
MERCATOR: a GPGPU Framework for Irregular
Streaming Applications

Stephen V. Cole and Jeremy Buhler
Washington University

St. Louis, MO, USA
{svcole,jbuhler}@wustl.edu

Abstract—GPUs have a natural affinity for streaming applica-
tions exhibiting consistent, predictable dataflow. However, many
high-impact irregular streaming applications, including sequence
pattern matching, decision-tree and decision-cascade evaluation,
and large-scale graph processing, exhibit unpredictable dataflow
due to data-dependent filtering or expansion of the data stream.
Existing GPU frameworks do not support arbitrary irregular
streaming dataflow tasks, and developing application-specific
optimized implementations for such tasks requires expert GPU
knowledge.

We introduce MERCATOR, a lightweight framework supporting
modular CUDA streaming application development for irregular
applications. A developer can use MERCATOR to decompose
an irregular application for the GPU without explicitly remap-
ping work to threads at runtime. MERCATOR applications are
efficiently parallelized on the GPU through a combination of
replication across blocks and queueing between nodes to ac-
commodate irregularity. We quantify the performance impact of
MERCATOR’s support for irregularity and illustrate its utility by
implementing a biological sequence comparison pipeline similar
to the well-known NCBI BLASTN algorithm.

MERCATOR code is available by request to the first author.

Keywords – streaming dataflow; parallel computing; SIMD;
GPU; irregular computation

I. INTRODUCTION

With the exponential increase of available data across all

disciplines in the last decade has come a corresponding need

to process that data, leading to a rise in popularity of the

streaming computing paradigm and of the use of GPUs as

wide-SIMD streaming-data multiprocessors [1], [2]. We use

streaming computing to denote a method of processing data

that has the following characteristics:

• The input data set is assumed to be of unbounded size,

either because it is finite but huge or because new inputs

are continuously produced (e.g. when processing a live

video or sensor data stream in real time).

• Each input item must be processed by performing com-

putations on the item’s data.

• Each input item may generate zero or more output items

when processed.

• Performance comes from optimizing total throughput

(input items consumed per unit time) as opposed to

latency per item.

Work supported by NSF CNS-1500173 and by Exegy, Inc.

The size and type of a “data item” are application-specific

and therefore programmer-defined. The computation to be

performed is described by a graph consisting of compute nodes

connected by dataflow edges. Application execution streams

input data through the graph to produce outputs.

Streaming computing on GPUs has been used to accelerate

applications with regular, predictable memory access and com-

putation patterns. However, many high-impact applications ex-

hibit behaviors that are obstacles to performance optimization

on a GPU [3]–[5]. These “irregular” applications have become

targets of optimization with the rise of GPGPU computing.

Some authors, such as Zhang [3] and Burtscher et al. [4],

define irregular applications in terms of operations directly tied

to GPU performance, such as control divergence and irregular

memory access patterns. Others, such as Pingali et al. [5],

define them by the types of data structures on which they

operate, e.g., arbitrary graphs rather than dense matrices. We

define irregular streaming applications by the property that

they include computational steps that produce a variable, data-
dependent number of outputs per input. Examples of high-

impact irregular streaming applications from scientific and en-

gineering domains include biological sequence alignment [6],

network packet filtering (as NFA matching [7]), telescope data

processing [8], and big graph algorithms [9], [10].

With wide SIMD, lightweight threads, and low-cost thread-

context switching, GPUs allow considerable flexibility in

the way application work is assigned to threads. However,

irregular applications are challenging to map efficiently onto

a GPU because data-dependent filtering or replication of

items creates an unpredictable data wavefront items ready for

further processing. This wavefront, which may comprise items

stored sparsely at different stages of the computation, must be

efficiently mapped to SIMD threads to maximize occupancy,

that is, to provide work to as many threads (which are actually

lanes in wide SIMD instructions) as possible at all times.

Straightforward implementations of irregular applications on

a GPU are therefore prone to load imbalance and reduced

occupancy, while more sophisticated implementations require

advanced use of, e.g., SIMD parallel scatter/gather or atomic

operations to redistribute work efficiently among threads.

In this work, we describe MERCATOR, a framework to

transparently support optimizations applicable to irregular

streaming dataflow on NVIDIA GPUs. Given a graph spec-

ifying a streaming application’s topology and CUDA code

2017 International Conference on High Performance Computing & Simulation

978-1-5386-3250-5/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCS.2017.111

727

for computations to be performed in each node, MERCATOR

automatically generates CUDA code to manage the applica-

tion’s execution on the GPU, including all data movement

between nodes and a scheduler for running the application

to completion. MERCATOR’s principal technique to mitigate

the impact of irregularity is to gather and queue data items be-

tween nodes. We implement queues transparently to the appli-

cation developer, using SIMD-parallel operations to minimize

their overhead. Queueing supports applications with directed

cycles in their dataflow graphs and exposes opportunities for

optimization, such as concurrent execution of compute nodes

with the same code.

To characterize MERCATOR’s behavior, we first use syn-

thetic application kernels to quantify performance impacts of

its support for irregular execution, then demonstrate imple-

mentation of a more complex application from the domain of

biological sequence comparison.

The rest of the paper is organized as follows. Section II

describes related work. Section III describes the MERCATOR

application model, while Section IV extends this model to the

GPU. Section V presents the MERCATOR framework and its

programmer interface. The remaining sections present results

and future work.

II. RELATED WORK

Other streaming data-flow models. Past work in streaming

computing has focused on exploiting task parallelism, in

which an application is broken into ‘tasks’ that may be run

in parallel by independent heavyweight threads on distributed

systems, subject to the data dependencies among tasks. Many

Models of Computation (MoCs), beginning with Kahn process

networks [11] and continuing with models that place various

restrictions on data flow rates and node execution characteris-

tics, have been designed to model task parallelism, with tasks

represented as the compute nodes of a dataflow graph.

One of the most restrictive yet best-studied MoCs for

streaming computation is the Synchronous Data Flow (SDF)

model [12], in which the number of data items produced and

consumed by each node’s firing is known a priori for each

application. SDF models many digital signal processing ap-

plications, such as audio filters, video encoders/decoders, and

software-defined radios. SDF applications can be optimally

scheduled at compile time for a uniprocessor or multiprocessor

system [13], and frameworks such as StreamIt allow program-

mers to develop SDF applications for GPUs [14], [15]. In

contrast to SDF applications, the irregular applications we seek

to support allow data-dependent production and consumption

rates at each computation stage, making compile-time load

balancing impossible.

Less restrictive MoCs for task-based streaming computing,

such as Boolean Data Flow [16], Dynamic Data Flow [17],

and Scenario-Aware Data Flow [18], can express applications

composed of modules with different running times and work-

to-thread mappings, at the cost of weaker scheduling and space

requirement guarantees. The Ptolemy Project [19] maintains a

framework supporting applications conforming to these MoCs,

Fig. 1: Example application topologies, including pipelines and trees with or
without back edges.

though they do not target GPUs. However, MERCATOR enables

expression of irregular applications in a way that naturally

exposes not only coarse-grained task parallelism due to mod-

ularization but also fine-grained data parallelism enabled by

the GPU’s wide-SIMD architecture.

GPU support for irregular applications. Several previous

works [20]–[22] have developed support for efficient execution

of irregular, task-parallel applications on a GPU. A key

component of these works is a task scheduling framework

that runs entirely on the GPU, allowing blocks to repeatedly

pull/push and execute work with no CPU intervention until

all tasks are complete. MERCATOR adopts a related scheduling

strategy to minimize host-GPU coordination overhead. How-

ever, these existing systems again do not offer abstractions that

specifically target the fine-grained data parallelism inherent in

streaming dataflow.

The theoretical GPU streaming execution framework pre-

sented in [23] uses a channel data structure [24] similar to

our queues, with work aggregated by function type and a

scheduling strategy designed to maximize SIMD lane occu-

pancy. However, this framework requires more intervention

by the application programmer than does MERCATOR to

manage dataflow. More importantly, implementing the channel

framework would also require hardware changes to the GPU,

whereas MERCATOR is entirely software-based.

OpenACC [25], like MERCATOR, allows programmers to

augment their code with parallelization suggestions designed

to abstract details of GPU data movement and execution

from a programmer. However, it primarily targets regular

computations and small code snippets and may therefore

require frequent host-GPU coordination to manage irregularity

between stages of a computation.

Existing approaches to optimizing irregular applications on

wide-SIMD architectures share common successful elements

but are application-specific in their implementations. In [7],

Ren et al. introduce a stream compaction step on the CPU

that allows for efficient storage and execution of yet-to-be-

traversed tree nodes in the presence of arbitrary, non-uniform

path cutoffs. Our WOODSTOCC DNA sequence alignment

application [26], [27] uses parallel reduction techniques on

a GPU similar to Ren’s stream compaction to maintain dense

work queues of candidate DNA reads, while [28] uses similar

techniques to optimize graph-processing algorithms on a GPU.

MERCATOR seeks to generalize these enhancements into a

development framework for diverse applications.

Domains of application. Irregular streaming dataflow com-

putations arise often as part of high-performance scientific

728

and engineering computation. Below, we give examples of

such applications organized by the topology of the dataflow

computation, i.e. the connections among its computational

operations. Fig. 1 gives examples of these topologies.

Linear pipelines with filtering. A common topology is

that of a simple linear pipeline, each of whose stages may

discard some of its inputs. Examples include telescope image

processing [8], Monte Carlo financial simulation [29], and

Viola-Jones face detection [30].

Linear pipeline with data-dependent feedback. Pipelines

may be augmented with feedback edges to process each input

a data-dependent number of times. Examples include recur-

sive algorithms such as those vectorized in [31], fixed-point

GPU algorithms (e.g. points-to analysis) in the LonestarGPU

benchmark suite [4], rejection sampling algorithms such as the

ziggurat RNG [32], pattern-matching algorithms such as NFA

processing [7] used for, e.g., network packet inspection and

security scanning, and iterative mathematical functions with

data-dependent convergence, such as the Mandelbrot set [33].

Tree with or without feedback. Generalizing a pipeline of

filtering stages results in a tree topology. A natural example is

a decision tree, as used in e.g. random forest evaluation [34].

Also, a linear pipeline may be replicated to divide heteroge-

neous inputs into multiple homogeneous streams according to

some characteristic (e.g. window size in Viola-Jones). Repli-

cating a pipeline with feedback gives a tree with feedback.

Below, we describe how we efficiently support these appli-

cation topologies in MERCATOR.

III. MERCATOR APPLICATION MODEL

In this section, we describe a sequential version of the

irregular dataflow application model underlying MERCATOR.

The next section describes how we augment this model to

accommodate SIMD execution on the GPU.

A MERCATOR application consists of a directed graph of

compute nodes connected by edges along which data flows.

Nodes are assumed to implement relatively “heavy-weight”

computations requiring tens to hundreds of milliseconds. Each

node has a single input channel, from which it receives a

stream of inputs, and may have zero or more output channels,

on which it emits streams of outputs. Channels are typed

according to their contents; an edge may connect an output

channel only to an input channel of the same type. A single

designated node with no input channel is the source; its input

stream is supplied to the GPU by the host processor. A node

with no output channels is a sink; it may only return data from

the GPU to the host.

A node implements a user-defined computation over its

input stream. For this section (only), assume that a node

processes inputs one at a time. A node with output channels

c1 . . . ck may, for each input it consumes, generate between

zero and nj outputs on channel cj . The maximum values nj

are known statically, but the actual number of outputs per input

may vary dynamically at runtime. If nj = 1, we say that a node

filters its input onto channel cj ; that is, each input produces

at most one output.

To execute an application, we repeatedly select a node with

at least one available input to fire, i.e. to consume one of

its inputs, perform a computation on that input, and generate

any output that may result. An application completes when no

node has any input left to process. Which node should fire

next is determined by a scheduler that is part of MERCATOR’s

runtime system.

A. Topologies and Deadlock Avoidance

Inputs to a node are assumed to queue on its input channel

until they are consumed. If multiple edges point to a node, data

flowing in from all edges is placed on the node’s input queue

in some arbitrary order. Queues have a fixed, finite sizes.

If a node N can generate up to n outputs from an input on

some output channel c, and c is connected to an input channel

for node N ′, then N cannot fire unless the queue of N ′ has

at room for at least n items. If N cannot fire, we say that it

is blocked by N ′. The MERCATOR scheduler detects blocked

nodes by inspecting the queues at the heads of their outgoing

edges and will not fire a blocked node. Any node other than a

sink may sometimes become blocked, depending on the order

in which nodes are fired.

Applications with directed cycles can potentially deadlock,

i.e. reach a state where at least one node has queued inputs but

every such node is blocked and so is unable to fire. Whether an

application with any particular topology can deadlock depends

on queue sizes, filtering behaviors, and the scheduling policy.

To ensure that deadlock cannot occur, we first restrict the

set of permitted graph topologies for MERCATOR applications,

then define a scheduling rule for nodes that ensures progress

after finite time. Deadlock is impossible if application topology

is restricted to a tree rooted at the source, because any

acyclic path of blocked nodes terminates on a sink or another

unblocked node and hence will unblock after finite time.

However, support for non-tree-like topologies is desirable, in

particular feedback loops for applications that may process

items a variable, data-dependent number of times.

A tree can be augmented with back edges that point from

a node N to one of its ancestors M . A back edge N → M ,

together with the path M � N , forms a loop (self-loops with

N = M are permitted). MERCATOR requires that

• Loops may not overlap or nest; that is, no node on the

forward path M � N of a loop may be the target of a

back edge, other than the edge N → M .

• For each node in a loop, the output channel that partic-

ipates in the loop must produce at most one output per

input to the node.

These two criteria are easily verified for an application at

compile time by a linear-time traversal of its tree.

Even this limited set of topologies permits deadlock under

certain schedules. In particular, if all nodes in a loop have full

queues, then every node in the loop is blocked by its successor,

and the application cannot make progress. However, it can be

shown (proof omitted for space reasons) that, if each node’s

queue can hold at least two items, the following scheduling

rule suffices to prevent deadlock: if M is the head of a loop

729

M � N → M , do not fire M ’s parent node if M has only
one free slot in its input queue.

With these restrictions, MERCATOR can support all the types

of application topologies shown in Fig. 1. Future work will

consider the limits imposed by more complex topologies, such

as DAGS and nested loops.

IV. PARALLELIZATION ON A SIMD PLATFORM

In this section, we describe how MERCATOR applications are

parallelized on SIMD hardware, in this case an NVIDIA GPU.

We exploit the streaming nature of computations, the wide-

SIMD features of the GPU, and code shared between compute

nodes of an application to parallelize not only execution of the

user’s functions but also our supporting infrastructure.

A. Parallel Semantics and Remapping Support

A MERCATOR application is realized as a single GPU

kernel. The host processor supplies an input memory buffer

containing the source node’s input stream and one output

buffer per sink node to receive results. The host then calls

the application, which transfers the input buffer to the GPU’s

global (i.e. DRAM) memory, processes its contents, writes any

results to global memory, and finally transfers them back to the

host-side output buffers. No intermediate host-device control

transfers occur during application execution – all nodes, the

scheduler, and any supporting code run entirely on the GPU.

This uberkernel design [21] avoids overhead related to either

control or data transfers between host and device.

Coarse-grained Replication. To avoid overhead due to

coordination among multiprocessors on the GPU, MERCATOR

instantiates an application within one thread block, which

runs on a single multiprocessor. To utilize the entire GPU,

multiple blocks are launched, each with its own instance

of the application. Application instances in different blocks

do not share queues or coordinate their execution, except to

concurrently acquire inputs from a global input buffer or write

to global output buffers. These buffers are respectively read-

only and write-only, so access to them is coordinated simply

by atomic updates to their head and tail pointers, respectively.

Fine-grained Mapping. Within a single block, we extend

the semantics of MERCATOR applications to utilize multiple

SIMD threads as follows. Each firing of a compute node

now consumes an ensemble of one or more input items from

its queue. Each item is mapped to a GPU thread, and the

node executes on all items of an ensemble in parallel. As

in the sequential semantics described previously, each thread

may dynamically generate different numbers of outputs per

input on each of the node’s output channels, up to some

predefined maximum number of outputs per channel. During

node execution, each thread “pushes” its outputs to the relevant

output channel via a call to a function supplied by the

MERCATOR runtime. All outputs pushed during a firing are

gathered by MERCATOR and forwarded to the appropriate

downstream nodes’ queues.

The width of an ensemble is the thread width of a block

(at most 1024 threads on current NVIDIA GPUs), which may

be limited by the user if execution of a node or the entire

application would otherwise require too many resources per

thread. If a node fires with fewer inputs than the block width,

any GPU threads without an associated input remain idle for

the duration of the firing.

The use of ensembles together with inter-node queueing

is MERCATOR’s fundamental tool for realizing irregular ap-

plications on the GPU. Each node in an application may

have different, dynamic filtering behavior on its inputs. By

interposing queues between nodes, MERCATOR can alter the

thread-to-data-item mapping between nodes, so that each firing

utilizes a contiguous set of threads. If firings are scheduled so

that at least a block’s width of items is usually available, the

block’s threads will usually be fully occupied.

B. Efficient Support for Runtime Remapping

Because MERCATOR applications execute entirely on the

GPU, remapping of items to threads between nodes must be

done in parallel to avoid incurring unacceptable overhead.

SIMD Queue Management. The firing of a MERCATOR

node is structured as follows. First, the number of input items

to be consumed by the firing is determined. This number is

capped both by the number of available inputs on the node’s

queue and by the number of free output slots on the queues

at the heads of its outgoing edges. The blocking rule and

deadlock avoidance scheme described for sequential semantics

extends straightforwardly to the parallel case – free queue

space is simply measured in units of ensembles rather than

individual items.

Once the number of inputs to consume is known, MERCA-

TOR repeatedly gathers one ensemble’s worth of items from

the node’s input queue and calls the node’s code to process the

ensemble. Output items pushed by the node on a given channel

are stored temporarily in an output buffer for that channel. If

a node executes n threads and may push up to k outputs per

input, the buffer has size nk (or a multiple of nk, to support

multiple calls between queue updates within one firing). If

not all threads in a block push an item at the same time, the

output buffer may be sparsely occupied. When enough calls

have been made to possibly fill the output buffers, MERCATOR

identifies all nonempty slots in each channel’s buffer using a

SIMD parallel scan and then concurrently compacts the items

onto the channel’s downstream queue.

Queues and output buffers are stored in global memory, so

their size is not strongly constrained. Moreover, because each

queue is accessed only within one block, and firings within

a block are handled sequentially, there is no need for locking

or atomic access to manage a queue’s head or tail pointers.

Indeed, to minimize global memory accesses, MERCATOR only

updates these pointers once per queue per firing, even across

repeated calls to the node’s code.

Concurrent Execution of Nodes With Identical Code.
Multiple nodes in a MERCATOR application may implement

the same computation. For example, a decision cascade such

as that used by the Viola-Jones face recognition algorithm [30]

might consist of a chain of nodes, each implementing the

730

M
od

ul
e

C
od

e

Input Queues Ensemble Output Buffer

Fig. 2: Schematic of steps in firing a module, in this case combining two
nodes. Items are gathered from the nodes’ input queues to form an input
ensemble, which is processed by the module’s code. Any outputs produced
by the module are stored in the output buffer, from which they are scattered to
their downstream queues. Shading denotes tags indicating the node associated
with each item.

same filtering algorithm on its input stream but using different

parameter data (i.e. filter coefficients) in each node. All such

nodes execute the same code, albeit with distinct, node-specific

parameter data. More generally, in decision trees, each node

may implement a similar computation, again with different

node-specific parameters, that executes on the fraction of the

inputs directed to that node. We say that nodes executing

the same computation are instances of the same module type
(“module” for short).

MERCATOR concurrently executes multiple nodes with the

same module type. User-supplied code is associated with a

module, rather than with the individual nodes of that module

type. The scheduler fires not individual nodes but rather entire

modules. When a module is fired, the scheduler determines for

each node of that module type how many inputs may safely

be consumed from its queue, using the per-node constraints

described above. Inputs are then gathered into ensembles from

the input queues for all instances of the module, processed

concurrently, and finally scattered to the downstream queues

appropriate to each instance.

Concurrently executing nodes of the same type may benefit

performance. First, the overhead of multiple node firings may

be reduced by processing all nodes of a given type in a single

firing. Second, if multiple nodes of a given type each have a

limited number of queued inputs – perhaps even less than a

full ensemble width – concurrent execution could pack these

inputs together into ensembles, maximizing thread occupancy.

Runtime Support for Concurrent Execution. To support

processing items from multiple nodes’ queues in a single

ensemble, each item is tagged with a small integer indicating

its source queue. Within a module’s code, any calls by the

developer to MERCATOR’s runtime (e.g. to access per-node

parameters) pass in these tags to ensure the correct node-

specific behavior for each item. Outputs to a channel are

pushed to a module-wide output buffer along with their tags

to indicate which downstream queue should receive them.

Items in the output buffer are scattered to their queues using a

mapping from tag to downstream queue computed per channel

at compile time and stored in shared memory. Fig. 2 illustrates

this process.

Efficient SIMD-parallel scatter and gather across multiple

queues is challenging because of the complex index com-

putations required. MERCATOR minimizes the cost of these

User MERCATOR
Describe

application
topology Generate CUDA

skeleton and
support code

Write module
function bodies

Write host-side
wrapper, connect

data streams Compile
program

Fig. 3: Workflow for writing a program incorporating a MERCATOR applica-
tion. MERCATOR generates skeleton and support code from the user’s topology
and provides APIs called from module bodies and from the host.

operations using tuned implementations that exploit parallel

primitives such as branch-free binary search [35] for gathering

and a customized implementation of segmented parallel scan

for scattering. Use of limited shared memory resources for

queue index computation is minimized by doing as much

work as possible within single warps – groups of 32 GPU

threads that can transfer data among themselves using register

shuffle operations. These computations require less than two

bytes of shared memory per thread in a block and almost no

shared memory for the special case of a module with a single

instance. On our NVIDIA GTX 980Ti GPU, they take only

a few thousand cycles per firing, even for a block of 1024

threads and 32 instances of a module.

V. SYSTEM IMPLEMENTATION

A. Developer Interface

To develop an application in MERCATOR, a programmer

must (1) specify the application topology, (2) provide CUDA

code for each module type, and (3) embed the application

into a program on the host system. Fig. 3 illustrates the

workflow associated with these tasks. Details of the developer

interface and MERCATOR API may be found in our system’s

user manual [36].

Application topology is specified declaratively, as illustrated

in Listing 1. The most important declaration, module, spec-

ifies a module type. Each named module type has a signature
that specifies its input type and thread width, the types of

each of its output channels, and its filtering behavior, in

particular the maximum number of outputs anticipated for

each input. Data types may be arbitrary C++ base types or

structs. The spec then declares each node of the application

as an instance of its module type, and finally declares the

edges connecting nodes. Special module types are defined for

the source node and sink node(s) of an application, whose

implementations are supplied by MERCATOR. Nodes may have

associated parameter data that is initialized on the host and

made available to the GPU at runtime.

MERCATOR converts the developer’s spec into a CUDA

skeleton for the application along with any code needed to

731

/ / F i l t e r module t y p e
pragma mtr module F i l t e r (i n t [128]−> acc < i n t > : ? 1)

/ / Node d e c l a r a t i o n s
pragma mtr node sourceNode : SOURCE
pragma mtr node F i l t e r N o d e : F i l t e r
pragma mtr node s inkNode : SINK< i n t >

/ / Edge d e c l a r a t i o n s
pragma mtr edge sourceNode : : ou tS t ream−>F i l t e r N o d e
pragma mtr edge F i l t e r N o d e : : acc−>sinkNode

Listing 1: Specification for a simple linear pipeline. One filter node sits
between source and sink and processes up to 128 input ints per firing, emitting
0 or 1 ints downstream via an output channel named acc. outStream is
the default output channel name for a source node.

support scheduling and data movement between nodes. The

skeleton provides a device function stub for each module type

other than a source or sink. The developer then fills in the

body of each stub with CUDA code for its computation. If

a module type describes multiple nodes in an application, the

stub is called with both an input item and a small integer tag in

each thread, with the tag indicating the node that is processing

the item. The module body calls a MERCATOR-supplied push
function to emit output on a given channel, passing each output

item along with its tag to ensure that it is routed to the correct

downstream node. Different nodes of the same module type

may access node-specific data using arrays indexed by tag.

Finally, the developer must instantiate the application on the

host side. An instance of the application appears to the host as

an opaque C++ class, which the developer connects to host-

side input and output buffers. Running the application copies

its inputs to the GPU, launches its uberkernel on all GPU

multiprocessors to process those inputs, and finally copies any

outputs back to the host.

B. Infrastructure

MERCATOR’s core data structures and runtime system are

implemented as a hierarchy of C++/CUDA classes. Module

type, module instance, and queue objects are defined by base

classes with member functions that delineate the semantics of

data movement, scheduling, and module firing in the system.

Inherited versions of these classes parameterized by data

type implement proper queue storage and appropriately typed

connection logic between objects.

A C++ front end incorporating the ROSE compiler in-

frastructure [37] first parses the developer’s app spec file

and extracts the parameters for each module type, node,

and queue from the module, node, and edge declarations

respectively. The front end then infers the application topology

and checks for type compatibility and conformance to MER-

CATOR’s topological restrictions. Finally, a codegen engine

produces developer-facing CUDA function stubs for each

module, along with code to create the necessary application

objects as members of the MERCATOR infrastructure classes.

The data types and other properties of modules specified in

the app spec determine the signatures of the stub functions

and application objects.

To form a working application, the developer compiles

together the application skeleton with user-supplied function

bodies for each module type, the system-supplied runtime

supporting code (including host-GPU communication code

and the module scheduler), and the host-side instantiation code

using the regular CUDA toolchain.

VI. DESIGN OF PERFORMANCE EXPERIMENTS

We measured the performance of MERCATOR applications

running on an NVIDIA GTX 980Ti GPU under CUDA 8.0.

All applications were launched on the GPU using 176 blocks

with 128 threads per block, thereby allocating 32 active warps

to each multiprocessor. We measured the time to process a

stream of inputs by book-ending the GPU kernel invocation

with calls to the CUDA event API.

We implemented two types of application: a suite of small

synthetic apps designed to measure the overhead and per-

formance impact of MERCATOR’s runtime support, and a

more complex application implementing a pipeline for DNA

sequence comparison.

A. Synthetic Applications

We implemented two sets of synthetic applications, shown

in Figs. 4 and 5. The first set measured the impact of

MERCATOR on single pipelines, while the second focused on

tree-like application topologies composed of four copies of a

pipeline fed from a common source node.

Each synthetic application included a source and one or

more sinks, plus a collection of intermediate “working nodes.”

Each working node performed a configurable amount of

compute-bound work on behalf of each of its input items

and passed on a configurable fraction of those items to the

next node downstream, discarding the remainder. The work

performed at a node was computation of financial pricing

options according to the Black-Scholes algorithm [38]; work

per item was varied by controlling the number of Black-

Scholes iterations performed.

Synthetic applications were tested on a stream of 106

items, each 48 bytes in size. Each item included state used

by the Black-Scholes computation, plus a randomly chosen

integer identifier. The average filtering rate of each node was

controlled by passing only those items with identifiers in a

certain range downstream.

Four single-pipeline designs were tested. DiffType con-

sisted of five working nodes, each with the same code but

declared with different module types to prevent concurrent

execution. The SameType design was similar to DiffType,

except that all nodes were declared to have the same module

type to permit concurrent execution. In the SelfLoop design,

the five working nodes were replaced by a single node with

a self-loop. Each item carried a counter to ensure that it

was processed at most five times. Filtering behavior in each

pass around the loop was as for the linear pipeline. Finally,

the Merged design concatenated the computations in the

732

Fig. 4: Topologies of single-pipeline synthetic applications. Label inside each
node indicates its module type. Gray nodes are sources/sinks.

Fig. 5: Topologies of multi-pipeline synthetic applications. Node labels are as
in Fig. 4.

five working nodes into a single “supernode.” No queueing

was performed between compute stages within the supernode.

Hence, if an input was filtered early in the pipeline, its thread

remained idle for the remainder of that call to the supernode.

Merged represents a “control” against which the impact

of MERCATOR’s queueing infrastructure can be compared,

while the three alternate designs exercise different subsets of

MERCATOR’s features.

We tested three multi-pipeline designs to further explore the

impact of MERCATOR’s concurrent execution of nodes with

the same module type. The Same and Diff multi-pipeline

designs again differed in that the former permitted concur-

rency across all working nodes, while the latter forbid any

concurrency. The last design, Staged, allowed concurrency

across nodes at the same stage in different pipelines, but not

across different stages of the same pipeline.

B. BLASTN Sequence Comparison Pipeline

Our “BLASTN” application implements the ungapped ker-

nel of the NCBI BLAST algorithm for sequence compari-

son [6]. The application compares a DNA database to a fixed

DNA query sequence to find regions of similarity between the

two. The query is stored in GPU global memory, along with

a hash table containing its substrings of some fixed length k
(k = 8 in our implementation, matching the behavior of NCBI

BLASTN). BLASTN executes in a pipeline of four stages,

each of which we mapped to one application node. First, each

length-k substring of the database is compared to the hash

table. Second, if the substring occurs in the table, each of its

occurrences (up to 16 per database position) is enumerated.

Third, each occurrence is extended with additional matches to

the left and right to see if it is part of a matching substring

of length at least 11. Fourth, matches of length 11 (up to

16 per database position) are further extended via dynamic

programming over a fixed-size window. If the resulting inexact

match’s score exceeds a threshold, it is returned to the host.

Each stage of this pipeline discards a large fraction of

its input. We note that the pipeline was implemented in

MERCATOR by two undergraduate students with no prior GPU

or bioinformatics experience.

We tested BLASTN by comparing a database consisting of

human chromosome 1, comprising 225 million DNA bases, to

queries drawn from the chicken genome. Query sizes varied

between 2,000 and 10,000 bases. To measure the impact

of MERCATOR’s remapping optimizations, we compared our

implementation to one in which all pipeline stages were

merged into a single node, analogous to the Merged synthetic

application. In the merged implementation, threads whose

input was filtered out early in the pipeline remained idle until

all remaining threads in the current ensemble finished.

VII. RESULTS AND DISCUSSION

A. Core Functionality: Benefit vs. Overhead

The MERCATOR framework seeks to improve thread oc-

cupancy of applications by performing dynamic work-to-

thread remapping at node boundaries. To be worthwhile, the

performance boost from increased occupancy must outweigh

the overhead due to queueing, remapping, and scheduling.

We measured the tradeoff between increased occupancy and

overhead by comparing the running times of the Merged and

DiffType topologies across filtering rates and workloads, as

shown in Fig. 6.

We observe that DiffType outperforms Merged
(speedup > 1) for most cases tested, indicating that the

overhead of remapping in MERCATOR was less than the

performance improvement due to elimination of idle threads.

Filtering rates between the two extremes of 0 (no stage

discards any inputs) and 1 (the first stage discards all inputs)

favored DiffType, with rates of 0.5 and 0.75 showing over

1.5x speedup for sufficient workloads. Only when irregularity

is entirely absent from the application (rate 0) or when all

work occurs in the first node (rate 1) is the lower-overhead

Merged implementation consistently superior.

Moreover, the performance advantage of DiffType over

Merged increases with increasing workload at each pipeline

stage, since more work per item in later stages causes idle

threads in the Merged implementation to remain idle for

longer. For all cases tested, the benefit of remapping exceeded

733

100.6 8

0.8

Speedup of DiffType vs. Merged

1

1

1.2

Sp
ee

du
p 1.4

6

1.6

0.8

1.8

x 104

Workload
(Black-Scholes iterations)

0.6

Filtering rate
40.4 20.2 00

Fig. 6: Speedup of DiffType over Merged topology for varying filtering
rates and workloads. Filtering rates shown were applied to each stage of
the application; rate 0 discards no inputs, while rate 1 discards all inputs.
Wherever the speedup is greater than 1 (i.e. above the plane), the benefits of
MERCATOR outweigh its costs for this application.

its overhead for workloads requiring at least 250ms of execu-

tion time per node firing. In some cases, the threshold to see

a benefit from MERCATOR was much lower (e.g. < 75ms for

a filtering rate of 0.5).

To ensure that the functionality of SelfLoop does not

incur an unacceptable cost, we compared its performance to

that of SameType and DiffType. The comparison with

SameType is appropriate since a node with a self-loop may

always be unrolled into multiple distinct nodes of the same

module type. Across all our experiments, the execution time

of SelfLoop was lower than that of DiffType by an

average of 3.6% and was very close to that of SameType
(average of 1.3% faster). Hence, support for loops does not

appear to incur significant overhead in MERCATOR and may

be advantageous for implementing applications that require a

variable number of identical execution rounds, such as fixed-

point [4] and recursive [31] algorithms.

B. Concurrent Execution of Nodes with Same Module Type

Our first test of MERCATOR’s ability to concurrently execute

nodes of the same type is the single-pipeline SameType
application. SameType, which concurrently executes all its

working nodes, achieves a modest speedup of 1.05× compared

to DiffType, which must fire each node separately.

The replicated-pipeline applications make more nodes avail-

able for concurrent firing and offer opportunities for both

horizontal and vertical concurrency. Fig. 7 compares the

execution time of these three applications under varying per-

item workloads using a uniform per-node filtering rate of 0.5.

Concurrently executing nodes of the same module type

in these topologies resulted in speedups of 1.23 to 1.26×,

depending on per-node workload, over a baseline, Diff, in

which each node’s inputs were executed separately. Scheduling

overhead in all experiments was less than 2%, so the difference

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 20000 40000 60000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Workload (Black-Scholes iterations)

Effect of Node Type, 4-Parallel Pipeline

Diff

Staged

Same

Fig. 7: Execution time of 106 inputs streamed through the parallel pipeline
applications in Fig. 5 under various workloads with a per-node filtering rate
of 0.5.

0

200

400

600

800

1000

1200

1400

1600

2000 4000 6000 8000 10000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Query Size

BLASTN: MERCATOR vs. Merged

MTR

Merged

Fig. 8: Execution time of BLASTN application comparing a chicken genome
fragment (query) against human chromosome 1 (database) using MERCATOR

vs. the merged topology. Query size is measured in bases.

in performance is likely attributable to improved occupancy

due to concurrency, rather than merely a change in the number

of distinct modules to be scheduled. The Staged application

was comparable in execution time to the Same application

to within 3%, suggesting that horizontal concurrency across

pipelines (as in Staged), rather than vertical concurrency

within each pipeline, conferred most of the benefit.

We conclude that concurrent execution can indeed confer

performance benefits in executing MERCATOR applications.

C. Behavior of BLASTN

We conclude by analyzing the performance of our MERCA-

TOR BLASTN implementation vs. a Merged implementation

that does not implement remapping between stages. Fig. 8

shows the execution time of these implementations for biolog-

ically relevant input query sizes from 2,000 to 10,000 DNA

bases. MERCATOR achieved speedups ranging from 1.27× to

1.78× over the merged implementation.

Whereas MERCATOR’s execution time improves with de-

creasing query size, that of the merged version is almost

invariant to input set size and always exceeds MERCATOR’s

worst time. Smaller queries decrease the rate at which 8-mers

in the database hit in the query hash table, as well as the

number of hits per 8-mer. As this rate decreases, MERCATOR’s

remapping optimizations maintain full thread occupancy, while

734

the merged implementation suffers the overhead of idle threads

during extension and dynamic programming.

VIII. CONCLUSION AND FUTURE WORK

We have described MERCATOR, a platform for implement-

ing irregular streaming dataflow application development on

GPUs. MERCATOR supports efficient remapping of work to

SIMD threads within an application. Once an application has

been divided into nodes with internally regular computations,

this support is provided between nodes transparently to the

application developer. Both in our synthetic benchmarks and

for the BLASTN application, MERCATOR’s remapping support

offered benefits for overall throughput that substantially ex-

ceeded its runtime overhead. MERCATOR’s ability to specify

and support a large set of practically important application

topologies, together with the efficiency of its remapping

primitives, offer robust remapping support independent of a

particular application domain.

Improvements to MERCATOR Infrastructure. We foresee

several opportunities to improve MERCATOR’s runtime and

remapping support. First, because remapping is transparent to

the application developer, we are free to optimize the under-

lying remapping primitives. For example, managing queues

through atomic updates may sometimes be more efficient than

our current scanning and compaction approach. Moreover, for

certain combinations of node computational cost and filtering

rate, it may be advantageous to eliminate remapping between

two nodes altogether, instead paying the cost of lower thread

occupancy to eliminate remapping overhead. These decisions

should be automated and should be guided by profiling of

runtime filtering behavior.

Second, it is straightforward to extend MERCATOR’s per-

module stubs to provide more than one input to each thread,

or to dedicate several threads to one input. Multiple inputs

per thread offers the possibility of memory latency hiding

through loop unrolling, while multiple threads per input allows

for parallelization in the processing of each item. We plan to

explore how to most efficiently support different thread-to-

item ratios and what performance benefits may accrue from

varying these ratios.

Third, MERCATOR uses a simple scheduling heuristic that

fires the module with the most queued inputs, subject to limi-

tations imposed by the available queue space of the module’s

downstream nodes. We plan to develop more sophisticated

scheduling strategies that provably maximize throughput by,

e.g., minimizing the extent to which any one node in an

application becomes a bottleneck.

Extension to Other Irregular Streaming Computations.
To extend MERCATOR to other high-impact domains, we plan

to support two important classes of computations: those with

nodes requiring simultaneous inputs from multiple upstream

nodes in order to fire (which are supported by “join” semantics

in SDF applications), and graph-processing applications.

Join semantics in the presence of filtering are not straight-

forward, because input items may be discarded on some but

not all paths prior to reaching the join point. While consistent

behavior can be defined in such cases [39], a large number of

practical join-containing applications exhibit static data rates

and so fit within the simpler SDF framework. Examples in-

clude JPEG compression, MP3 decoding, and AES encryption.

We will initially extend MERCATOR to support application

topologies in which certain subgraphs are free of irregularity

but do contain joins. Each such subgraph can be analyzed and

scheduled as a unit relative to the rest of the application.

Graph-processing applications exhibit behaviors beyond the

current limits of MERCATOR’s streaming execution model, yet

they are strong candidates for optimization of irregular data

flow. Many graph applications, including ones found in the

Pannotia benchmark suite [9] and the LonestarGPU suite [4],

process graphs in a series of vertex-centric rounds converging

to a fixed point. In one round, each vertex does some compu-

tational work on each of its incident edges, reduces the results

associated with these edges, and finally computes on the result

of this reduction. Each vertex may have a different degree and

so may require a different amount of work in a round.

To support efficient SIMD processing of graph computa-

tions, we must schedule the per-edge work for edges of many

vertices simultaneously. “Exploding” a stream of vertices into

a stream of all their edges would regularize much of a compu-

tation’s degree-dependent irregularity. MERCATOR could even

model per-edge computations in which only a dynamically

determined subset of edges contribute to the result for a vertex.

However, the stream of per-edge results must be reduced to a

single value per vertex at the end of a round.

The principal extension needed to support graph computa-

tion in MERCATOR is a reduce-by-key operation analogous to

MapReduce [40]. In this case, the key is the vertex associated

with each adjacent edge. MERCATOR already implements ef-

ficient SIMD reduce-by-key algorithms to support concurrent

processing of inputs to multiple nodes within a single module,

as described in Section IV-B. However, the temporal scope

of a reduction is much smaller than the entire computation

– a vertex must be queued for further processing as soon

as all of its edges have been processed and their results

reduced. To express the limited scope of each reduction, we

plan to define explosion/reduction operation pairs that span

a limited subgraph of the application. Within this subgraph,

we process individual edges; at its boundary, the edges are

gathered back into their vertices. We previously prototyped

this style of explosion/reduction in our WOODSTOCC DNA

sequence aligner [26]. The challenge is to generalize these

operations while preserving the generality and transparency

of MERCATOR’s support for streaming, irregular dataflow.

ACKNOWLEDGMENT

Kim Orlando (St. Mary’s College) and Stephen Timcheck

(University of Akron) implemented our BLASTN application.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: a survey on big data,” Information Sci-
ences, vol. 275, pp. 314–347, 2014.

735

[2] NVIDIA, “GPU impact by domain,” https://www.nvidia.com/object/
gpu-applications-domain.html, 2016, accessed 2016-11-22.

[3] T. Zhang, G. Chen, W. Shu, and M.-Y. Wu, “Microarchitectural
Characterization of Irregular Applications on GPGPUs,” SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 2, pp. 27–29, Sep. 2014.

[4] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in IEEE Int’l Symp. Workload Characterization,
2012, pp. 141–151.

[5] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem et al., “The Tao of Parallelism in Algorithms,” in Proc. 32nd
ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation, New York, NY, USA, 2011, pp. 12–25.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” J. Molecular Biology, vol. 215,
no. 3, pp. 403–410, 1990.

[7] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and
W. Schulte, “SIMD parallelization of applications that traverse irregular
data structures,” in IEEE Int’l Symp. Code Generation and Optimization,
2013, pp. 1–10.

[8] E. J. Tyson, J. Buckley, M. A. Franklin, and R. D. Chamberlain,
“Acceleration of atmospheric Cherenkov telescope signal processing to
real-time speed with the Auto-Pipe design system,” Nuclear Instruments
and Methods in Physics Research Sec. A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 595, no. 2, pp. 474–479, 2008.

[9] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” 2013 IEEE Int’l
Symp. Workload Characterization, pp. 185–195, 2014.

[10] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein, “Graphlab: A new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

[11] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. Int’l Fed. Information Processing Cong., vol. 74, 1974,
pp. 471–475.

[12] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[13] E. A. Lee and D. Messerschmitt, “Static scheduling of synchronous data
flow programs for digital signal processing,” IEEE Trans. Computers,
vol. 100, no. 1, pp. 24–35, 1987.

[14] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil, “Software
pipelined execution of stream programs on GPUs,” in Proc. Int’l Symp.
Code Generation and Optimization, 2009, pp. 200–209.

[15] A. Hagiescu, H. P. Huynh, W.-F. Wong, and R. S. Goh, “Automated
architecture-aware mapping of streaming applications onto GPUs,” in
IEEE Int’l Parallel & Distributed Processing Symp., 2011, pp. 467–478.

[16] J. Buck and E. A. Lee, “The token flow model,” in Data Flow Workshop,
1992, pp. 267–290.

[17] T. M. Parks, “Bounded scheduling of process networks,” Ph.D. disser-
tation, University of California. Berkeley, California, 1995.

[18] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic applica-
tions,” in Int’l Conf. Embedded Computer Systems (SAMOS). IEEE,
2011, pp. 404–411.

[19] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig et al., “Taming
heterogeneity-the Ptolemy approach,” Proc. IEEE, vol. 91, no. 1, pp.
127–144, 2003.

[20] M. E. Belviranli, C.-H. Chou, L. N. Bhuyan, and R. Gupta, “A Paradigm
Shift in GP-GPU Computing: Task Based Execution of Applications
with Dynamic Data Dependencies,” in Proc. 6th Int’l Wkshp. Data
Intensive Distributed Computing, 2014, pp. 29–34.

[21] S. Tzeng, A. Patney, and J. D. Owens, “Task management for irregular-
parallel workloads on the GPU,” in Proc. Conf. High Performance
Graphics, 2010, pp. 29–37.

[22] S. Tzeng, B. Lloyd, and J. D. Owens, “A GPU Task-Parallel Model
with Dependency Resolution,” IEEE Computer, vol. 45, no. 8, pp. 34–
41, 2012.

[23] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood, “Fine-
grain task aggregation and coordination on GPUs,” in Proc. 41st Ann.
Int’l Symp. Computer Architecuture, 2014, pp. 181–192.

[24] B. R. Gaster and L. Howes, “Can GPGPU programming be liberated
from the data-parallel bottleneck?” IEEE Computer, vol. 45, pp. 42–52,
2012.

[25] OpenACC, “OpenACC 2.0a Specification,” http://www.openacc.org/
sites/default/files/OpenACC%202%200.pdf, Aug. 2013, accessed 2016-
11-22.

[26] S. V. Cole, J. R. Gardner, and J. Buhler, “WOODSTOCC: Extracting
latent parallelism from a DNA sequence aligner on a GPU,” in Proc.
13th IEEE Int’l Symp. Parallel & Distributed Computing, 2014.

[27] S. V. Cole, J. R. Gardner, and J. D. Buhler, “WOODSTOCC: Extracting
Latent Parallelism from a DNA Sequence Aligner on a GPU,” Washing-
ton University Tech Report WUCSE-2015-004, Sep 2015.

[28] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable SIMD-efficient
graph processing on GPUs,” in Proc. 2015 Int’l Conf. Parallel Archi-
tecture and Compilation, Washington, DC, USA, 2015, pp. 39–50.

[29] N. Singla, M. Hall, B. Shands, and R. D. Chamberlain, “Financial monte
carlo simulation on architecturally diverse systems,” in Wkshp. High
Performance Computational Finance. IEEE, 2008, pp. 1–7.

[30] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Comp. Soc. Conf. Computer Vision
and Pattern Recognition, 2001.

[31] B. Ren, Y. Jo, S. Krishnamoorthy, K. Agrawal, and M. Kulkarni, “Effi-
cient execution of recursive programs on commodity vector hardware,”
in ACM SIGPLAN Notices, vol. 50, no. 6. ACM, 2015, pp. 509–520.

[32] G. Marsaglia, W. W. Tsang et al., “The ziggurat method for generating
random variables,” J. Statistical Software, vol. 5, no. 8, pp. 1–7, 2000.

[33] O. Krzikalla, F. Wende, and M. Höhnerbach, “Dynamic SIMD vector
lane scheduling,” in Int’l Conf. High Performance Computing. Springer,
2016, pp. 354–365.

[34] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct. 2001.

[35] I. Buck and T. Purcell, “A toolkit for computation on GPUs,” in GPU
Gems. Addison-Wesley, 2004.

[36] S. V. Cole and J. D. Buhler, “Mercator user’s manual,” http://sbs.wustl.
edu/pubs/MercatorManual.pdf, 2016.

[37] D. Quinlan and C. Liao, “The ROSE source-to-source compiler in-
frastructure,” in Cetus Users and Compiler Infrastructure Wkshp., in
conjunction with PACT 2011, Oct. 2011.

[38] NVIDIA, “NVIDIA Compute Unified Device Architecture (CUDA)
Code Samples,” https://developer.nvidia.com/cuda-code-samples, Sep.
2014, accessed March 24th, 2017.

[39] J. D. Buhler, K. Agrawal, P. Li, and R. D. Chamberlain, “Efficient dead-
lock avoidance for streaming computation with filtering,” in Proc. 17th
ACM SIGPLAN Symp. Principles and Practice of Parallel Programming,
2012, pp. 235–246.

[40] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proc. 6th Symp. Operating Systems Design and
Implementation, 2004, pp. 137–150.

736

