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ABSTRACT OF THE THESIS

Enhancing FPGA Synthesis for Space Applications:

Performance Evaluation of ScaleHLS in the ADAPT Project
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This thesis investigates the application of ScaleHLS, a high-level synthesis (HLS) tool, to

enhance Field-Programmable Gate Array (FPGA) synthesis for space applications, with a

focus on the Antarctic Demonstrator Advanced Particle-astrophysics Telescope (ADAPT)

project. The study explores how ScaleHLS optimizes the transformation of C code into

FPGA-compatible designs to improve computational efficiency and resource utilization.

The research details the process of adapting ADAPT’s computational algorithms for FPGA

using ScaleHLS, emphasizing the tool’s effectiveness in streamlining the code-to-hardware

translation. A performance evaluation highlights significant improvements in resource man-

agement and operational speed, demonstrating the tool’s impact on FPGA synthesis.

These findings illustrate ScaleHLS’s potential to advance hardware design and set a foun-

dation for further developments in high-level synthesis, crucial for enhancing spaceborne

computational systems.
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Chapter 1

Introduction

The Advanced Particle-astrophysics Telescope (APT) project seeks to benefit space-based

observatories through the integration of cutting-edge FPGA technology, addressing the crit-

ical balance between computational speed and resource efficiency required in space applica-

tions. Historically, while FPGAs have been the go-to solution for processing data at high

speeds with limited onboard resources, traditional high-level synthesis (HLS) tools have

struggled with efficiently translating C code into HDL, often resulting in suboptimal perfor-

mance and resource utilization. This thesis explores how the innovative HLS tool, ScaleHLS,

emerges as a potentially pivotal development in this area, enhancing our ability to handle

complex computational challenges in astrophysics by optimizing the translation process,

thereby improving data processing efficiency and reducing resource consumption essential

for the demanding environment of space.

1.1 APT and ADAPT

1.1.1 Advanced Particle-astrophysics Telescope Project

The Advanced Particle-astrophysics Telescope (APT) is designed to advance our under-

standing of cosmic phenomena, specifically targeting dark matter and the mechanics of

neutron-star mergers. An image illustrating APT is shown in Figure 1.1. At the core

of APT’s operation, Field-Programmable Gate Arrays (FPGAs) are employed throughout

the front-end readout electronics to control data acquisition from sensors and associated

analog-to-digital converter electronics. By leveraging these resources for computation, FP-

GAs facilitate the initial stages of the data processing pipeline, where High-Level Synthesis

(HLS) plays a crucial role in handling the complex demands of astrophysical research. These
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technologies enable APT to process data with exceptional efficiency and flexibility, making

real-time analysis and localization of cosmic events feasible [2].

Figure 1.1: A rendering of the APT instrument [1].

APT combines a pair tracker and a Compton telescope into a unified platform, designed to

be optimized for a broad energy spectrum. The integration of FPGA and HLS technolo-

gies underpins a dynamic and efficient computational framework, crucial for the front-end

processing operations of APT. FPGAs offer a versatile hardware environment that can be

reconfigured for various computational tasks in cosmic-ray detection, while HLS significantly

streamlines the development process, enabling swift adaptations to emerging scientific dis-

coveries [16].

This innovative integration not only boosts the telescope’s data processing capacities but also

establishes new standards in astrophysical research, allowing APT to perform highly sensitive

observations over a diverse range of energies. The strategic deployment of FPGA and HLS

technologies is vital to APT’s mission, positioning it as a key instrument in exploring and

understanding high-energy cosmic phenomena [15].
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1.1.2 Antarctic Demonstrator for the APT

The Antarctic Demonstrator for the APT (ADAPT) serves as a critical pilot project, testing

key technologies and methodologies under similar conditions to space flight through a long

duration high-altitude stratopheric balloon flight. ADAPT is specifically designed to validate

the operational capabilities and durability of the APT’s instrumentation to advance the

technical readiness level of the enabling technologies for APT. These insights are crucial for

refining APT’s design and enhancing its resilience, ensuring that the main telescope can

withstand and operate effectively in the varied and challenging conditions encountered in

space.

Figure 1.2: A detailed view of the ADAPT detector stackup [1].

As depicted in Figure 1.2, ADAPT employs a 4-layer stackup of detectors and electronics.

Each layer includes 3×3 tiles of CsI:Na scintillator, which detect gamma rays whose direction

of origin is to be determined by the instrument.

The placement of ADAPT in Antarctica allows researchers to replicate and study the effects

of space-like isolation and extremities on the equipment, making it an invaluable proving

ground for the technologies to be utilized in the APT. The data harvested from ADAPT

is instrumental not only in diagnosing and perfecting hardware configurations but also in

assessing the performance of HLS algorithms under real-world, challenging conditions. This

preparatory stage is vital for the success of the APT, laying a solid groundwork for the

ultimate deployment and operation of the telescope.
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1.2 FPGA Role in APT

Field-Programmable Gate Arrays (FPGAs) play a pivotal role in the APT project, fulfill-

ing the need for computational flexibility and efficiency in the processing of astrophysical

data. The decision to employ FPGAs aboard the APT is underlined by their capability for

high-speed data processing and their adaptability to the fluctuating computational demands

inherent in space observation tasks [9, 17].

The advantages of using FPGAs in space applications are numerous:

• FPGAs’ post-manufacturing reconfigurability enables adaptation of hardware circuits

to specific tasks and algorithms, a critical feature in space where observational strate-

gies evolve with scientific discoveries [7, 10].

• The in-situ reprogramming ability of FPGAs provides a practical solution for space

missions, allowing for on-the-fly adjustments to new scientific challenges or mission

parameters [12].

• Inherent suitability for parallel processing makes FPGAs ideal for managing large

datasets and complex computations, pivotal for astrophysical research conducted in

space [8].

• Enhanced resistance to radiation with specific design techniques and error-mitigation

strategies equips FPGAs to handle the harsh space environment, protecting the in-

tegrity of data processing [10, 17].

• Lower power requirements of FPGAs align with the energy constraints of spacecraft,

enabling more computations per watt and ensuring energy-efficient operations [7, 9].

These points illustrate why FPGAs are not just technical components but strategic elements

in space exploration [8, 12].
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1.3 HLS and ScaleHLS

High-level synthesis (HLS) tools are a relative newcomer to the field of digital design, provid-

ing a bridge between software programs and hardware implementation. These tools allow for

high-level programming languages such as C or C++ to be synthesized into code that can be

executed by FPGAs. Nevertheless, traditional HLS approaches often entail a labor-intensive

optimization process, where developers are required to embed specific directives, like the

#pragma directives, to guide the partitioning of arrays and the pipelining of processes with

precise initiation intervals [3]. This manual optimization is not only time-consuming but

also susceptible to human error, which can result in less than optimal FPGA utilization.

The challenge of achieving efficient high-level code translation into hardware descriptions

is compounded by the intricacies of FPGA architectures, where a less-than-ideal synthe-

sis can lead to a significant underutilization of the available resources. Recognizing these

limitations, the development of innovative tools such as ScaleHLS has become imperative.

ScaleHLS endeavors to automate and refine the synthesis process, thereby bolstering the

adaptability and efficiency of FPGA usage in essential applications, including the ambitious

APT project [3].

ScaleHLS represents an advancement in HLS practices by employing Multi-Level Interme-

diate Representation (MLIR) to enhance optimization across multiple levels of abstraction,

from high-level architectural decisions to low-level synthesis details. Unlike traditional HLS

tools confined to single-level abstraction, ScaleHLS operates on a MLIR to enhance design

space exploration and optimization across various abstraction levels [20].

The essence of ScaleHLS lies in its hierarchical approach, utilizing the MLIR structure [6] to

perform targeted optimizations across various abstraction levels, thus improving the synthe-

sis quality and performance. An automated DSE engine, powered by dynamic programming

and evolutionary algorithms, facilitates rapid evaluation and selection of design configura-

tions, significantly boosting performance gains on FPGAs [18]. The ScaleHLS framework is

illustrated in Figure 1.3. It includes 3 distinct abstraction levels of intermediate representa-

tion (IR): graph-level, loop-level, and directive-level. The usage in this thesis is illustrated in

the far left of the figure, originating with C/C++ source code and culminating with C/C++

code designed for the manufacturer’s HLS compiler.
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ScaleHLS’s robust transformation and analysis library encapsulates optimization tasks into

modular components, offering flexibility and speeding up the HLS process. This modularity

ensures that ScaleHLS not only meets the immediate needs of hardware designers but also

adapts to evolving design requirements, making it an indispensable tool for advancing FPGA-

based system designs and supporting projects like APT.

Figure 1.3: ScaleHLS framework [18].

1.4 Thesis Structure

This thesis is structured to provide an examination of ScaleHLS’s capabilities and its ap-

plication in FPGA design, with a particular focus on data preprocessing for the ADAPT

project. Each chapter is crafted to progressively build upon the last, creating a cohesive

narrative that underscores the contributions of this research. The structure is as follows:
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• Chapter 1: Introduction – Introduces the research context, objectives, and the

significance of the study. It provides an overview of the ADAPT project and outlines

the potential contributions of ScaleHLS to FPGA-based design processes.

• Chapter 2: Background – Presents a literature review on HLS and its development,

situating ScaleHLS within the broader context of HLS tools. It includes a discussion

on early HLS tools, advancements in HLS technologies, and recent innovations that

have shaped current practices.

• Chapter 3: ScaleHLS Implementation – Describes the methodology of applying

ScaleHLS to the ADAPT project. It delves into the practical aspects of the implemen-

tation, discussing the challenges, solutions, and the specific optimizations made with

ScaleHLS.

• Chapter 4: Performance Evaluation and Results – This chapter analyzes the

improvements in FPGA performance using ScaleHLS for several algorithms within the

ADAPT project. It contrasts the enhancements in resource utilization and process-

ing speed with traditional HLS methods, showcasing the benefits and challenges of

ScaleHLS.

• Chapter 5: Conclusion and Future Work – The conclusion summarizes the the-

sis’ contributions to FPGA synthesis for space applications, highlighting the efficiencies

gained through ScaleHLS. It also discusses potential future research directions to fur-

ther enhance high-level synthesis tools.

This structure is designed to guide the reader through a logical progression from foundational

concepts to practical application, culminating in a critical evaluation of the results. It

ensures that the thesis is both informative and engaging, providing a clear narrative that

demonstrates the value of ScaleHLS in FPGA design.
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Chapter 2

Background and Related Work

2.1 Compton Computational Pipeline

The Compton computational pipeline is crafted to handle sensor data for astrophysical ob-

servations with high efficiency. It comprises a sequence of computational tasks that are

executed by the FPGA-based front-end electronics, integral to preprocessing the sensor data

into scientifically valuable information. The pipeline’s key stages are illustrated in Figure 2.1.

pedestal

subtract

ALPHA

ASIC

ALPHA

ASIC

ALPHA

ASIC

ALPHA

ASIC

compute

integrals

compute

centroids

pedestal

subtract

compute

integrals

zero

suppress

island

detect

zero

suppress

island

detect

X-FPGA

Y-FPGA

Centroid-FPGA

to CPU

Figure 2.1: FPGA Algorithms of ADAPT [16].

There are five stages for the data process:

1. Pedestal Subtraction: The first step in the pipeline involves removing the baseline noise

from the data, known as pedestal subtraction. This process is critical for isolating the

true signal from the background noise inherent in the analog memory cells of the waveform
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digitizers (ALPHA ASICs). The pedestal values are subtracted from the digitized readouts

to obtain the actual signal values.

2. Signal Integration: Following pedestal subtraction, the signal integration stage sums up

the signal over a specified window to quantify the energy captured by each pixel. This

process involves integrating the waveform samples to infer the total number of photons

detected, which is fundamental for determining the characteristics of the observed cosmic

events.

3. Zero Suppression: To optimize data handling and storage, zero suppression is applied,

which sets negligible signal values to zero. This stage reduces the volume of data that needs

to be processed and transmitted, focusing on significant signal values that indicate actual

astrophysical events.

4. Island Detection: The processed signals are then analyzed to identify clusters of adjacent

pixels with non-zero values, termed islands. These islands represent potential astrophysical

events or interactions within the detector. The identification of these islands is a crucial step

in mapping the spatial distribution of the detected events.

5. Centroiding: The final stage in the pipeline is centroiding, where the center of gravity of

the signal distribution within an island is calculated. This step provides a precise localization

of the events, which is essential for reconstructing the direction and energy of the incident

cosmic rays or gamma rays.

Implemented through High-Level Synthesis HLS techniques, each step is optimized for FPGA

execution, enabling swift development cycles and effective hardware deployment [16]. The

HLS method allows these complex computational tasks to be translated from high-level

programming constructs into hardware instruction sets, finely tuning the pipeline for optimal

speed, power economy, and resource management. Such an approach is indispensable for

space instruments like ADAPT, where constraints on power and hardware are stringent and

rapid, high-volume data processing is paramount.

This thesis delves into the integrated performance and efficiency of the aforementioned al-

gorithms within the ADAPT computational pipeline, underscoring the significance of HLS

in enhancing data processing for space-borne astrophysical observatories. Specifically, we
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investigate the ability of ScaleHLS to eliminate the manual tuning required as part of the

initial implementation by Sudvarg et al. [16].

2.2 Related Work

2.2.1 Early Developments in HLS

The journey of HLS began with innovative efforts to simplify hardware design processes,

allowing software-centric approaches to FPGA programming. Early HLS initiatives sought

to abstract complex hardware specifics, enabling software developers to utilize the parallel

processing power of FPGAs effectively.

A landmark in early HLS development was Streams-C, introduced by Gokhale et al., which

presented a stream-based programming model for FPGAs. This model facilitated the de-

velopment of applications where data could be processed in parallel streams, significantly

optimizing performance and resource utilization in FPGA designs [5].

Streams-C, as one of the early HLS tools, was pivotal in demonstrating that high-level pro-

gramming concepts could be effectively mapped onto hardware architectures, thereby reduc-

ing development time and making FPGA technology more accessible to software engineers.

This period marked a transformative phase in digital design, where the focus shifted towards

higher abstraction levels, setting a precedent for the advanced HLS tools that followed.

These early developments in HLS were instrumental in laying the foundational principles for

subsequent advancements in the field, highlighting the potential of high-level synthesis to

bridge the gap between software programming and hardware implementation [4].

2.2.2 Advancements in HLS Tools

The evolution of HLS tools represents a significant phase in digital design, characterized

by the transition from basic HLS concepts to sophisticated, integrated synthesis environ-

ments. This period witnessed the emergence of tools that not only simplified the translation
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from high-level code to hardware designs but also enhanced the efficiency, performance, and

scalability of these designs.

A notable advancement in HLS was the development of AutoPilot by Zhang et al., which

later evolved into the Xilinx Vivado HLS tool. AutoPilot was among the first to provide

a comprehensive environment for HLS, offering features like automated resource manage-

ment, optimization, and the ability to target various FPGA platforms. This tool marked a

shift towards more accessible and efficient FPGA programming, significantly impacting the

development of subsequent HLS tools [21].

The progression in HLS tools has been marked by a continuous effort to improve the user ex-

perience and the quality of the synthesized hardware. Tools like the AMD Xilinx HLS suite,

derived from the foundational concepts of AutoPilot, have integrated advanced optimization

algorithms, support for a wider range of high-level programming languages, and more intu-

itive user interfaces. These improvements have democratized FPGA programming, enabling

a broader range of developers, including those with limited hardware design expertise, to

effectively utilize FPGA technology for various applications [3].

Moreover, the advancements in HLS have been paralleled by an increasing emphasis on

design space exploration (DSE) and automated optimization. These features allow designers

to navigate the complex landscape of hardware configurations more efficiently, identifying

optimal solutions that balance performance, resource utilization, and power consumption.

The integration of these capabilities into HLS tools has been crucial in managing the growing

complexity of digital systems and meeting the stringent requirements of modern hardware

designs [3].

In summary, the advancements in HLS tools over the years have significantly transformed

the landscape of digital hardware design. By providing more sophisticated, user-friendly,

and efficient tools, HLS has become an indispensable part of the hardware design process,

enabling the rapid and effective development of complex digital systems.
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2.2.3 Recent Innovations and Tool Improvements in HLS

In recent years, HLS has experienced a wave of innovations and tool improvements that have

further enhanced its efficiency and application range. These advancements are character-

ized by the integration of machine learning algorithms, automated design space exploration

(DSE), and increased support for complex design tasks, reflecting the dynamic nature of

modern hardware design requirements.

The introduction of tools like AutoDSE by Sohrabizadeh et al. represents a significant

leap forward in automating the HLS process. AutoDSE optimizes the design of FPGA

accelerators by systematically navigating the design space to identify optimal configurations.

This approach not only simplifies the design process but also significantly improves the

performance and efficiency of the resulting hardware designs, making HLS more accessible

and effective for a broader range of applications [14].

Empirical research, such as the work by Sanaullah et al., has provided valuable insights into

optimizing HLS for specific hardware platforms like FPGA OpenCL. These studies have led

to more targeted and effective optimization strategies, enhancing the performance of HLS-

generated designs and reducing the gap between manually optimized hardware and HLS

outputs [13].

Moreover, the integration of predictable models in HLS, as explored by Nigam et al., intro-

duces a new dimension of reliability and predictability in accelerator design. This research

addresses the challenge of designing time-sensitive systems, ensuring that HLS tools can

produce hardware accelerators that meet stringent performance and timing requirements,

crucial for applications in domains like real-time processing and embedded systems [11].

Recent innovations have also focused on improving the user experience in HLS tools, with

developments aimed at making these tools more intuitive and easier to use for software pro-

grammers. This user-centric approach in tool development underscores the importance of

HLS in bridging the gap between software development and hardware implementation, facil-

itating the adoption of FPGA technology across a wider range of industries and application

areas.

In conclusion, the recent advancements in HLS technology and tools have significantly ex-

panded the capabilities and reach of HLS in the hardware design process. By making HLS
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more automated, efficient, and user-friendly, these innovations are paving the way for a new

era in digital hardware design, where complex systems can be synthesized more rapidly and

effectively than ever before.
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Chapter 3

ScaleHLS Implementation

3.1 Introduction to ScaleHLS in the Context of ADAPT

ScaleHLS, an innovative High-Level Synthesis framework, has been designed to optimize

the FPGA development process by automating the translation of high-level programming

constructs into efficient hardware designs. The utilization of ScaleHLS promises to not only

reduce the development time but also enhance the computational efficiency and efficacy of

data processing within the ADAPT pipeline. This section will elucidate the role of ScaleHLS

in the ADAPT project, assessing its ability to streamline the FPGA design cycle and ex-

ploring its impact on resource optimization and processing latency.

The subsequent analysis will delve into the methodologies employed to adapt the naive C

preprocessing model to an FPGA-ready design using ScaleHLS, evaluating the effectiveness

of ScaleHLS in automating pragma insertion, and examining its capacity for optimizing re-

source allocation. Through this exploration, we will answer key research questions posed in

Chapter 2, documenting the pragmatic advantages and any limitations encountered in ap-

plying ScaleHLS to a complex, real-world computational task [16, 20]. The insights garnered

from this inquiry will substantiate the feasibility and potential of employing ScaleHLS in

high-stakes, performance-critical applications, setting a precedent for future HLS endeavors

in spaceborne instruments.

3.2 ScaleHLS Methodology

This section delves into the detailed methodology employed in applying ScaleHLS for effi-

cient FPGA synthesis, predominantly illustrated through the ped subtract function as a
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principal example. This function exemplifies the typical challenges and solutions in adapt-

ing ADAPT project codes to leverage ScaleHLS’s automated synthesis capabilities. While

ped subtract serves as the focal point for demonstrating the transformation process, the

methodologies and optimization strategies discussed herein are systematically applied to var-

ious other computational elements within the ADAPT project. This consistent application

showcases the versatility and adaptability of ScaleHLS across different coding constructs and

data processing requirements, underpinning its value in streamlining FPGA development in

astrophysical instrumentation.

3.2.1 Preparation of Initial C Code for ScaleHLS

In the context of the ADAPT project, the ped subtract function plays a crucial role in

processing data from the detector and serves as a testbed for studying the suitability of

ScaleHLS for subsequent analysis stages. It subtracts the pedestal value from each chan-

nel to normalize the signal, preparing it for further processing stages. The initial code is

straightforward and written in C, designed to be compatible with ScaleHLS for subsequent

optimizations and transformations.

Here is the naive implementation of the ped subtract function, as found in the original

codebase:

Listing 3.1: Naive Implementation of Pedestal Subtraction

void ped_subtract(Packet *pkt , unsigned *peds , unsigned a) {

for (unsigned s = 0; s < NUM_SAMPLES; ++s) {

unsigned idx = (pkt ->starting_sample + s) % NUM_SAMPLES;

for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

unsigned ped_idx = pkt ->bank * NUM_SAMPLES * NUM_CHANNELS +

idx * NUM_CHANNELS + c;

results[a][s][c] = pkt ->samples[s][c] - peds[ped_idx ];

}

}

}

The code iterates over samples and channels within each data packet, applying the pedestal

subtraction to each data point. This initial version is essential for understanding the baseline

performance and serves as the starting point for further optimizations through ScaleHLS [16].
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3.2.2 Transformation to ScaleHLS-Compatible Code

Adapting the initial C code for compatibility with ScaleHLS required several transformations

to meet the tool’s syntactic and structural requirements, ensuring effective hardware syn-

thesis. The primary modifications to the ped subtract function and related code sections

included:

1. Converting C++ Constructs to C: ScaleHLS specifically processes C code, neces-

sitating the conversion of any C++ constructs into plain C. This transformation was

crucial for ensuring that ScaleHLS could effectively analyze and optimize the code.

2. Structures to Variables: The original code utilized structures extensively for data

organization. Given that ScaleHLS optimizes individual variables more efficiently than

data structures, these structures were decomposed into separate scalar variables to

simplify the hardware translation process.

3. Refactoring Variable Reassignments: The optimization challenges for ScaleHLS

often stemmed from variables being reassigned within loops, which can complicate loop

transformations. For example:

Listing 3.2: Original Variable Reassignment in ScaleHLS

unsigned idx = (starting_sample_number + i) % NUM_SAMPLES;

To improve optimization, such reassignments were refactored to separate the steps

involved, thereby simplifying the expressions and enhancing the clarity of operations:

Listing 3.3: Refactored Variable Reassignments for ScaleHLS

unsigned idx = starting_sample_number + i;

unsigned idx1 = idx % NUM_SAMPLES;

This modification aids ScaleHLS in more effectively analyzing and optimizing the code,

particularly benefiting loop unrolling and pipeline configurations by clarifying depen-

dencies and operations.

4. Detailed Parameter Definitions: Complex expressions and calculations were bro-

ken down into simpler, more detailed parameter definitions. This granularity improved

the transparency of code operations to ScaleHLS, aiding in more effective optimization.
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After these transformations, the code becomes compatible with ScaleHLS. The following

listing shows the ScaleHLS-compilable version of the ped subtract function, demonstrating

the applied modifications:

Listing 3.4: ScaleHLS-compatible version of the ped subtract function

void ped_subtract(uint16_t results [5][ NUM_SAMPLES ][ NUM_CHANNELS],

Uint16_t samples[NUM_SAMPLES * NUM_CHANNELS],

uint16_t all_peds [2][ NUM_SAMPLES ][ NUM_CHANNELS],

uint8_t bank , unsigned starting_sample_number ,

unsigned a) {

#pragma scop

for (unsigned i = 0; i < NUM_SAMPLES; ++i) {

unsigned idx = starting_sample_number;

unsigned idx1 = idx % NUM_SAMPLES;

if (idx >= NUM_SAMPLES ){

idx1 = idx - NUM_SAMPLES;

}

else{

idx1 = idx;

}

for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

unsigned sample_idx = i * NUM_CHANNELS + c;

unsigned first = samples[sample_idx ];

unsigned second = all_peds[bank][idx1][c];

results[a][i][c] = second;

}

}

#pragma endscop

}

These code transformations went beyond mere syntactical changes, significantly impacting

the hardware design process. Aligning the code with ScaleHLS’s optimization paradigms

resulted in hardware that was not only more efficient but also conformed better to the

resource constraints of FPGA devices.

In conclusion, the code preparation for ScaleHLS involved a detailed review and transforma-

tion of the code’s structural and operational aspects, ensuring compatibility and optimized
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synthesis. This meticulous preparation facilitated the successful application of ScaleHLS in

the project’s subsequent stages.

3.2.3 Generation of Intermediate MLIR

The transformation of C code into an intermediate representation using MLIR (Multi-Level

Intermediate Representation) is a crucial step in the ScaleHLS methodology. MLIR is an

open-source project within the LLVM ecosystem designed to bridge the gap between high-

level optimizations and low-level code generations across different hardware targets.

Following the modifications made for ScaleHLS compatibility, the next step is to generate the

MLIR code, which represents a middle-ground form that captures the program’s semantics

in a way that is conducive to high-level optimizations and transformations.

To generate MLIR from the ScaleHLS-compatible C code, the following command is used in

accordance with the instructions provided in the ScaleHLS repository:

Listing 3.5: ScaleHLS tool to Generate MLIR Code

$ cgeist ped_subtract.c -function=ped_subtract -S

-memref -fullrank -raise -scf -to -affine > ped_subtract.mlir

In this command, cgeist is a tool that parses C/C++ code into MLIR, ped subtract.c

is the input file, and ped subtract.mlir is the output file containing the MLIR code. The

flags and options specify how the translation should be performed, focusing on the function

to convert and the optimizations to apply.

This MLIR code serves as a pivotal element in the ScaleHLS process, laying the groundwork

for further high-level synthesis optimizations and analysis. It abstracts away the intricacies

of the specific hardware, allowing ScaleHLS to perform optimizations that are agnostic of

the eventual target device, thus promoting greater efficiency and portability.

Here, it would be beneficial to include a snippet of the generated MLIR code to give the

reader a concrete example of what MLIR looks like and how it represents the transformed

C code.
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Listing 3.6: Example of MLIR code generated by ScaleHLS for ped subtract

module attributes {dlti.dl_spec =

#dlti.dl_spec <#dlti.dl_entry <"dlti.endianness ","little">,

#dlti.dl_entry <i64 , dense <64> : vector <2xi32 >>,

#dlti.dl_entry <f80 , dense <128> : vector <2xi32 >>,

#dlti.dl_entry <i1, dense <8> : vector <2xi32 >>,

#dlti.dl_entry <i8, dense <8> : vector <2xi32 >>,

#dlti.dl_entry <i16 , dense <16> : vector <2xi32 >>,

#dlti.dl_entry <i32 , dense <32> : vector <2xi32 >>,

#dlti.dl_entry <f16 , dense <16> : vector <2xi32 >>,

#dlti.dl_entry <f64 , dense <64> : vector <2xi32 >>,

#dlti.dl_entry <f128 , dense <128> : vector <2xi32 >>>,

llvm.data_layout =

"e-m:e-p270 :32:32 - p271 :32:32 - p272 :64:64 - i64:64-f80:128-n8:16:32:64 - S128",

llvm.target_triple = "x86_64 -unknown -linux -gnu",

"polygeist.target -cpu" = "x86 -64",

"polygeist.target -features" = "+cx8 ,+fxsr ,+mmx ,+sse ,+sse2 ,+x87",

"polygeist.tune -cpu" = "generic "} {

func.func @ped_subtract (%arg0: memref <5 x256x16xi16 >,

%arg1: memref <256 x16xi16 >, %arg2: memref <4096 xi16 >,

%arg3: i8, %arg4: i32 , %arg5: i32)

attributes {llvm.linkage = #llvm.linkage <external >} {

%c-256 _i32 = arith.constant -256 : i32

%c256_i32 = arith.constant 256 : i32

%0 = arith.index_cast %arg3 : i8 to index

%1 = arith.index_cast %arg5 : i32 to index

%2 = arith.cmpi uge , %arg4 , %c256_i32 : i32

%3 = scf.if %2 -> (i32) {

%5 = arith.addi %arg4 , %c-256 _i32 : i32

scf.yield %5 : i32

} else {

scf.yield %arg4 : i32

}

%4 = arith.index_cast %3 : i32 to index

affine.for %arg6 = 0 to 256 {

affine.for %arg7 = 0 to 16 {

%5 = affine.load %arg1[%arg6 , %arg7] : memref <256 x16xi16 >

%6 = arith.extsi %5 : i16 to i32

%7 = affine.load %arg2[%arg7 + symbol (%0) * 4096 + symbol (%4) * 16]

: memref <4096xi16 >

%8 = arith.extsi %7 : i16 to i32
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%9 = arith.subi %6, %8 : i32

%10 = arith.trunci %9 : i32 to i16

affine.store %10, %arg0[symbol (%1), %arg6 , %arg7]

: memref <5 x256x16xi16 >

}

}

return

}

}

Understanding MLIR’s role in the ScaleHLS ecosystem is crucial for comprehending the sub-

sequent steps in the synthesis process, where these intermediate representations are further

optimized and eventually translated into executable hardware configurations.

3.2.4 Optimized C++ Code Generation

After generating the MLIR, the next step in the ScaleHLS process is to transform this

intermediate representation into optimized C++ code, particularly designed for HLS. This

code is poised for synthesis into an FPGA bitstream. The transformation leverages the

MLIR to apply various optimizations, culminating in C++ code that is efficient and tailored

for HLS.

The command to generate optimized C++ code from the MLIR using ScaleHLS is:

Listing 3.7: ScaleHLS tool to Generate C++ Code

$ scalehls -opt ped_subtract.mlir -debug -only=scalehls

-scalehls -dse -pipeline="top -func=ped_subtract␣target -spec =../ config.json"

| scalehls -translate -scalehls -emit -hlscpp > ped_subtract_dse.cpp

In this command:

• scalehls-opt processes the MLIR file (ped subtract.mlir) to apply targeted opti-

mizations.

• -debug-only=scalehls option enables debugging, offering insights into the optimiza-

tion process.
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• -scalehls-dse-pipeline specifies the design space exploration settings, with top-func

indicating the primary function for optimization and target-spec referring to a con-

figuration file that contains hardware-specific optimization parameters.

• scalehls-translate is used to convert the optimized MLIR into HLS-compatible

C++ code, with -scalehls-emit-hlscpp ensuring the output is suitable for HLS

tools.

• The final optimized C++ code is saved in ped subtract dse.cpp.

This critical stage bridges high-level programming constructs with hardware synthesis, yield-

ing a refined C++ code that encapsulates the high-level optimizations from the MLIR. It

exemplifies the capacity of ScaleHLS to automate and enhance the code optimization process,

improving the performance and efficiency of the resultant hardware design.

To provide a tangible example, a snippet from the ped subtract dse.cpp file should be

included in the thesis. This snippet will illustrate the type of transformations and opti-

mizations performed by ScaleHLS, such as loop unrolling and array partitioning, which are

essential for high-performance FPGA designs.
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Listing 3.8: Optimized C++ code generated by ScaleHLS for ped subtract

void ped_subtract(

ap_int <16> v0 [5][256][16] ,

ap_int <16> v1 [256][16] ,

ap_int <16> v2[4096] ,

ap_int <8> v3 ,

ap_int <32> v4 ,

ap_int <32> v5

) { // L5 , [0,38)

#pragma HLS interface s_axilite port=return bundle=ctrl

#pragma HLS interface s_axilite port=v3 bundle=ctrl

#pragma HLS interface s_axilite port=v4 bundle=ctrl

#pragma HLS interface s_axilite port=v5 bundle=ctrl

#pragma HLS array_partition variable=v0 cyclic factor =16 dim=2

#pragma HLS array_partition variable=v0 cyclic factor =8 dim=3

#pragma HLS resource variable=v0 core=ram_t2p_bram

#pragma HLS array_partition variable=v1 cyclic factor =16 dim=1

#pragma HLS array_partition variable=v1 cyclic factor =8 dim=2

#pragma HLS resource variable=v1 core=ram_t2p_bram

#pragma HLS array_partition variable=v2 cyclic factor =8 dim=1

#pragma HLS resource variable=v2 core=ram_t2p_bram

int v6 = v3; // L8, [0,0)

int v7 = v5; // L9, [0,0)

bool v8 = v4 >= (ap_int <32 >)256; // L10 , [0,0)

ap_int <32> v9;

if (v8) { // L11 , [0,0)

ap_int <32> v10 = v4 + (ap_int <32 >) -256; // L12 , [0,0)

v9 = v10; // L13 , [0,0)

} else {

v9 = v4; // L15 , [0,0)

}

.....

Through this automated process, ScaleHLS significantly simplifies the generation of opti-

mized C++ code, aligning with the synthesis requirements and enabling efficient FPGA

implementation, thereby showcasing a vital step in the HLS workflow.
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3.2.5 Synthesis with Vitis HLS

Vitis HLS, a high-level synthesis tool by AMD Xilinx, stands as a critical component in the

hardware design workflow. It empowers developers to transform C/C++ code into FPGA

hardware description language (HDL) effectively. This tool plays an indispensable role in

enabling the synthesis of complex, algorithmic descriptions into tangible digital hardware

configurations. It is particularly noted for its automation capabilities in optimizing and

translating intricate algorithms into efficient hardware designs.

Figure 3.1: Vitis HLS Report Interface showing performance and resource estimates.

As illustrated in Figure 3.1, the Vitis HLS interface provides immediate insights into both

the speed and resource utilization of the synthesized hardware design. It displays a com-

prehensive report, detailing the timing estimates, resource estimates, and the loop and task

analysis, which are invaluable for performance tuning and optimization.

Within the ADAPT project, Vitis HLS is utilized for synthesizing the ScaleHLS-optimized

C++ code into a HDL. This process is vital for assessing both the performance and the

resource efficiency of the design when subject to the demanding conditions encountered in

the field. Chapter 4 delves deeper into this, offering an in-depth discussion on performance

evaluation and results, supplemented by detailed synthesis instructions and a complete sim-

ulation workflow.
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Modifications to the code and testbench are integral for successful synthesis and simulation

in Vitis HLS. These changes are geared towards ensuring seamless integration and evaluating

the performance of a collection of preprocessing codes. The modifications made are as follows:

1. Uniform Data Types: The original ScaleHLS optimizations introduced data types

like ap int, which, while efficient for hardware, can create inconsistencies within a

broader codebase that utilizes standard C++ types. To ensure uniformity across the

system and facilitate integration, these have been shifted to unsigned int. This

change aids in preventing parameter passing errors and provides a consistent platform

for simulation.

2. Streamlined Function Interface: The ped subtract function, a core component

of the preprocessing, has been simplified. Earlier versions accepted more information

than necessary, which could lead to inefficiencies. By streamlining the function to only

process essential data, the design is made cleaner and execution more efficient.

These strategic changes fine-tune the code for the final synthesis step with Vitis HLS, anal-

ogous to setting the stage before the culminating performance. It ensures that the code not

only integrates well but is also poised for optimal performance evaluation in the subsequent

analysis phase.

For our ADAPT code, the sole modification involved changing the data type from ap int

to unsigned to ensure consistency across the full code.

Listing 3.9: Modified C++ ped subtract Code

void ped_subtract(

//ap_int <16> v0[NUM_ALPHAS ][ NUM_SAMPLES ][ NUM_CHANNELS], //v0 [5][256][16] ,

unsigned v0[NUM_ALPHAS ][ NUM_SAMPLES ][ NUM_CHANNELS],

unsigned v1[256][16] ,

unsigned v2[4096] , //ap_int <16> v2[4096] ,

unsigned v3,

unsigned v4,

unsigned v5

)

......
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Additionally, we modified the main function to streamline parameter passing to the ped subtract

function. Instead of passing the entire structure, we now pass only the three parameters that

are utilized, as detailed in the list below.

Listing 3.10: Modified main function Code

struct SW_Data_Packet *current_packet = &input_data_packet[alpha];

uint8_t bank = current_packet ->bank;

uint8_t starting_sample_number = current_packet ->starting_sample_number;

ap_int <16> temp_samples [256][16];

for (int i = 0; i < 256; i++) {

for (int j = 0; j < 16; j++) {

temp_samples[i][j] =

static_cast <ap_int <16>>( current_packet ->samples[i][j]);

}

}

ped_subtract(ped_sub_results , temp_samples ,

input_all_peds , bank , starting_sample_number , alpha);

For a comprehensive understanding of how these modifications influence the synthesis output

and performance metrics, refer to the detailed analysis in Chapter 4.1.

This section provides an overview of the synthesis process using Vitis HLS and highlights the

necessary code modifications to facilitate accurate simulation and performance evaluation in

the context of ScaleHLS optimizations.

3.3 Additional Code Transformations Examples

Following the methodology used in the ped subtract algorithm, this section highlights the

transformation process for the Signal Integration and Zero Suppression algorithms within

the ADAPT project. Adapting these algorithms to comply with the ScaleHLS tool’s re-

quirements was crucial for achieving efficient FPGA synthesis. This section presents the

ScaleHLS-compatible C code for the integrate and zero suppress functions, which are

prepared for input into the tool. The ScaleHLS tool then automatically generates the opti-

mized final code.
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3.3.1 Signal Integration

The Signal Integration algorithm, essential for boosting the signal-to-noise ratio, sums data

points within a defined temporal window. This algorithm’s transformation emphasized loop

restructuring to exploit parallelism, alongside refined data management to improve memory

access patterns on the FPGA. These modifications were critical for leveraging the parallel

processing capabilities of FPGAs, thereby enhancing the algorithm’s efficiency and perfor-

mance in hardware.

Listing 3.11: ScaleHLS-compatible version of integrate Code

void integrate(int fine_time , int starting_sample , int bounds [8],

int integrals[NUM_INTEGRALS * NUM_CHANNELS],

uint16_t ped_sub_results[NUM_ALPHAS ][ NUM_SAMPLES ][ NUM_CHANNELS],

unsigned a) {

#pragma scop

int offset = fine_time - starting_sample;

if (offset < 0) {

offset += NUM_SAMPLES;

}

for (int s = 0; s < NUM_SAMPLES; ++s) {

int x = s - offset;

if (x < 0) {

x += NUM_SAMPLES;

}

for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

for (unsigned i = 0; i < NUM_INTEGRALS; ++i) {

int start = bounds [2*i];

int end = bounds [2*i + 1];

if ((x >= start && x <= end) ||

((x - NUM_SAMPLES) >= start)) {

integrals[i * NUM_CHANNELS + c] += ped_sub_results[a][s][c];

}

}

}

}

#pragma endscop

}
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3.3.2 Zero Suppression

Zero Suppression serves a pivotal role in data volume management by discarding trivial data

points that do not exceed a predefined significance threshold. This is crucial for optimiz-

ing the storage and processing of on-chip data. Code transformations for this algorithm

were targeted at enhancing conditional checks and streamlining the process of disregarding

inconsequential data, reducing the FPGA’s memory footprint.

Listing 3.12: ScaleHLS-compatible version of zero suppress Code

void zero_suppress(int integrals[NUM_INTEGRALS * NUM_CHANNELS],

int thresholds[NUM_INTEGRALS ]) {

#pragma scop

for (unsigned i = 0; i < NUM_INTEGRALS; ++i) {

for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

if (integrals[i * NUM_CHANNELS + c] < thresholds[i]) {

integrals[i * NUM_CHANNELS + c] = 0;

}

}

}

#pragma endscop

}

The enhancements to these algorithms showcase the adaptability of the ScaleHLS tool for

diverse scenarios. By optimizing for ScaleHLS, the FPGA synthesis process is fine-tuned,

achieving greater efficiency and better utilization of the FPGA’s resources.
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Chapter 4

Performance Evaluation and Results

4.1 Synthesis and Simulation with Vitis HLS

This section details the synthesis and simulation process using Vitis HLS, which is crucial for

validating the performance and resource utilization of the hardware design generated from

the ScaleHLS-optimized C++ code.

Setting Up the Vitis HLS Project: To assess the performance and efficacy of the

synthesized design, a project is created in Vitis HLS. The setup involves the following steps:

1. Open Vitis HLS and create a new project.

2. Specify the project name and location.

3. Add the optimized C++ code (e.g., ped subtract dse.cpp) to the project.

4. Define the top function and add any necessary testbench files for simulation.

5. Set the clock period and select the FPGA target platform, such as the Kintex-7 KC705

Evaluation Platform.

6. Finalize the project setup to proceed with the synthesis and simulation.

Simulation and Synthesis Workflow: The project in Vitis HLS facilitates a compre-

hensive workflow to simulate and synthesize the design:
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1. C Simulation: Run the C-level simulation to ensure the functional correctness of the

design. This step compiles the C++ code and executes it to verify its behavior against

the testbench.

2. C Synthesis: Perform synthesis to translate the C++ code into an FPGA-compatible

design. This process analyzes the design’s performance, including initiation intervals

and resource utilization metrics such as BRAM, DSP, FF, and LUT.

3. C/RTL Co-Simulation: Conduct co-simulation to validate the synthesized design

against a high-fidelity model of the FPGA hardware. This step provides detailed

insights into the design’s latency and operational characteristics.

The data acquired from these simulations are integral to understanding the design’s perfor-

mance and are used to compare against theoretical metrics and previous implementations.

This comprehensive analysis ensures that the design not only meets the functional require-

ments but also adheres to the performance and resource constraints of the target FPGA

platform.

In Chapter 4, the results of these simulations, alongside the detailed analysis of performance

metrics and resource utilization, are discussed to provide a clear understanding of the design’s

efficacy and potential areas for further optimization.

4.2 Resource Utilization and Speed Analysis

This section presents a detailed analysis of resource usage and processing speed for FPGA

architectures within our project, utilizing two distinct approaches to synthesis: the ”Naive”

approach and the ”ScaleHLS” approach.

Naive Implementation: This term refers to the original code implementation without

any optimization pragmas. It serves as our baseline, representing the raw, unoptimized

performance and resource utilization of the FPGA when the code is synthesized exactly as

initially written.

ScaleHLS Implementation: In contrast, the ”ScaleHLS” approach involves using the

ScaleHLS tool to compile the code. This method applies advanced synthesis techniques
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that include automatic insertion of optimization directives, aiming to enhance both the

computational efficiency and resource management of the FPGA.

The analysis begins by evaluating three key preprocessing functions—pedestal subtraction,

signal integration, and zero suppression—individually. This initial assessment establishes a

baseline for their standalone performance. Subsequently, we examine how these functions

perform collectively when integrated, mirroring their operational use in the actual FPGA

system. This comprehensive, dual-layered analysis offers insights into the overall efficiency

and effectiveness of the combined code, highlighting the capabilities and limitations of our

FPGA-based system in both ”Naive” and ”ScaleHLS” configurations.

4.2.1 Pedestal Subtraction

A comparative analysis of latency and resource utilization for the ped subtract function

is presented in Table 4.1, highlighting the native implementation’s inefficiencies in FPGA

architectures. These traditional methods do not fully leverage FPGA capabilities, leading

to excessive latencies and poor resource allocation.

Conversely, applying ScaleHLS considerably improved this function’s performance. Latency

reduced from 4106 to 577 cycles, enhancing the process speed by approximately seven times.

Despite ScaleHLS’s increased resource demands compared to native methods, the trade-off

is deemed beneficial, considering the substantial gains in performance while maintaining

operational parameters.

Table 4.1: Resource and speed comparison of ped subtract

Implementation Latency II BRAM DSP FF LUT
Ped Naive 4 106 4 106 0 0 446 585

Ped ScaleHLS 577 577 128 0 2 387 4 235

4.2.2 Integration

The integrate code analysis indicates an optimal solution, improving speed by nearly four-

fold. Additionally, resource consumption decreased significantly, with reductions in Flip-

Flops and Look-Up Tables by factors of 3.31 and 2.46, respectively, as detailed in Table 4.2.
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Table 4.2: Resource and speed comparison of integrate

Implementation Latency II BRAM DSP FF LUT
Integrate Naive 245 772 245 772 0 0 977 1 316

Integrate ScaleHLS 65 545 65 545 0 0 295 535

4.2.3 Zero Suppression

These enhancements are not universally applicable. The zero suppress function demon-

strates the high-level synthesis complexity, with a 64 times speed reduction and higher re-

source utilization—Flip-Flops increased by 7.1 times and Look-Up Tables by 5 times. These

findings emphasize the need for detailed analysis in each instance, highlighting the nuanced

challenges of HLS tools as seen in Table 4.3.

Table 4.3: Resource and speed comparison of zero suppress

Implementation Latency II BRAM DSP FF LUT
Zero Naive 1 026 1 026 0 0 1 854 35 114

Zero ScaleHLS 65 569 65 569 0 0 13 144 17 691

The bottom line is that we do not understand why this function performs so poorly relative

to the others. The algorithm is not appreciably more complex (in fact, it is considerably

simpler than integrate), yet the results are clearly not as good.

4.3 Comparison with Traditional HLS

The transition from traditional High-Level Synthesis (HLS) to ScaleHLS involves a nuanced

balance of resource allocation and processing efficiency. Our comparative analysis revealed

that while ScaleHLS demonstrated a 50% reduction in Flip-Flop and Look-Up Table uti-

lization, it incurred a doubling in latency and a significant initiation interval expansion.

This suggests that while ScaleHLS is more resource-efficient, it could introduce a trade-off

in processing speed, especially evident with the inclusion of zero suppression algorithms.

To mitigate this, a ‘tradeoff’ approach was devised, combining the ScaleHLS-optimized code

for pedestal subtraction and integration with a traditionally synthesized zero suppression

code. This hybrid method aimed to harness the resource efficiency of ScaleHLS while off-

setting the latency issues observed. The resulting performance showed an improvement in
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speed and a reduction in resource use, yet the enhancement fell short of our expectations.

This outcome indicates a complex interplay between data elements in the combined code,

which necessitates a deeper dive to unravel the interactions and optimize the code further.

This insight will steer the direction of future research and optimization efforts.

Table 4.4: FPGA synthesis metrics for full code implementations of different methodologies

Implementation Latency II BRAM DSP FF LUT
Full Traditional HLS 1 399 745 1 254 840 668 15 44 345 88 148

Full ScaleHLS 2 036 368 10 182 084 292 15 25 684 42 426
Full Tradeoff 1 971 825 9 859 369 292 15 14 392 28 300

4.4 Pros & Cons of ScaleHLS

ScaleHLS is compared with traditional HLS approaches to highlight its unique benefits and

potential drawbacks.

Advantages of ScaleHLS ScaleHLS offers several advantages that enhance FPGA pro-

gramming productivity and efficiency:

• Automation of Code Conversion: ScaleHLS excels in translating high-level C/C++

code into synthetically efficient hardware descriptions, reducing the time required for

manual conversion and verification.

• Resource Management: It adeptly manages FPGA resources, making judicious use

of the available gates and memory blocks, which is particularly beneficial for space-

bound applications where physical resources are at a premium.

• Optimization Techniques: ScaleHLS applies advanced optimization techniques to

improve the performance and efficiency of the synthesized hardware, potentially leading

to faster computational speeds and lower power consumption.

• Customizability: Thanks to its modular architecture, ScaleHLS can be tailored to

specific design requirements, offering flexibility to programmers in terms of both func-

tionality and optimization.
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Disadvantages of ScaleHLS Despite its advantages, ScaleHLS is not without its draw-

backs:

• Complexity of Auto-Generated Code: The auto-generated code from ScaleHLS

can be intricate and challenging to understand, making debugging and manual opti-

mization more difficult for engineers.

• Limited Applicability: ScaleHLS may not always perform optimally across all types

of codes and structures, requiring manual intervention or alternative methods for cer-

tain implementations.

• Development Maturity: Being a relatively new tool, ScaleHLS may lack the matu-

rity and stability of established HLS tools, which might lead to unexpected behaviors

or the need for frequent updates and patches.

• Integration Challenges: Integrating ScaleHLS-generated designs with existing sys-

tems and workflows can present challenges, particularly when dealing with legacy code

or hardware constraints.

In conclusion, while ScaleHLS presents a forward-looking approach to high-level synthesis

with its automated and optimization-centric design, it also necessitates a thoughtful appli-

cation and consideration of its limitations. As the field of FPGA design evolves, tools like

ScaleHLS will continue to shape the landscape of hardware synthesis, balancing automation

with the artistry of engineering intuition and experience.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has explored the integration of ScaleHLS into the ADAPT project, illustrating its

impact on enhancing FPGA synthesis for space applications. The use of ScaleHLS has led to

notable improvements in processing efficiency and resource management, particularly with

the ped subtract and integrate functions. By automating the translation of high-level

C code into FPGA-optimized designs, ScaleHLS has effectively streamlined the synthesis

process, accommodating the rigorous demands of space technology.

The findings underscore the substantial benefits that advanced high-level synthesis tools like

ScaleHLS bring to FPGA programming. Not only do they enhance performance through

sophisticated optimizations, but they also contribute to more resource-efficient designs, which

are critical in resource-constrained environments like space.

Looking ahead, the insights gained from this study encourage further exploration and devel-

opment of high-level synthesis tools. The potential for ScaleHLS to evolve and further refine

its capabilities suggests a promising direction for future research. As these tools mature,

they will undoubtedly broaden the scope of possibilities for FPGA applications, especially in

critical sectors where precision and reliability are paramount. This progression is expected

to foster significant advancements in space technology and beyond, pushing the boundaries

of what can be achieved with FPGA-based systems.
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5.2 Future Work

In future work, the focus will be on addressing performance constraints evident in current

FPGA synthesis, as demonstrated by our results. A significant trade-off between speed

and resource utilization persists, raising critical concerns. To address these challenges, the

introduction of HIDA [19] (Hierarchical Dataflow Compiler for High-Level Synthesis) marks

a significant advancement. Developed by the same team as ScaleHLS, HIDA leverages a new

scalable and hierarchical HLS framework designed to systematically transform algorithmic

descriptions into optimized dataflow implementations on hardware.

HIDA introduces an innovative dataflow Intermediate Representation (IR), known as HIDA-

IR, which models dataflow at two distinct levels of abstraction—Functional and Structural—

facilitating effective optimization strategies. These include a pattern-driven task fusion algo-

rithm and an intensity- and connection-aware dataflow parallelization algorithm, which are

designed to maximize efficiency. Additionally, HIDA supports an end-to-end and extensible

compilation stack that accommodates inputs from both PyTorch and C++, empowering

users to rapidly experiment with various design parameters and prototype new dataflow ar-

chitectures. Comprehensive evaluations on FPGA platforms reveal that HIDA can achieve

up to 8.54 times higher throughput compared to existing state-of-the-art HLS tools.

For the APT project, while ScaleHLS may not provide the optimal solution, HIDA’s ca-

pabilities offer profound insights and guide further improvements. This includes exploring

additional HLS tools to expand our range of possible solutions, thereby enhancing the overall

design and effectiveness of FPGA implementations.
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