depicted in Figure 5.

Application

Mapping |«

Figure 5: Design flow under Auto-Pipe.

Revise mapping

In the Auto-Pipe design flow, X-Com performs compi-
lation of the user-provided application code, supplemented
with library code to perform execution profiling, inter-block
connections, and high-performance inter-resource communi-
cations. X-Sim provides both functional simulation to de-
termine application correctness and performance simulation
to profile individual components of the application. X-Dep

499

deploys the complete application to the hardware resources
described in the mapping.

Currently, X-Com, X-Sim, and X-Dep are operational and
support a variety of computation platforms including na-
tive execution on chip multiprocessors, hardware deploy-
ment on FPGAs, and simulation of HDL-composed hard-
ware in ModelSim. Extension to graphics engines is cur-
rently underway. Processor resources support communica-
tion over shared memory or TCP/IP; FPGAs support com-
munication over a PCI-X bus; and all resources support a
file-based simulation interconnect used by X-Sim.

One of the primary benefits of the use of Auto-Pipe by
an application developer is the automatic instantiation of
the communication links between blocks. When construct-
ing block implementations, the programmer must conform
to an API that supports input ports for incoming edges and
output ports for outgoing edges. The data on an edge is
typed, and it is the responsibility of the run time infrastruc-
ture to deliver data from a block’s output port to the down-
stream block’s input port. When interconnecting blocks, the
developer is encouraged to think of edges as having infinite
queueing, and appropriate backpressure signals are in place
for when the real finite queues are full.

Given a library of existing blocks, each having implemen-
tations that can be deployed on a variety of computing plat-
forms, it is then possible to create applications entirely (or
at least mostly) at the coordination level, in the X language,
by simply specifying the topology of the application. These
applications can then be deployed across a range of archi-
tecturally diverse systems.

4. LESSONS LEARNED

In this section, we will describe the interdependent rela-
tionship between the Auto-Pipe tool set and the collection
of applications described earlier. This discussion will pro-
ceed in the order in which the applications were originally
developed; the same order in which they were introduced.

The text search application and the biosequence search
application both pre-dated the Auto-Pipe tool set entirely.
During the development of these applications, our group de-
signed and implemented the DMA engine that moves data
between the processor’s memory and the FPGA (across the
PCI-X bus) in a streaming manner. In the text search ap-
plication data flows from the disk subsystem to the FPGA,
which executes the match engines. Hits detected by the
match engines flow from the FPGA to the processor to
compute the combining operations. In BLAST, input data
comes from the disk subsystem to the input edge shown in
Figure 1. While Figure 1 illustrates BLAST as a stream-
ing application, the publicly available implementation is not
constructed in that manner. As part of our implementation,
the design was refactored to correspond to the streaming
data model.

The common pattern we observed in these first two appli-
cations was the inadequacy of the synchronous data flow
model [16] that is commonly assumed in streaming lan-
guages. Synchronous data flow makes the assumption that
the ratio of data out from a block to the data into a block is
known at compile time. This assumption is well founded for
many applications, such as signal processing applications,
but does not hold when a block acts as a data-dependent
filter. In the early pipeline stages of both the text search
application and BLAST, when a data value is input to a

block, that block might or might not generate an output
data value.

As a result, the initial design of the Auto-Pipe compiler
and run time infrastructure made no assumptions about the
volume of data that will cross any edge. Since no guarantees
are made about the latency of data delivery between blocks,
the run time infrastructure can aggregate a buffer of data
elements prior to delivery downstream. This is particularly
important when moving data across a communication infras-
tructure like a PCI-X bus, where the overheads of a DMA
transfer can then be amortized over a larger set of data.

On the positive side, the experience of developing the first
two applications convinced our group that the streaming
data computation model is generally good. Conceptually the
streaming data organization is well suited to architecturally
diverse systems.

As a guiding principle, we decided to construct the Auto-
Pipe tool set with the minimal set of functionality we thought
sufficient to enable applications to function. As we discov-
ered capabilities that were missing in the tools but were
needed for us to build our applications, only then would
those capabilities be considered for addition into the tool set.
Guided by this philosophy, the initial design of Auto-Pipe
only supported streaming data pipes without any built-in
signaling capability.

The Triple-DES application was the first substantial ap-
plication actually developed using the Auto-Pipe tool set.
This application taught us the need to carefully consider
the approach used for run time parameters. The Auto-Pipe
system includes configuration parameters as part of the def-
inition of individual blocks; however, the values for these
parameters are set at compile time. For an application like
Triple-DES, the cryptographic keys are run time parame-
ters. As such, they also might change during the course of
the run, for example, if the user has encrypted a file with
one key but wants to encrypt another file with a second key,
all part of a single execution.

Our initial approach to handling run time parameters is
to provide them to a block via an additional input port. By
convention, we draw application diagrams with the primary
data flow from left to right and the run time parameteriza-
tion inputs from the top or bottom. The resulting Triple-
DES application is shown in Figure 6.

key 3

key 2

key 1 ¢

cleartext cyphertext
DES —®| DES |—¥®»| DES —»

Figure 6: Triple-DES Auto-Pipe design.

The above solution leaves open the question of when should
the block update its parameterization from the input param-
eter port. Since there is arbitrary buffering on each edge,
the block has no guarantees as to the relative order of data
being made available at its input ports. We will return to
this issue later. As a short-term workaround, the Triple-DES
application was altered to add a second parameterization in-
put, which told the size of the data set to be encrypted. The
block could then read a key, read a data size, and then read,
encrypt, and output the specified quantity of data from the
primary input port. The clear downside of this approach

500

is that the block must be told the input data size prior to
processing any of its input, a requirement that doesn’t mesh
well with the filters present in our first two applications.

The next application constructed was the gamma-ray as-
tronomy application. The primary lesson that was learned
with this application is the need to carefully consider the ap-
proach to communications performance. As initially speci-
fied, the API that supports data ingest from input ports and
data egress to output ports delivers a single data element for
each invocation. If the data element is a single data value
(or short vector), the overhead associated with the API is a
significant fraction of the total time required to deliver data.

Upon completion of the Triple-DES and gamma-ray as-
tronomy applications (which happened fairly close together
in time), a change in the specification of the communication
API was adopted. This change was prompted primarily by
the two issues identified above, and adds both signaling and
variable size data delivery to the communication infrastruc-
ture.

The signaling capability supports the insertion of a con-
trol signal in-band in an edge that connects two Auto-Pipe
blocks. A signal that is sent from an upstream block’s out-
put port has two guarantees associated with it. First, it
triggers the communications run time system to flush the
channel to the downstream block’s input port. This ensures
that no data remains for an indefinite time in intermediate
queues or communication channels. Second, it guarantees
that the signal will be delivered to the downstream block’s
input port in sequence. That is, the last data element sent
prior to the signal will be delivered ahead of the signal and
the first data element sent after the signal will be delivered
after the signal. This ordering is not assured, for exam-
ple, between two parallel channels, even if they connect two
common blocks.

The variable size data delivery capability simply allows
the block implementation to specify (up to a compile time
limit) the number of data elements delivered for each API
call. This allows the block to amortize any call/return over-
heads over a larger set of data.

The fifth major application is the first to use both an
FPGA and a graphics engine as application accelerators.
As the Auto-Pipe tool set does not yet fully support graph-
ics engines, Auto-Pipe was used for the FPGA and proces-
sor subsystem and CUDA was used for the graphics engine.
One of the goals associated with this application was to de-
termine how to appropriately extend Auto-Pipe to fully sup-
port graphics engines, with the application serving as a point
design to test ideas.

As the development of the application progressed, one ver-
sion deployed stages 1 to 4 on the graphics engine and stage 5
on the general-purpose processor. In this configuration, 15%
of the execution time on the graphics engine was measured to
be stages 1 and 2. As a result, when we ported stages 1 and
2 to the FPGA, we anticipated a roughly 15% performance
gain. Instead, what resulted was a 25% performance drop, a
clearly unexpected result. Upon further investigation, it was
discovered that as data was being delivered to the graphics
engine from the main system memory, the graphics engine
was not concurrently executing its computation. We have
since succeeded in achieving concurrent communication and
computation on the graphics engine under CUDA, and the
reintegration of the complete application is currently under
way.

Table 1: Application-guided lessons.

Application | Lesson
Text Search and BLAST | synchronous data flow inadequate
Triple-DES signaling is important

Gamma Ray Astronomy

variable size data delivery needed

Monte Carlo Simulation need concurrent computation

and communications

5. CONCLUSIONS

The Auto-Pipe tool set is aimed at easing the task of de-
veloping applications that can execute on diverse architec-
tures, exploiting FPGAs and graphics engines for accelera-
tion. During the course of the development of Auto-Pipe,
we have also developed a set of applications that are each
individually substantial in their own right. Both the initial
capabilities of Auto-Pipe and the first set of substantial en-
hancements were strongly influenced by what was learned
from the applications themselves. These lessons are sum-
marized in Table 1.

This is a pattern that we believe will guide us significantly
in the future as well. Rather than add functionality to the
tool set that we think someone might want, we will continue
to include only functionality that is needed by one or more
real applications.

6. ACKNOWLEDGMENTS

This research has been supported in part by NSF grants
0427794, 0751212, and 0905368, NIH grant R42HG003225
(through BECS Technology, Inc.), and Exegy, Inc. R.D.
Chamberlain is a principal in BECS Technology, Inc., and
Exegy, Inc. M.A. Franklin is a principal in Exegy, Inc.

7. REFERENCES

[1] S. F. Altschul, T. L. Madden, A. A. Schéffer,

J. Zhang, W. Miller, and D. J. Lipman. Gapped
BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucl. Acids Res.,
25(17):3389-3402, Sept. 1997.

[2] B. C. Brodie, R. K. Cytron, and D. E. Taylor. An
architecture for high-throughput regular-expression
pattern matching. In Proc. of 83rd Int’l Symp. on
Computer Architecture, June 2006.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, and
K. Fatahalian. Brook for GPUs: Stream computing on
graphics hardware. ACM Trans. on Graphics,
23(3):777-786, Aug. 2004.

[4] R. D. Chamberlain, E. J. Tyson, S. Gayen, M. A.
Franklin, J. Buhler, P. Crowley, and J. Buckley.
Application development on hybrid systems. In Proc.
of ACM/IEEE Supercomputing Conf., Nov. 2007.

[5] A. Das, W. J. Dally, and P. Mattson. Compiling for
stream processing. In Proc. of Int’l Conf. on Parallel
Architecture and Compilation Techniques, pages
33-42, Sept. 2006.

[6] M. A. Franklin, R. D. Chamberlain, M. Henrichs,

B. Shands, and J. White. An architecture for fast
processing of large unstructured data sets. In Proc. of

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

IEEFE 22nd Int’l Conf. on Computer Design, pages
280287, Oct. 2004.

M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley,
and J. Maschmeyer. Auto-pipe and the X language: A
pipeline design tool and description language. In Proc.
of Int’l Parallel and Distributed Processing Symp.,
Apr. 2006.

S. Gayen, E. J. Tyson, M. A. Franklin, and R. D.
Chamberlain. A federated simulation environment for
hybrid systems. In Proc. of 21st Int’l Workshop on
Principles of Advanced and Distributed Simulation,
pages 198-207, June 2007.

P. Glasserman. Monte Carlo Methods in Financial
Engineering. Springer, 2004.

M. B. Gokhale, J. M. Stone, J. Arnold, and

M. Kalinowski. Stream-oriented FPGA computing in
the Streams-C high level language. In Proc. of IEEE
Int’l Symp. on FPGAs for Custom Computing
Machines, pages 49-58, 2000.

W. Hofmann, for the H.E.S.S. Collaboration. Status of
the high energy stereoscopic system (H.E.S.S.)
project. In Proc. of 27th Int’l Cosmic Ray Conf.,
pages 27852788, 2001.

A. Jacob, J. Lancaster, J. Buhler, B. Harris, and R. D.
Chamberlain. Mercury BLASTP: Accelerating protein
sequence alignment. ACM Trans. Reconfigurable
Technol. Syst., 1(2):1-44, June 2008.

R. M. Karp and M. O. Rabin. Efficient randomized
pattern-matching algorithms. IBM J. of Research and
Development, 31(2):249-260, Mar. 1987.

P. Krishnamurthy, J. Buhler, R. Chamberlain,

M. Franklin, K. Gyang, A. Jacob, and J. Lancaster.
Biosequence similarity search on the Mercury system.
Journal of VLSI Signal Processing, 49(1):101-121,
Oct. 2007.

E. A. Lee. The problem with threads. IEEE
Computer, 39(5):33-42, May 2006.

E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Trans. on Computers, C-36(1), Jan.
1987.

D. Pellerin and S. Thibault. Practical FPGA
Programming in C. Prentice Hall, 2005.

N. Singla, M. Hall, B. Shands, and R. D. Chamberlain.
Financial Monte Carlo simulation on architecturally
diverse systems. In Proc. of Workshop on High
Performance Computational Finance, Nov. 2008.

W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamlt: A language for streaming applications. In
Proc. of 11th Int’l Conf. on Compiler Construction,
pages 179-196, 2002.

E. J. Tyson, J. Buckley, M. A. Franklin, and R. D.
Chamberlain. Acceleration of atmospheric Cherenkov
telescope signal processing to real-time speed with the
Auto-Pipe design system. Nuclear Inst. and Methods
in Physics Research A, 585(2):474-479, Oct. 2008.

T. C. Weekes, H. Badran, S. D. Biller, I. Bond,

S. Bradbury, J. Buckley, D. Carter-Lewis,

M. Catanese, S. Criswell, and W. Cui. VERITAS: the
Very Energetic Radiation Imaging Telescope Array
System. Astroparticle Physics, 17(2):221-243, May
2002.

	096.pdf
	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

