
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

January 2009 

Design and Evaluation of Distributed Algorithms for Placement of Design and Evaluation of Distributed Algorithms for Placement of 

Network Services Network Services 

Todd Sproull 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Sproull, Todd, "Design and Evaluation of Distributed Algorithms for Placement of Network Services" 
(2009). All Theses and Dissertations (ETDs). 332. 
https://openscholarship.wustl.edu/etd/332 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/332?utm_source=openscholarship.wustl.edu%2Fetd%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY

Sever Institute
School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Roger Chamberlain, Chair

Ron Cytron, Co-Chair
John W. Lockwood, Co-Chair

Chenyang Lu
Chris Gill

Young H. Cho
Robert E. Morley

DESIGN AND EVALUATION OF DISTRIBUTED ALGORITHMS FOR PLACEMENT

OF NETWORK SERVICES

by

Todd S. Sproull

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

August 2009

Saint Louis, Missouri



copyright by

Todd S. Sproull

2009



Acknowledgments

My inexpressible thanks go to my research advisor Dr. Roger Chamberlain. His willingness

to take me under his guidance very late in my research demonstrates his kind and giving

nature. I am very much thankful for his amazing ability to quickly absorb all of the details

of my research and provide great feedback. His probing questions help to dive into the heart

of my research and highlight the most important aspects of my work. His ability to work

hard and be nice made the last year of my dissertation one of the most enjoyable in my life.

I am also very grateful to my original research advisor Dr. John Lockwood. He instilled

upon me an amazing work ethic with a never quit attitude, for which I am truly thankful.

Through the many years of working together, he never stopped believing in me or my

abilities and always encouraged me to continue with my research. I was fortunate enough

to work with him on many projects that made a difference in the world. I also had the luxury

of working with him on a few startup companies, these helped light an entrepreneurial flame

which will never burn out.

I would next like to thank my co-advisor Dr. Ron Cytron. His willingness to meet with

me twice a week helped drive this dissertation to completion. His thoughtful questions and

careful analysis led to many insights and discoveries in my research. He is also responsible

for my new found love of teaching. I was very reluctant to take on a teaching role in the

last year of my research but now it is something I hope to do for the rest of my life.

I am also very thankful for the support of Dr. Young Cho. He consistently asked the tough

questions and pushed my research to another level. His frank and honest nature helped me

focus on the right problems and work with the right people.

ii



I would also like to thank Dr. Chris Gill, Dr. Chenyang Lu, and Dr. Robert Morley.

Their suggestions during my PhD proposal and during update meetings were very useful

and helped strengthen my work.

I next would like to thank all of my coauthors whose contributions assisted me in pro-

ducing great publications. In particular I want to thank Sarang Dharmapurikar, Praveen

Krisnamurthy, Haoyu Song, David Taylor, and Jack Meier.

I am grateful to my research sponsors, NSF, Global Velocity, and Boeing for supporting my

work.

I would also like to thank Myrna Harbison, Peggy Fuller, Stella Sung, Madeline Hawkins,

and Andrea Levy. They helped make my life much easier when dealing with the wide range

of administrative issues every graduate student encounters.

Finally, I wish to thank my parents and my two brothers for their unconditional love and

support. I cannot express how much they have contributed to enriching my life. Their

patience and support will always be remembered.

Todd S. Sproull

Washington University in Saint Louis

August 2009

iii



To my Mother and Father, Phyllis and Stephen Sproull, for always encouraging me to
learn, love, and laugh.

iv



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Supernode Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Evaluation of Supernode Placement Algorithms . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 General Placement Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 k-median Example Solution . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Previous Solutions and Approximations for the k-median problem . 9

2.2 Placement of Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Distributed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Peer to Peer Applications and Supernodes . . . . . . . . . . . . . . . . . . . 13

2.3.1 SNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Application Specific Placement Solutions . . . . . . . . . . . . . . . 15

v



2.3.3 Application Programming Interfaces (API) . . . . . . . . . . . . . . 16

2.4 Tools to Evaluate Network Services . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Network Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Emulation Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Evaluation of Distributed Network Services . . . . . . . . . . . . . . . . . . 20

3 Supernode Placement Problem . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Cost Properties of SN Topologies . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Cost for a single node to become active . . . . . . . . . . . . . . . . 26

3.3.2 Reducing cost with better SN placement . . . . . . . . . . . . . . . . 26

3.3.3 Bounds for a single node becoming active with SN reassignment . . 27

3.4 Distributed Supernode Placement Algorithms . . . . . . . . . . . . . . . . . 29

3.4.1 General Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Neighborhood Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Distributed Supernode Placement Algorithm . . . . . . . . . . . . . 33

4 Evaluation of Supernode Placement in Overlay Topologies . . . . . . . . 36

4.1 SPOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 General Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Nodes dynamically joining the network . . . . . . . . . . . . . . . . 38

4.2.2 Merging Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 SPOT Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.4 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.5 Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.6 CPU and Bandwidth Utilization . . . . . . . . . . . . . . . . . . . . 40

4.2.7 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Evaluation of r-mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



4.3.1 Experimentation Details for r-mod . . . . . . . . . . . . . . . . . . . 41

4.4 Improving the r−mod algorithm . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Multiple Iterations with Informed Placement . . . . . . . . . . . . . 44

4.4.2 Dynamically Expanding Neighborhood . . . . . . . . . . . . . . . . . 44

4.4.3 Preventing Loops in SN Placement . . . . . . . . . . . . . . . . . . . 44

4.4.4 Description of r-SPOT . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Evaluating r-SPOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Evaluation of SPOT in Diverse Environments and Applications . . . . . 54

5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2 SPOTSim Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Planetlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Planetlab Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Game Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Planetlab Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.3 Updating the SN as the topology changes . . . . . . . . . . . . . . . 65

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Evaluation of Supernodes in Satellite Networks . . . . . . . . . . . . . . . 72

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Node Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.2 Implementation of Nodes in the Overlay Network . . . . . . . . . . . 77

6.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Effects of Latency and Bandwidth . . . . . . . . . . . . . . . . . . . 78

vii



6.3.3 Overhead associated with P2P API . . . . . . . . . . . . . . . . . . . 80

6.3.4 Network Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.5 Hierarchical Network of Super Nodes . . . . . . . . . . . . . . . . . . 85

6.3.6 Use of Super Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.7 Benefits of Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Evaluation of Hardware Accelerated Supernodes . . . . . . . . . . . . . . 96

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Application layer distributed track fusion dissemination . . . . . . . 103

7.3.2 Intelligent network layer clustering . . . . . . . . . . . . . . . . . . . 105

7.3.3 Intelligent Gateway Node Clustering . . . . . . . . . . . . . . . . . . 109

7.4 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4.1 Time Stamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.2 Track Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.3 Accept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.4 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.5 Time Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Clustering Observation Data . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Hardware Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.7 Simulated Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix



List of Tables

2.1 Total costs for each node serving as the single SN in the 10 node example . 8

6.1 Distribution of services for each node. . . . . . . . . . . . . . . . . . . . . . 77

6.2 Percentages of traffic associated with the service and the P2P overhead in

terms of total bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Average overhead in bytes per successful service. . . . . . . . . . . . . . . . 82

6.4 Distribution of different nodes in hierarchical topology . . . . . . . . . . . . 87

7.1 Device utilization for XC2VP50 Hardware Track Clustering with four concepts114

x



List of Figures

1.1 Example topology of two nodes A and B communicating with VoIP using

either supernode C or D to relay the conversation. . . . . . . . . . . . . . . 2

2.1 Example topology of 10 node network with link costs and demand for service

from each node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Distributed algorithm example topology. Two r-balls are shown with facil-

ities located at nodes B and I. Nodes inside the ring are eligible to become

new facilities based on the local solution of k-median or facility location. . . 11

3.1 Components in the network graph topology. . . . . . . . . . . . . . . . . . . 22

3.2 Hierarchy of Message Sending Nodes. . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Example topology with three nodes A, B, and C connected through a router.

Nodes A and B are active and A is the SN. . . . . . . . . . . . . . . . . . . 23

3.4 Example topology with all three nodes active and A is the SN. . . . . . . . 24

3.5 Example topology with three active nodes, where nodes A and C are SNs. . 24

3.6 Example topology with four active nodes with node A assigned as the SN. 27

3.7 Example topology with five active nodes with node F assigned as the SN. . 27

3.8 Example neighborhood with SN at node D and neighborhood representative

at node C with an r value of 3. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Example neighborhood with SN at node C. . . . . . . . . . . . . . . . . . . 31

4.1 Figure displays two communities with SNs located at positions C and H. . . 37

xi



4.2 Figure displays the various topologies created to deploy the SPOT architec-

ture. Shown are the 100, 200, 300, and 400 node topologies. . . . . . . . . . 42

4.3 Results of placement for one SN with various sized network topologies. . . . 43

4.4 Results of placement for three SNs with various sized network topologies. . 43

4.5 An example of a triangle inequality, where the distance from node A to node

C (62 ms) is greater than the distance from node A to node B (20 ms) plus

the distance from node B to node C (30 ms). . . . . . . . . . . . . . . . . . 45

4.6 Results of the r-mod and r-SPOT placement for one SN with various sized

network topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Results of placement for three SNs with various sized network topologies. . 49

4.8 Performance of the r-mod algorithm with enabling different improvements

along with the r-SPOT algorithm topologies. . . . . . . . . . . . . . . . . . 50

4.9 Number of iterations for the outer for loop in r-SPOT algorithm for various

SN counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Total time to place SNs in r-SPOT algorithm. . . . . . . . . . . . . . . . . . 52

4.11 Total time to place three SNs in r-SPOT algorithm compared to the optimal

placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Total amount of network traffic sent per node in placing three SNs compared

to an optimal solution requiring global knowledge. . . . . . . . . . . . . . . 53

5.1 Comparison of Emulation and Simulation placement results for various net-

work topologies locating one SN. . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Comparison of Emulation and Simulation placement results for various net-

work topologies locating three SNs. . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 500 node router topology generated using BRITE. . . . . . . . . . . . . . . 58

5.4 Placement costs for SPOTSim simulations compared against optimal place-

ment costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Whisker-box plot of placement costs for SPOTSim on a 500 node topology

with varying initial neighborhood sizes. . . . . . . . . . . . . . . . . . . . . 60

xii



5.6 Whisker-box plot of placement costs for SPOTSim for various iterations of

the outer-loop (PlacementIter). . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 CDF of the number of hops necessary for nodes to reach each other in the

50 node Planetlab experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.8 CDF of round trip time (RTT) in milliseconds for nodes to reach each other

in the 50 node Planetlab experiments. . . . . . . . . . . . . . . . . . . . . . 63

5.9 50 node Planetlab r-SPOT experiment using the TTL distance metric illus-

trating the placement costs for k=1,2, and 3 SNs. . . . . . . . . . . . . . . . 64

5.10 50 node Planetlab r-SPOT experiment illustrating the total time to place

k=1, 2, and 3 SNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.11 50 node Planetlab r-SPOT experiment illustrating the number of iterations

place k=1, 2, and 3 SNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.12 50 node Planetlab r-SPOT experiment illustrating the total traffic sent from

all nodes in order to place k=1, 2, and 3 SNs. . . . . . . . . . . . . . . . . . 67

5.13 Map of the 50 nodes used in the Planetlab experiments. . . . . . . . . . . . 67

5.14 Round Trip Times from each node to all 50 nodes in Planetlab. . . . . . . . 68

5.15 Round Trip Times from each node to all 50 nodes after removing four outlier

RTT times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.16 Round Trip Times from each node to a single server selected based on the

particular placement algorithm times. . . . . . . . . . . . . . . . . . . . . . 69

5.17 Map of the 263 nodes used in the larger Planetlab experiments. . . . . . . . 69

5.18 Average Round Trip Times for each node serving as the candidate SN node

to all other nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.19 Maximum number of players each node supports if serving as the SN. This

is based on a 180 ms RTT required to connect to the SN. . . . . . . . . . . 70

5.20 Bar graph of the number of players the best case, optimal k-median, SPOT-

Sim, and worst case SN selection. . . . . . . . . . . . . . . . . . . . . . . . . 71

xiii



5.21 Round Trip Times from each node to a single server for a 40 node topol-

ogy with r-SPOT SN placement, a 50 node topology using the 40 node SN

placement, and a 50 node topology with a new r-SPOT SN placement. . . . 71

6.1 View of the 11 node star topology. . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Number of successful services for the client/server architecture as bottleneck

link increases. The 1 supernode P2P architecture is also shown as a reference. 80

6.3 Number of successful services as the bandwidth is reduced for the client/server

architecture on the bandwidth constrained link. The 1 supernode architec-

ture is provided as a reference. . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Successful number of services as the star topology increased in size. The

multicast architecture outperforms the other approaches, with the combined

supernode and multicast configuration leading the remaining options. . . . 83

6.5 Total network traffic as the star topology increased in size with the multicast

configuration demonstrating how poorly it scales in a star topology with

larger number of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Network traffic per successful service as the star topology increased in size,

with the multicast configuration providing the most expensive service per

megabyte solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.7 700 Kbps UDP Stream Latency as the star topology increased in size. The

client/server and multicast configurations do not scale well with larger sized

topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.8 40 Kbps UDP Stream Latency as the star topology increased in size, again

the multicast configuration demonstrates a sharply raising latency for the

larger topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.9 100 Kbyte TCP Transfer Latency as the star topology increased in size, with

the client/server configuration unable to scale as well as the P2P architectures. 88

xiv



6.10 10 Kbyte TCP Transfer Latency as the star topology increased in size. The

client/server performs better in this smaller file transfer size, however not at

the smaller latencies of the P2P architectures. . . . . . . . . . . . . . . . . . 89

6.11 High level view of 92, 75, 54, 32, and 11 node hierarchical topologies. . . . . 90

6.12 View of 11 node hierarchical topology. . . . . . . . . . . . . . . . . . . . . . 91

6.13 Successful number of services for localized communication hierarchical topolo-

gies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.14 Total network traffic for hierarchical topologies. . . . . . . . . . . . . . . . . 92

6.15 Network traffic per successful service for hierarchical topologies. The client/server

approach requires more bandwidth for all sized topologies with a rising trend

in the largest experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.16 700 Kbps UDP Stream Latency for hierarchical topologies. The P2P archi-

tectures discover services at least twice as fast as the client/server. . . . . . 93

6.17 40 Kbps UDP Stream Latency for hierarchical topologies. The P2P archi-

tectures service latency outperforms the client/server in requesting the UDP

data stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.18 100 Kbyte TCP Transfer Latency for hierarchical topologies. The client/server

architecture continues to rise at an increasing rate for the largest experiments. 94

6.19 10 Kbyte TCP Transfer Latency for hierarchical topologies with the P2P

latencies scaling very well with larger topologies. . . . . . . . . . . . . . . . 95

7.1 Target (T1-3) are tracked by two sensors and the gateway (GW) node elim-

inated the redundant target 2 data. . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Decreased area represents reduced information value . . . . . . . . . . . . . 104

7.3 Clustering increases information content . . . . . . . . . . . . . . . . . . . . 105

7.4 Tracks mapped into L dimensional vectors are clustered into groups of current

tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5 The NetFPGA platform used to implement Track Clustering . . . . . . . . 110

7.6 Hardware Track Clustering Block Diagram . . . . . . . . . . . . . . . . . . 111

xv



7.7 Maximum Latency to Receive a packet over a 100 ms link. . . . . . . . . . . 116

7.8 10 node Emulab Experiment with a Gateway Cluster Node and Neighbor Link.117

7.9 Performance of Clustering Algorithm in Software (Packets). . . . . . . . . . 118

7.10 Performance of Clustering Algorithm in Software (Mbytes). . . . . . . . . . 119

7.11 Packet Loss experienced at Gateway Cluster Node due to Software Clustering.120

xvi



ABSTRACT OF THE DISSERTATION

Design and Evaluation of Distributed Algorithms for Placement of Network Services

by

Todd S. Sproull

Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2009

Roger Chamberlain, Chairperson,

Ron Cytron, Co-Chair, John W. Lockwood, Co-Chair

Network services play an important role in the Internet today. They serve as data

caches for websites, servers for multiplayer games and relay nodes for Voice over IP (VoIP)

conversations. While much research has focused on the design of such services, little

attention has been focused on their actual placement. This placement can impact the quality

of the service, especially if low latency is a requirement. These services can be located on

nodes in the network itself, making these nodes supernodes. Typically supernodes are

selected in either a proprietary or ad hoc fashion, where a study of this placement is either

unavailable or unnecessary. Previous research dealt with the only pieces of the problem,

such as finding the location of caches for a static topology, or selecting better routes for

relays in VoIP. However, a comprehensive solution is needed for dynamic applications such

as multiplayer games or P2P VoIP services. These applications adapt quickly and need

solutions based on the immediate demands of the network.

In this thesis we develop distributed algorithms to assign nodes the role of a su-

pernode. This research first builds off of prior work by modifying an existing assignment

algorithm and implementing it in a distributed system called Supernode Placement in

Overlay Topologies (SPOT). New algorithms are developed to assign nodes the supernode

role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment

and scalability. Through a series of simulation, emulation, and experimentation insight is

gained into the critical issues associated with allocating resources to perform the role of

supernodes. Our contributions include distributed algorithms to assign nodes as supernodes,
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an open source fully functional distributed supernode allocation system, an evaluation of

the system in diverse networking environments, and a simulator called SPOTsim which

demonstrates the scalability of the system to thousands of nodes. An example of an

application deploying such a system is also presented along with the empirical results.
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Chapter 1

Introduction

The rapid expansion of the Internet has brought about changes in the way computers

communicate. One such change is the increase in communication between individual end

hosts or nodes. This type of communication is called Peer-to-Peer (P2P). In a P2P network,

the nodes themselves exchange content or provide services with each other. This is in

contrast to the more common client/server architecture where nodes request content or

services from a central server. As these P2P networks grow in size, it is often advantageous

to create a tiered architecture for the nodes to communicate. Here, a smaller collection of

upper-tiered nodes take on additional responsibilities in the network. These upper-tiered

nodes are often referred to as supernodes (SNs). The responsibilities SNs provide range

from bootstrapping nodes joining a Voice-over-IP (VoIP) network to hosting a multi-player

game for a group of nodes to assisting in the discovery of content in a file-sharing network.

The role of the SN in these examples assumes some of the responsibilities of a server,

however the benefits of a P2P system rely on the nodes themselves. For example, in a file

sharing application, the files are distributed across the nodes in the network as opposed to a

centralized server in the client/server example. This dissertation focuses on the placement

and evaluation of supernodes in P2P networks.

1.1 Supernode Placement

Proper placement of an SN plays an important role in the overall performance of applications

utilizing a tiered architecture. Consider a P2P VoIP application that wishes to offer an
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audio conversation between two nodes, A and B, as shown in Figure 1.1. Now suppose

an additional node, such as node C or D is needed to act as a relay between node A and

B due to firewall or other network restrictions. This relay is an example service that an

SN provides. The VoIP application is now tasked with locating the best available SN to

serve as a relay. For example, node C is the preferred node to serve as the SN to relay

traffic between nodes A and B. If node D was selected instead of node C, traffic between

A and B would experience more delays due to the additional routers connected to node

D. This causes an increase in latency and can result in decreased call quality. In some

circumstances the application is unable to find a suitable existing SN due to high latency or

lack of resources. In these situations moving a lower tiered node to the upper tier to serve

as an SN can be considered. Assigning this SN role to a closer or more capable P2P node

can improve the quality of the conversation.

Node BNode C
Potential supernode

Node D
Potential supernode

Node A

Figure 1.1: Example topology of two nodes A and B communicating with VoIP using
either supernode C or D to relay the conversation.

The previous example illustrates the impact a poorly placed SN can have on a P2P

network. Several factors influence the task of selecting a set of nodes to act as SNs. For

example, nodes with large amounts of storage or high performance computing may prove

to be attractive options for content storage or replication services. Nodes with low latency,

high bandwidth communication links are desirable for realtime applications such as voice

or video conversations. Finally, performing the role of a server in an ad hoc multi-player

game may require both high performance computing and high speed network links.
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In order to determine the number and assignment of SNs, a cost metric is typically

utilized. This cost is composed of metrics of interest for determining placement. Metrics

such as location, CPU type, available network bandwidth, distance relative to peers, and

available storage are a few examples. This information is then used to evaluate the best

subset of nodes subject to the relative importance of each metric.

For small sized (tens of nodes) networks a centralized approach to collect and eval-

uate metrics of interest is generally applicable. However, as the size of the network in-

creases, this approach becomes prohibitively expensive due to the required communication

and computation overheads. Therefore, distributed methods are needed. Distributed place-

ment allows for increased scalability over centralized solutions. Quantifying the quality of

SN placement for distributed and centralized approaches provides much needed insight in

designing network applications.

P2P networks are rarely static in nature. Over time participants join and leave net-

works (known as churn). As portions of the network change, it may be advantageous to

reevaluate the placement of SNs for all of or a portion of the network. In addition, quantify-

ing the tradeoffs between relocating SNs or adding new SNs provides valuable information

for developers in network management.

Current research with the placement of services, or more specifically SNs, fails to

address several key issues. First, previous work is typically concerned with placing services

near the nodes requiring service at designated service centers [34][59]. Second, once services

are placed the problem is considered solved, with little discussion of reassigning SNs as

nodes join and leave the network. Third, previous research explicitly dealing with SN

placement fails to investigate the problem beyond high level placement strategies and simple

simulations [38].

This dissertation furthers the state of the art research by building large deployable

SN placement systems using new dynamic distributed SN placement algorithms. A software

implementation called Supernode Placement in Overlay Topologies (SPOT) is introduced.

SPOT focuses on assigning services to individual nodes. This research first examines pre-

vious approaches in the placement of services. The previous state of the art algorithms are
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extended to the more specific problem of SN placement. Applications utilizing this service

are then investigated to determine how to take advantage of informed placement of SNs.

1.2 Evaluation of Supernode Placement Algorithms

With the design of any distributed system, its evaluation is vital for a deeper understanding

of the design tradeoffs that are being considered. Systems level research requires careful

implementation and rigorous evaluation to gain these insights and discoveries when studying

distributed systems. Creating systems that exist only as simulations can be limited in

the lessons they provide. Moving beyond simulation to emulation and Internet-testbed

deployment develops a deeper understanding of a real system on a larger scale.

This dissertation explores a breadth of evaluation strategies regarding SNs. The

strategies include: simulations of SN placement with thousands of nodes, emulation of

different topologies with hundreds of nodes, and Internet deployment for a diverse selection

of nodes and network communications. In addition, comparisons to traditional client/server

communication models are studied. Finally, a hardware accelerated SN service is created

and investigated. This range of exploration provides a better understanding of the impact

SNs provide on a variety of applications and platforms.

1.3 Contributions

The contributions of this dissertation are in the areas of network algorithms and evaluation

of P2P networking services. Specific contributions are:

• Design and implementation of dynamic distributed SN placement algorithms

– Developed new dynamic algorithms that assign SNs in P2P networks with limited

topology information to provide node level deployment (r-mod and r-SPOT)

– Developed and deployed a software service that positions SNs in P2P networks

(SPOT)

• Evaluation of distributed placement with Internet topologies and emulation testbeds
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– Evaluated performance of distributed architecture in emulation using hundreds

of nodes

– Evaluated diverse collection of nodes and network topologies in a global research

testbed

– Created software simulator of SN placement algorithms to investigate topologies

with thousands of nodes using realistic Internet topologies

• Evaluation of applications using SN placement service

– Proposed extensions for third-party applications to support SN placement

– Evaluated multiplayer first person shooter game utilizing dynamic SN placement

algorithms

• Design of satellite P2P communication service and evaluation in emulation testbed

compared to client/server approach

• Design and implementation of P2P hardware accelerated SN with a comparison to a

software implementation

1.4 Overview of Dissertation

The next chapter provides related work on SN placement and different methods to evaluate

large scale network services. Chapter 3 describes the SN placement problem and a for-

mal description of the problem. Chapter 4 describes the Supernode Placement in Overlay

Topologies (SPOT) system developed for placing SNs in P2P networks and the new dy-

namic algorithms that execute inside of SPOT. Chapter 5 explores the evaluation of SPOT

in various topologies, introduces the SPOTSim simulator and provides an example of an

application utilizing the SN placement service. Chapter 6 investigates a P2P architecture

in satellite avionics and provides a comparison to a client/server approach. In Chapter

7 an accelerated SN is explored for avionic networks demonstrating the performance of a

hardware accelerated SN. Finally, in Chapter 8 conclusions are provided along with future

work.
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Chapter 2

Background and Related Work

The following discusses background and related work on placing services in a network. First,

several problems from operational research will be discussed. Next, previous work on the

placement of SNs is introduced. Then, a discussion about P2P applications is provided.

Next, several testbeds to evaluate distributed systems are presented. Finally, different

evaluation methods for distributed systems are considered.

2.1 General Placement Problem

The placement of SNs is closely related to the uncapacitated k-median problem or (k-

median). The term uncapacitated means that the SN can provide an unlimited amount

of service to an unlimited number of nodes. Hakimi was the first to prove the optimality

of node locations for the k-median problem [27]. Hakimi describes the problem as the

placement of k nodes in a graph where the average distance from every node to these k

nodes is minimal. An enumeration technique was provided as an initial solution.

The k-means and k-centers are also similar to the k-median problem. The k-means

problem finds k points on a graph, but those points do not have to coincide with actual

node locations. The k-centers problem minimizes the longest distance from every node to

these k nodes.
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The SN placement problem is also similar to the uncapacitated facility location

or (facility location) problem which places switches in communication networks or public

services such as hospitals or fire and police stations [27][63]. This problem investigates the

cost of locating a facility in order to minimize the average distance to its nodes. The solution

also considers the additional costs associated with creating a facility. This constraint allows

for a more dynamic deployment of facilities as demand and topologies change. In [29], the

k-median and facility location problems are shown to be NP-Hard. The terms facilities and

service centers are synonymous with SNs. Related work also discusses capacitated versions

of the problem, where each SN has a limit on the amount of service it can provide [13]. In

this chapter our discussion will stay with the uncapacitated version of the problem where

SNs can provide an unbounded amount of service to an unbounded number of nodes.

2.1.1 k-median Example Solution

An example of the k-median problem is now discussed. We present a sample topology with

n nodes where n = 10 and provide solutions for k = 1 and 2. Consider the graph in Figure

2.1 which is based on Example 2.2 in [29]. The nodes are labeled A through J with link
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H

I
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Figure 2.1: Example topology of 10 node network with link costs and demand for service
from each node.

costs associated with communication from one node to the next. Let cij equal the transition
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SN A SN B SN C SN D SN E SN F SN G SN H SN I SN J

A 0 0.75 1.25 3 0.5 2 0.5 2.5 2.5 1.5

B 0.15 0 0.1 0.45 0.25 0.55 0.25 0.35 0.35 0.15

C 0.5 0.2 0 0.7 0.7 1.3 0.7 0.9 0.9 0.5

D 0.36 0.27 0.21 0 0.42 0.6 0.42 0.48 0.48 0.36

E 0.1 0.25 0.35 0.7 0 0.5 0.2 0.6 0.6 0.4

F 1.6 2.2 2.6 4 2 0 2 3.6 3.6 2.8

G 0.1 0.25 0.35 0.7 0.2 0.5 0 0.6 0.6 0.4

H 0.5 0.35 0.45 0.8 0.6 0.9 0.6 0 0.4 0.2

I 0.2 0.14 0.18 0.32 0.24 0.36 0.24 0.16 0 0.08

J 1.2 0.6 1 2.4 1.6 2.8 1.6 0.8 0.8 0

Total Costs 4.71 5.01 6.49 13.07 6.51 9.51 6.51 9.99 10.23 6.39

Table 2.1: Total costs for each node serving as the single SN in the 10 node example

from some node i to another node j. Consider the transition from A to B or cAB, it has a

distance cost of 3, where cAB is the sum of edge costs along the minimum path from A to C.

Each node j also has a demand probability for the service dj . For example, dA equals 0.25

or node A will request service 25% percent of the time it is in operation. In this example a

single type of service is available to all nodes. The goal is to place k SNs that minimize the

total cost of providing the service based on the demand of each node and link costs. More

formally, for the k = 1 example, a set of n costs are calculated. The cost of some node i to

serve as the SN has a cost Ci defined as

Ci =

n∑

j=1

cijdj

In the case of k = 1, a solution is provided by enumerating all possible SN locations and

selecting the least expensive Ci. The least expensive (or best) location for the SN is at node

A. The total cost of locating the SN at this node is 0.05 * 3 + 0.1 *(2+3) + 0.03 * (7 + 2

+ 3) + 0.05 * 2 + 0.2 * 8 + 0.05 * 2 + 0.05 * (4 + 3 + 3) + 0.02 * (4 + 3 + 3) + 0.2 *

(3 + 3) = 4.71. When k = 2, the best location for two SNs are at A and J. Even though

nodes A and B have the two lowest costs for k=1, the best pair of SN nodes, where each

node selects the closest SN has the lowest cost for k=2. This cost involves assigning nodes

B, C, D, E, F, and G to SN A and nodes H and I to SN J, giving a total cost of the A and
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J SN components (from Table 2.1) (0.15 + 0.5 + 0.36 + 0.1 + 1.6 + 0.1) + (0.2 + 0.08) =

3.09.

2.1.2 Previous Solutions and Approximations for the k-median problem

Various solution methods exist for solving the k-median problem. Reese [61] provides a

survey of techniques from the initial problem formulation to advanced approximation and

genetic algorithms. The best known approximation for k-median to date is from Arya et

al. [4] with a (3 + 2
p

) times the optimal solution using a local search heuristic. The running

time is O(np) where p is the number of facilities the local search is able to simultaneously

swap out at a given time. Previous works involved different solution techniques. Shmoys,

Tardos and Aardal [67] and Charikar, Guha, Shmoys and Tardos [12] formulated the problem

as linear programs and rounded the results for a 6 2
3 times the optimal placement cost. Jain

and Varizani [32] provided a primal-dual solution which lowered the k-median to 6 times

the optimal placement cost. Charikar and Guha [11] improved the k-median to 4 times the

optimal placement cost.

Placing SNs in a P2P network is more than just the k-median or facility location

problem. Although the inputs to both problems are similar, the distance to each node

and the demand for service, the SN placement problem is concerned with the state of each

node. Nodes are not obligated to participate in the P2P network and may exit at any time.

Developing a mechanism to quickly and efficiently communicate with nodes and monitor

their status is necessary. Finally, in order to scale the solution to support hundreds or

thousands of nodes with a large number of constraints, a centralized k-medians or facility

location algorithm alone may prove too costly in execution time.

2.2 Placement of Services

This section describes the placement of service center or facilities as it relates to networking.

The related work is interested in placing services in a network for a range of applications

from content distribution networks (CDN) to web server caches. One of the first references

to the k-median problem in P2P networks deploying CDNs is by Qui [59]. In this work,
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various algorithms for the placement of CDNs are investigated. An optimal model is com-

pared to various competing strategies such as greedy, random, and hot spot. The hot spot

and greedy methods demonstrated comparable performance to the super-optimal model.

These algorithms are centralized, though, and their scalability was demonstrated up to a

few hundred nodes in simulation. The evaluation of larger experiments using distributed

algorithms was proposed in the future work.

2.2.1 Distributed Algorithms

The use of distributed algorithms can greatly reduce the computational complexity in plac-

ing SNs in a P2P network. The following describes several distributed algorithms used to

place services.

Neighborhood Based Distributed Topology

Laoutaris et al. [34] describes a distributed algorithm for the k-median and facility location

problems, referred to as the r-ball algorithm. The nodes in the network form groups called

r-balls. An r-ball is a collection of nodes that are r hops away from a facility. All nodes

connect to exactly one facility and are either considered inside or outside of the r-ball.

Nodes within a predefined radius r are inside the r-ball and all others are outside of it.

Facilities maintain an exact network topology of the nodes inside the r-ball. The

facilities also monitor the demand for service from all nodes connected to it. This includes

nodes inside and outside of the r-ball. A node outside of the r-ball communicates its

demand for service through its closest ring node. The ring nodes are those nodes furthest

from the facility yet still within a radius of r from it. This approximate value is placed

on the edge of the r-ball ring. The approximate demand of nodes on the ring of the r-

ball increases proportionally to account for aggregate flows from outside the r-ball. The

information is then used to solve the k-median or facility location problem locally using

integer programming. This approach is called a limited horizon view because complete

knowledge is available for nodes close to a facility and only an approximation of the demand

and topology is available for rest of the nodes.
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An example topology is provided in Figure 2.2. Here two r-balls are shown, with

radius r = 1. Nodes B and I are the facilities in each r-ball. In r-ball 1, nodes A, E, or D

may become the new facility based on the solution from the locally performed k-median or

facility location problem. Nodes C and F are more than r hops away from the facility and

thus are not eligible to become facilities in the next iteration of the algorithm.

B

ID

C

G

E

A

F

H J
K

r-ball 1 r-ball 2

Figure 2.2: Distributed algorithm example topology. Two r-balls are shown with facilities
located at nodes B and I. Nodes inside the ring are eligible to become new facilities based

on the local solution of k-median or facility location.

Due to the limited knowledge of the r-ball algorithm, the local solution is only able

to relocate a facility to another node inside its r-ball. If r = 1, then a facility is only able to

relocate to a node one hop from its current location. Matlab simulations have shown setting

r to small values such as 1 or 2 can provide SN placement solutions close to those obtained

with an optimal centralized algorithm [34]. A trade-off exists between the scalability and the

overall performance of the algorithm. As the size of r increases, the benefits of a distributed

algorithm diminish, ultimately limiting the scalability.

A discussion of the r-ball algorithm used by Laotaris et al. is now provided. Notation

and definitions are first discussed. A network G = (V, E) is defined by a node set V =

{v1, v2, ..., vn} and an undirected edge set E. Let d(vi, vj) denote the length of the shortest

path between vi and vj . Let s(vj) represent the service demand originating from node

vj . Let F ⊆ V denote a set of facility nodes. Each iteration of the r-ball algorithm is

represented with the superscript m. Let F (m) ⊆ V represent the set of facilities at the mth

iteration. Let V
(m)
i be defined as the r-ball of facility node vi and all nodes that are within

a radius r of vi. Let U
(m)
i denote nodes outside the r-ball Vi that selected vi as their closest

facility. These nodes receive service from the facility vi but do not provide demand and
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topology information to it. The domain W
(m)
i = V

(m)
i

⋃
U

(m)
i consists of a facility node of

its r-ball and the surrounding ring. From the previous definitions V = V (m)
⋃

U (m) where

V (m) =
⋃

vi∈F (m) V
(m)
i , U (m) =

⋃
vi∈F (m) U

(m)
i .

Some initialization is required before executing the algorithm. First create a set

F (0) ⊆ V of k0 = |F (0)| nodes to act as the initial set of facilities. Also, let F = F (0) denote

the unprocessed facilities. Finally, let F− = F (0) denote a variable containing the initial

group of facilities.

Algorithm 1 r-ball Distributed Algorithm

1: while F 6= ∅ do
2: vi ∈ F
3: DiscoverLocalTopology(vi)
4: GJ ← TestRballNeighborMerge(vi)
5: F (m) ← OptimizeRballGroup(GJ)
6: F ← F \ (J

⋂
F−) {Remove Processed Facilities}

7: if F = ∅ then
8: if F (m) 6= F− then
9: F ← F (m),F− ← F (m)

10: end if
11: end if
12: end while

From Algorithm 1, the first step is to select some facility vi from the batch of facilities.

Next, discover the topology of nodes close to it using a neighborhood discovery protocol

(lines 2-3). No details are provided for the discovery protocol, however a reference to related

work is offered [44]. Next, test if the r-ball can merge with neighbor r-balls. This test checks

for intersections between r-balls (line 4). An intersect exists if at least one node is within a

distance r from all facilities under consideration. Let J ⊆ F (m) denote a composition of vi

with the facilities that it can merge with. J produces an r-shape GJ = (VJ , EJ) which is a

subgraph of G composed of the facilities of J , their neighbors up to a distance of r, and the

edges between them. Restrictions can also be placed on the maximal size of the r-shape so

it is much smaller than O(n).

The next step is to optimize the single r-ball or if joined with neighboring r-balls

the r-shape GJ . This is accomplished through integer linear programming to solve the
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k-median problem using the facilities and nodes inside the r-shape as inputs. The solution

of the k-median problem returns the best locations for the |J | facilities (line 5).

After determining the locally optimal solutions, remove the processed facilities, both

vi and the merged facilities, from F . Also update the set of current facilities F (m) with the

new locations from the local optimization (line 6).

Finally, test if all facilities have converged to locally optimal facilities (lines 7 - 11).

If F = ∅, then all facilities of the latest batch have been processed, if not iterate through

the algorithm again. After processing all facilities, check if the locations of the current set

of F (m) are different than the initial set F−. If they are different, re-iterate with a new

batch of facilities where F = F (m) and F− = F (m). Otherwise terminate by returning the

locally optimal solutions.

Using the algorithm presented, Laoutaris et al. performed Matlab simulations com-

paring the placement of the r-ball algorithm to the optimal placement of facilities. The

impressive simulation results helped motivate a starting point for this dissertation. My

research takes advantage of the limited horizon view similar to r-balls and extends it. My

work places emphasis on a slightly different problem where the placement of nodes requires

more precision than selecting a suitable autonomous systems (AS). Also, assumptions such

as inferring node topology and communication with multiple SNs in a single r-ball are left

unexplored in the previous work. This dissertation embraces the limited horizon view of ser-

vice placement and focuses on placement down to the node level, making it more applicable

for a different set of applications.

2.3 Peer to Peer Applications and Supernodes

This section provides background on a range of topics dealing with P2P and supernodes.

The rise of P2P and early academic research in P2P networking is first discussed. Then

some background about supernodes and applications deploying them is provided. Finally,

a discussion of APIs available to deploy and maintain P2P networks is presented.

The advances of P2P are arguably due to the popularity of Napster [51]. Napster

provided a mechanism to download music from a centralized search through nodes connected
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to the Napster P2P network. The research community responded to the interest generated

from Napster and its clones by creating services which provided distributed file indexing

and sharing. These research efforts demonstrated a decentralized, scalable approach to the

Napster phenomenon. One popular technique, utilizing distributed hash tables (DHT), was

developed to organizes node placement and file indexing. Examples of a few academic P2P

networks are now provided.

Initial research in developing structured P2P networks originated from Plaxton [57].

This work established the idea of creating structured P2P networks based on routing data

to a unique identifier (ID) for each node.

One of the first widely deployed academic projects is Pastry [64]. Pastry’s structured

network came from the P2P ring formed with uniquely identifiable nodes which maintained

pointers to their neighbors and the nodes spread throughout the network. Similar to other

first generation P2P networks, Pastry maintained an O(log N) query lookup time where N

was the number of hops needed to resolve a file query. Other examples of first generation

P2P networks include Chord [72] and Content-Addressable Networks (CAN) [60].

Gnutella [25] competed with Napster in the commercial P2P market. The Gnutella

network provided decentralized search capabilities and consisted of an unstructured P2P

network. In order for a query to propagate through the network, a Gnutella node flooded

its P2P neighbors with a request to locate the file. Later versions of the software introduced

the concept of supernodes (SNs). That created a two-tier P2P network where a subset of

the regular nodes connected directly to a single SN. Each SN maintained indices of a file

subset in the network and communicated with additional SNs to locate files. In addition to

providing file indices, SNs also served as a bootstrapping mechanism for nodes joining the

P2P network.

Another widely popular P2P application is Skype, a VoIP service with over 246

million registered users [69] and up to 10 million users online at a given time [68]. Here the

SNs provide two useful services. First, they serve as a bootstrap device necessary to provide

initial connectivity. Second, in the event that direct communicate between the parties is
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unavailable, due to Network Address Translation (NAT) or firewall constraints, the SN can

serve as a relay node to connect both parties.

2.3.1 SNs

SNs provide a range of capabilities such as distributing data throughout the network, bal-

ancing load, and providing network services. SNs manage other nodes joining the P2P

network, route search queries, and act as data rendezvous points. They generally have

more bandwidth and processing power than other nodes in the P2P network. In current

systems, the process of selecting a SN is typically arbitrary. The selection of SNs may be

based on the order in which nodes join or random selection.

Recent work demonstrates the importance of SN placement [38]. Here, three dif-

ferent placement solutions, based on the type of P2P network evaluated studying, were

introduced. The paper considered structured, unstructured and coordinate based networks.

Their research also relates the SN location problem to the k-median or absolute centers

problem. Unfortunately, their research lacks evaluation of the proposed protocols and cites

a need for more algorithmic approaches to solve this problem.

In addition to placing SNs, P2P networks also need to determine the number of

SNs to deploy. This decision depends on several properties of the network. The first

is the amount of communication between SNs and regular nodes in the network. If the

communication is fairly small, maintaining a SN ratio of 100:1 or 1000:1 may prove suffi-

cient. However, if large amounts of communication are necessary, additional SNs need to

be deployed. Another property to consider is the amount of computation SNs perform. In

addition to providing bootstrapping capabilities, SNs can perform additional computational

services such as maintaining the state of nodes in the network.

2.3.2 Application Specific Placement Solutions

One application receiving some attention in regards to SN placement is VoIP. Ren et al. [62]

introduce a concept of deploying an P2P network to shortcut the small percentage (10%)

of VoIP traffic where the default routing provides RTT times greater than than 300 ms.

15



Another area of research for improving VoIP traffic is through the use of fast path switching

[74]. Here the communication path for VoIP traffic is based on measurements of path quality

and changes dynamically. Both of these approaches are effective at improving VoIP appli-

cations, particulary Skype. Our research approaches the problem differently by reducing

the maximum cost of SN placement for the entire network.

2.3.3 Application Programming Interfaces (API)

P2P development tools and APIs provide useful abstractions for the creation and use of P2P

networks. JXTA [78] is an open source API that simplifies this process. This API provides

an open infrastructure allowing developers to create loosely-consistent distributed hash table

(DHT) networks that operate across a variety of platforms. The original implementation

was developed in Java, but versions for the C language and low powered mobile devices also

exist. The default message distribution communicates with nodes via broadcast messages.

JXTA also supports a two-tiered hierarchy for P2P networks using SNs similar to SNs in

Gnutella. JXTA uses the term rendezvous node when discussing SNs.

As structured P2P networks became more popular, a common API was also devel-

oped, called OpenDHT [33]. This allowed developers to use commands such as put and get

to communicate with a DHT. Providing such a simple API allows for application devel-

opers to easily extend OpenDHT for useful networking services. An example service built

on top of the OpenDHT architecture is i3 [73]. The i3 service attempts to generalize the

point-to-point communication in the Internet with services like multicast and anycast.

The growth of P2P applications has demonstrated a need for SNs to provide more

efficient communication. Tools and APIs that allow for easier deployment of P2P appli-

cations are invaluable. The power and ease of use of the JXTA API is explored in later

chapters as an efficient tool to develop networking applications.
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2.4 Tools to Evaluate Network Services

This section describes different approaches for evaluating distributed network services.

These approaches vary from software simulation to distributed emulation on a large number

of hosts.

2.4.1 Network Simulators

One common method to evaluate network protocols and applications is through software

simulation. Different software suites exist to evaluate P2P protocols and range from ad hoc

simulators written specifically for one application to plug-ins for commonly used network

simulators.

One of the most successful networking simulators is ns-2 [53]; a discrete event sim-

ulator that models network protocols. Experiments are created with the Tcl language.

The experimenter describes node topologies, traffic patterns, link delays and bandwidth

constraints on the network. The simulator generates traffic based on input models for

applications and provides transport layer communication between nodes.

The ns-2 simulator has evolved considerably since its initial deployment. It now

provides models for wireless links, quality of service, multicast, and other services. The

software simulator is very popular for simulating arbitrary network topologies; however, it

lacks the ability to accurately model complex interactions between higher level applications.

Support does exist to create addon modules for specific application layer protocols, but,

the simulation complexity greatly increases. This prevents ns-2 from executing a P2P

simulation with more than a few nodes in a reasonable amount of time, especially compared

to emulation testbeds or P2P network simulators.

Another method of software simulation is through ad hoc simulators written for a

specific application. Consider a P2P network service such as Pastry [10] or Chord [72].

Typically, these software distributions provide a simulation model of nodes joining and

leaving the network. Unfortunately, they also lack the realism of an actual implementation

in terms of capturing network link characteristics and underlying protocols.
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More generic P2P simulators were developed in an attempt to model the behavior of

various P2P protocols. However, these P2P simulators ignore link level details due to the

complexity and processing involved. PeerSim [55] is one of the most widely used examples of

this type of simulator. It implements the Chord and Pastry protocols and provides an API

to augment the simulator, allowing more complex applications to run on top of it. P2PSim

[54] is another example of a P2P Simulator. Similar to PeerSim, P2PSim also provides an

implementation of the Chord protocol.

2.4.2 Emulation Testbeds

A different model for evaluating P2P networks is through emulation testbeds. Network

emulation testbeds vary in size, administrative control, accessibility, and reprogrammability.

This section discusses the most popular testbeds and future directions in this field.

The first large scale emulation testbed developed for researchers was Emulab [80].

Emulab is a network testbed that provides researchers a range of environments to evaluate

systems. Emulab currently has 365 PCs available for a single experimenter to connect in

an arbitrary topology. Users configure each PC with a different operating system from

various distributions of Linux to Windows XP. It allows users to create experiments, main-

tain complete control over the type of experiment, and specify the latency and bandwidth

between nodes. Each node supports multiple interfaces and allows the creation of arbitrary

network topologies. Emulab also supports virtualization using FreeBSD jails [30]. Jails

allow a researcher to increase the size of the experiment beyond the physical limitations of

the number of nodes available.

The Emulab framework has been replicated for specialized testbeds such as DETER

[6] and WAIL [79]. The framework provides users with a Web interface that allows the

creation of topologies, management of experiments, and remote access to testbed nodes.

Of the testbeds deploying the Emulab infrastructure, the cyber-DEfense Technology

Experimental Research Testbed (DETER) [6] is the most notable. DETER performs large

scale security experiments from virus propagation to DNS root server failures. It contains

260 nodes and is collocated at UCSD and ICSI. Specialized hardware performs additional
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security processing, such as the NetFPGA board [40] and commercial routers from Juniper

like the M7i [31].

Another replication of the Emulab efforts exists in the Wide Area Internet Lab

(WAIL) [79]. WAIL emphasizes experimentation with network equipment through the

configuration of various Cisco switches and routers. It offers 120 PCs, 50 IP routers and

switches, and hardware traffic generators. Researchers also developed a scalable network

path emulation tool [1] that provides reliable link delays between nodes and models latencies.

The Open Network Lab (ONL) [15] is a testbed that provides reconfigurable hard-

ware in the network. ONL uses gigabit switches with per port processing so users can deploy

transport level protocols and network services. Through the use of the Smart Port Card

(SPC) [16] and the Field Programmable Port Extender (FPX) [39] researchers can create

environments utilizing network processing previously unavailable with commodity PCs. A

Java Graphical User Interface (GUI) allows remote access to the testbed to configure links

between ports and monitor traffic between nodes.

The largest distributed testbed available for researchers is PlanetLab [56]. PlanetLab

currently contains 917 nodes connected over the Internet. Each node uses virtualization to

provide administrative control over a slice of a node. This presents each user with their

own share of CPU, memory, and I/O. Machines are typically located within universities and

accounts are issued to universities that contribute machines to the testbed. PlanetLab also

provides priority scheduling of slices that allow 25% of the CPU and 2 Mbps of network

bandwidth.

One of the next generation testbeds proposed is the Virtual Network Infrastructure

(VINI) [5]. This architecture would provide the accessibility of Planet Lab and the repro-

ducibility and isolation of Emulab to create a virtual network of nodes capable of behaving

as routers using open-source software. VINI will provide multiple paths between nodes and

allows Internet traffic to pass through the testbed. Researchers can then better transition

experiments from emulation to deployment. The preliminary results show a substantial

performance penalty from modern CPUs performing routing in software.
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A slightly different direction for future testbeds is Flexlab [19]. It combines Emulab

with Internet traffic models that will allow researchers to experience Internet-like behavior

from an application’s point of view. The over utilization of resources in PlanetLab helps

motivate a testbed such as Flexlab. Flexlab aims to provide the best of both worlds in

terms of controllable experiments and Internet realism.

In this dissertation experiments are conducted using Emulab and Planetlab. The

isolation of Emulab is invaluable for developing and debugging distributed systems. The

virtualization of Emulab also allows for larger isolated experiments to better understand

scalability issues. Planetlab is also utilized because of the diversity obtained through shared

networking and compute infrastructure. Deploying the experiment in such a diverse envi-

ronment leads to interesting and unexpected system behavior.

2.5 Evaluation of Distributed Network Services

Large scale systems research has grown in recent years due to the increase in computing

power and falling prices of commodity hardware. These advances allow researches to create

bigger experiments in less time. A discussion is now provided describing the several related

works studying large systems.

The Julia Content Distribution Network (CDN) [8] is a P2P distribution tool that

demonstrates a fairly common experimentation methodology. First a custom discrete event

simulator is created to verify the algorithm. Then, experiments are deployed with a few

hundred nodes on PlanetLab. The simulation consists of approximately 1200 nodes and

250 nodes are used in PlanetLab.

As with most large systems, some characteristics of the Julia CDN simulations agree

with results observed experimentally. However, at least one metric, the absolute time

associated with distributing a piece of data, fails to demonstrate simulation and emulation

results that agree. In fact, data was not even reported on 50 of the 250 nodes due to

non-ideal operating situations. The authors state that the simulation did not capture the

properties of the network well. Although not surprising, it motivates the use of emulation

and development of better simulation models to introduce as much realism as possible.
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The evaluation of SNs is another area of much interest, even though much of the

previous work is limited to simulation models. Mastroianni et al. [45] present a super peer

model for resource discovery. They provide an interesting design and analysis of the costs to

deploy super peers. The simulation model is an event-based object simulator that reports

metrics such as the message load on a super peer and the average response time of a super

peer query depending on the size of the network. The overall system performance is left

unexplored.

Lin et al. [37] present a technique to simulate very large (over 1 million nodes) sys-

tems. They introduce Slow Message Relaxation (SMR) that trades simulation accuracy for

performance. It allows the simulator to execute events further ahead in time than tradi-

tional simulators. SMR avoids the waiting endured by previously used minimum network

delay models. The authors claim SMR is a reasonable approach because of its distributed

protocol resiliency. With the use of a 250 machine cluster, these simulations are able to

exceed 1.5 million nodes. The technique provides an order of magnitude increase in speed

while maintaining statistically accurate simulations. What remains to be seen in this work

is a smaller simulation would agree with an implementation.

With these different experimentation approaches, it is clear that one size does not

fit all for all types of experiments. Depending on the size and complexity of the algorithms,

experiments may be better suited for one type of evaluation over another. In this dissertation

a range of simulation and emulation results are gathered. Relationships between simulated

models and experimental data are also investigated thoroughly.
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Chapter 3

Supernode Placement Problem

3.1 Preliminaries

Definitions are now provided on the types of network elements used to model the supernode

(SN) placement problem. The network is made up of components described in Figure

3.1. The network’s routers provide communication between nodes. Connections can exist

between routers and routers and between routers and a node. At any given time, nodes

are classified into four states. The nodes themselves operate in the active or inactive state.

Nodes in the active state may also operate in the willing to become SN state or SN state.

Only nodes in the willing to become SN state may be assigned to the SN state. A hierarchical

relationship between the message sending nodes is depicted in Figure 3.2.

Message Sending Nodes

Inactive Node

Active Node

Willing to become Supernode

Supernode

Router

Figure 3.1: Components in the network graph topology.
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Message Sending Nodes

Active NodeInactive Node

Supernode

Willing to become Supernode

Figure 3.2: Hierarchy of Message Sending Nodes.

In order to evaluate the assignment of SNs at particular nodes, a method for com-

puting a global cost is provided. This cost metric is based on the node state and topology.

Consider the network topology T1 shown in Figure 3.3. This topology contains three nodes

A, B, and C and one router providing communication between the nodes. From Figure 3.3

we can see that Node A is one unit of distance from the router and two units from Node B.

Node C

Node A

Node B

1

1
4

Figure 3.3: Example topology with three nodes A, B, and C connected through a router.
Nodes A and B are active and A is the SN.

When describing the state of each node we define a labeling partition Pi of the

topology T as Pi(T ) or just Pi when referring to a single topology. Let a particular partition

Pi of topology T indicate the state of each node as inactive, active, willing to become SN,

or SN. The partition P1 in Figure 3.3 depicts node A as an SN, node B as willing to become

an SN and node C as inactive.
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We determine the assignment of SNs based on their distance to other active nodes

and the demand of each node to communicate with an SN. Initially, the demand to use SNs

is uniform. The number of nodes assigned as SNs is k, where k is determined a priori. The

distance between nodes is measured in nonnegative units. In general, we define a cost for

a given partition Pi as Cost(Pi). This cost refers to the service cost for k nodes operating

as SNs in a particular partition. This does not include transition costs dealing with nodes

moving from one state to another. A simple example is now provided. Consider the cost

of the previously described partition P1 with node A as the only assigned SN, denoted as

Cost(P1). The cost is now computed below.

Cost(P1) = d(A, A) + d(B, A) = 0 + (1 + 1) = 2

With uniform demand, the cost is simply the distance from node B to node A. Note, the

cost with node B as the SN is the same as Cost(P1). Therefore, the selection of node A

instead of node B as SN is arbitrary.

Now consider Figure 3.4 where node C becomes active and willing to become an SN,

called partition P2. If node A remains as the SN, the cost becomes simply the distance

from node C to the SN plus the cost Cost(P1) as displayed below.

Cost(P3) = Cost(P1) + d(C, A) = 2 + (4 + 1) = 7

Suppose two SNs were required and assigned to topology T1 as shown in Figure 3.5. Here,

Node C

Node A

Node B

1

1
4

Figure 3.4: Example topology with all three
nodes active and A is the SN.

Node C

Node A

Node B

1

1
4

Figure 3.5: Example topology with three
active nodes, where nodes A and C are SNs.

assigning SNs at nodes A and C (called partition P4) results in the lowest cost. When
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multiple SNs are available, the active node selects the SN closest to it in terms of distance.

The cost of this partition is computed below.

Cost(P4) = d(A, A) + d(B, A) + d(C, C) = 0 + 2 + 0 = 2

Clearly adding more SNs will result in a lower cost partition if SNs are chosen carefully.

However, if every node is assigned as an SN, the benefits of this two-tiered architecture

disappear. Next we provide a formal statement of the problem.

3.2 Problem Statement

Let G = (V ,E) be a weighted, undirected graph, where V represents the routers and message

sending nodes. We define a partition in V where VN represents the message sending nodes

and VR represents the routers. Therefore VN ∪VR = V and VN ∩VR = ∅. All VN nodes have

a degree of 1 and all VR nodes have a degree > 1. Also, we define a partition in VN where

VI represent the inactive nodes and VA represent the active nodes. Therefore, VI ∪VA = VN

and VI ∩VA = ∅. Let VW represent the active nodes that are willing to become SNs. Let Vk

represent the active nodes that are assigned as SNs. Therefore Vk ⊆ VW ⊆ VA. E represents

the direct physical connections between vertices in V . Associated with each edge e ∈ E is

a positive weight w(e), the communication metric of interest.

Let d(u, v) represent the shortest distance between nodes u and v according to

weights w. Note: d(u, v) is defined on u, v ∈ V ; however our usage will be constrained

to the circumstance u, v ∈ VN , hence the use of the term node for u and v. Each node u is

assigned a demand t(u). Let d(u, J) be the shortest distance from the node u to its nearest

element in the set J ⊆ VN . Our problem is to find a set of exactly k nodes in VW , called

Vk, that will be assigned as SNs. Determine Vk such that

∀S ∈ 2VW , |S| = k → (
∑

u∈VA

t(u)d(u, Vk) ≤
∑

u∈VA

t(u)d(u, S)). (3.1)
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3.3 Cost Properties of SN Topologies

Next we consider different properties of SN placement. The costs of moving a node from

inactive to active state, relocating an SN, and transition an additional node from willing to

become SN to the SN state, will be discussed.

3.3.1 Cost for a single node to become active

Consider a network that assigns SNs based on the problem statement previously described.

Let us denote the optimal cost associated with the assignment of a set Vk of k nodes as SNs

in a partition Pj as Cost∗(Pj). We next describe the cost of a new partition Pm that results

when a single node u transitions from the inactive to active state and a new assignment

of SNs is not computed (i.e., the set Vk is unaltered). The cost of this new partition Pm,

with the old assignments of SNs, is described in Equation 3.2, where d(u, Vk) is the shortest

distance from node u to its nearest node in the set Vk.

Cost(Pm) = Cost∗(Pj) + t(u)d(u, Vk)) (3.2)

This new cost is just the distance of the recently active node u to the closest SN in

S and the previous optimal cost Pj before u became active.

3.3.2 Reducing cost with better SN placement

Consider a topology T2 with five nodes, a partition P5 in which four nodes are initially

active and one is inactive and all demands are unity (∀u, t(u) = 1), as shown in Figure 3.6.

Each active node in the figure is a distance of 6 from each other. This symmetry between

nodes makes the SN assignment arbitrary with node A being assigned as the SN in this

example. The optimal cost of this partition with an SN assignment of node A is displayed

below.

Cost∗(P5) = d(A, A) + d(B, A) + d(C, A) + d(D, A) = 18

Now let node E become an active node in the willing to become SN state and call this
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Node E

Node B

1 1

1

Node C

1

Node A

2

2

2
1

2

Node D

Figure 3.6: Example topology with four
active nodes with node A assigned as the SN.

Node E

Node B

1 1

1

Node C

1

Node A

2

2

2
1

2

Node D

Figure 3.7: Example topology with five
active nodes with node F assigned as the SN.

partition P6. The cost for node E to join without recalculating the SN assignment is shown

below, which is the same as Equation 3.2.

Cost(P6) = Cost∗(P5) + d(E, A) = 18 + 4 = 22

If the optimal cost of the new partition is determined, node E is assigned as the SN as

shown in Figure 3.7 and called P7. The cost for this assignment is shown below.

Cost∗(P7) = d(A, E) + d(B, E) + d(C, E) + d(D, E) + d(E, E) = 12

From this example we can see that it is possible to lower the cost of an SN assignment for a

given topology with an additional node becoming active. Intuitively, one might expect the

cost of an SN assignment to increase as more nodes become active. However, opportunities

for reducing cost can exist as additional nodes become active.

3.3.3 Bounds for a single node becoming active with SN reassignment

Next we seek to find a lower bound of cost when a single node in a partition moves from

the inactive to active willing to become SN state. Suppose for some topology T , and some

partition Pj the SN is assigned at some node u, and the optimal cost is Cost∗(Pj) . Assume

one node, v moves from the inactive to active state to create the partition Pm. Now perform

a reevaluation of the SN assignment for all nodes in the topology. Let y represent the new
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SN with optimal cost. Now we can discuss the upper and lower bound cost of this new

partition Pm with respect to Pj .

First we will show the upper bound of the new cost, Cost∗(Pm) in Equation 3.3.

Cost∗(Pm) ≤ Cost∗(Pj) + d(y, v) (3.3)

Suppose Equation 3.3 is not true. Thus, Cost(P2) is more expensive than Cost(P1) + d(y, v).

However, by definition of the original problem, Cost(P2) can not be more expensive, because

a valid SN assignment of Cost(P1) + d(y, v) exists and would be selected instead of assigning

the SN at node y, thus a contradiction. Therefore, Equation 3.3 is an upper bound for the

cost of one additional node becoming active with a single SN reassignment.

Now we provide a lower bound for the cost of the partition Pm after a single new

node transitions from inactive to willing to become SN state. Assume v is located as close

as possible to every other node in the topology. The best assignment of any node as the SN,

by definition of the original problem, is an assignment that provides the shortest distance

from it to all other nodes. Therefore, the best assignment for a single SN assignment is one

that cuts the distance in half to all other nodes in the topology. Thus reducing the costs to

no more than half the cost of Cost(Pj) plus the cost of the old SN connecting to the new

SN, as shown in Equation 3.4.

Cost∗(Pm) ≥
1

2
Cost∗(Pj) + d(u, v) (3.4)

Therefore, the lower bound on a node transition from the inactive to active state is at least

1
2 the cost of the partition before the node moved from the inactive to active willing to

become SN state.

This section described a few properties of the SN placement problem. What follows

are the initial algorithms used to place SNs in a P2P network.
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3.4 Distributed Supernode Placement Algorithms

This section presents the distributed algorithm developed to assign nodes as SNs in an

overlay network. Intuitively, the algorithm divides the entire overlay network into smaller

groups called neighborhoods. A neighborhood consists of a SN and nodes that are within

a distance r from the SN and that are in active willing to become SN state. A network

topology is then obtained for all the nodes inside the neighborhood. The demand to use

the SN service is also collected from the nodes inside the neighborhood as well as an ap-

proximation of demand from the nodes outside the neighborhood. This information is then

used to compute a locally optimal assignment for a SN inside each neighborhood.

As the assignment of SN changes, so does the neighborhood surrounding the SN. The

movement of the neighborhood can create an overlap between two neighborhoods. When

this occurs, the neighborhoods are able to merge together to form larger neighborhoods.

These larger neighborhoods may eventually split up due to future SN assignments. This

SN placement completes once each SN reaches its locally optimal assignment, where any

additional move does not lower the cost of the SN placement.

3.4.1 General Behavior

More detail is now provided about the general behavior of the placement algorithm along

with an example. Nodes initially joining the network connect to a well known bootstrap

node for authentication and initialization. Once authenticated, a node is either promoted

to SN status or provided the address of an SN to connect to. Each is then notified by

that SN if the node is close enough to join the neighborhood. Those nodes not joining

the neighborhood locate the closest node in the neighborhood to act as a neighborhood

representative. A neighborhood representative provides mechanisms for nodes outside the

neighborhood to influence the future assignments of SNs. This is accomplished by the

neighborhood representatives aggregating demand from nodes outside the neighborhood

and representing it as their own. Where demand represents the desire for a node to use the

service and we are assuming a demand of unity for each node. An example is now provided

to explain how nodes, neighborhoods and neighborhood representatives interact.
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Node C
Neighborhood Rep

Neighborhood

Figure 3.8: Example neighborhood with SN at node D and neighborhood representative at
node C with an r value of 3.

Figure 3.8 depicts a network with three nodes inside and two nodes outside of a

neighborhood. In this figure, the radius metric r=3, therefore nodes nodes C and E are

inside the neighborhood (with distances of 3 and 2 to the SN, node D, respectively). Nodes

A and B are too far from the SN therefore placed outside the neighborhood, node A is also

not willing to become an SN (it is in the active state) and would not join the neighborhood

even if it was close enough. This is because any node not in the willing to become an SN

state can not join the neighbor because all nodes in the neighborhood must be eligible to

become an SN. Nodes A and B must find their closest neighborhood representative and

will select node C. With this topology, nodes A and B use node C as their neighborhood

representative, and node C reports a demand of 3 to the SN, with node E reporting a

demand of 1. With the node demands and topology information for nodes C, D, and E, the

SN, node D, is ready to determine if it will reassign the SN to a new location. To do this,

the SN solves the local k-median problem for three nodes with the specified demand and

topology information using integer linear programming (ILP). In this example, the output

of the k-median problem assigns node C as the SN and the neighborhood in Figure 3.9 is

created.

This SN placement strategy strikes a balance between complete global knowledge

and a very limited local view. With complete local knowledge of the distance to each

node and associated demand, the SN is able to solve the k-median or problem while not
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Figure 3.9: Example neighborhood with SN at node C.

completely ignoring nodes outside of the neighborhood by considering aggregate demand

information.

3.4.2 Definitions

A description of the distributed algorithm will now be discussed using notation presented

earlier. The initial algorithm is a slightly modified version of the r-ball algorithm from

Chapter 2 and will be referred to as r-mod (Algorithm 2). We will discuss the r-mod

algorithm using the notations discussed in this chapter and throughout the rest of the

dissertation.

We describe each iteration of r-mod with the superscript m. Let V
(m)
k ⊆ Vw represent

the set of SNs at the mth iteration. We define N
(m)
i as the neighborhood of nodes of SN

vi. Thus N
(m)
i contains all nodes willing to be an SN within radius r of SN vi. Let U

(m)
i

denote the set of nodes outside the radius r or unwilling to become SNs, but still connected

to the SN node vi.

The domain W
(m)
i = N

(m)
i

⋃
U

(m)
i of a SN is itself and all nodes connecting to it. We

can also describe VN = N (m)
⋃

U (m) where N (m) =
⋃

vi∈V
(m)
k

N
(m)
i , U (m) =

⋃
vi∈V

(m)
k

U
(m)
i .

3.4.3 Neighborhood Costs

In order to determine if an SN placement is better than another SN placement a cost metric

is used to evaluate each topology. Earlier in this chapter, a cost metric was introduced in
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the problem statement. Now we discuss cost as it relates to distributed placement and

neighborhoods. Therefore, we are in interested in the costs associated with a particular

neighborhood given the current SN placement and the new SN placement. We will formally

define two costs one known as the neighborhoodCost and the other as the trueNeighbor-

hoodCost. The neighborhoodCost is the cost of placing SNs with respect to the costs and

demands of nodes inside the neighborhood. This includes the aggregate demands from the

neighborhood representatives. A few definitions are now introduced. Let Q
(m)
u be the set of

nodes connected to the neighborhood representative u at iteration m, where Q
(m)
u ⊆ U

(m)
i .

Also we introduce T (u) as the aggregate demand of some neighborhood node u as defined

below.

T (u) = t(u) +
∑

w∈Q
(m)
u

t(w) (3.5)

With these definitions we can now present the neighborhoodCost which computes

the cost for locating an SN in a neighborhood based on the aggregate demands of all nodes

in the neighborhood and their distances to the SN.

neighborhoodCost =
∑

u∈N
(m)
i

T (u)d(u, vi) (3.6)

The trueNeighborhoodCost is very similar to neighborhoodCost. However, the

trueNeighborhoodCost includes the individual demands of all nodes connected to the SN

in a particular neighborhood. Also, the aggregate demands are no longer applicable as

distance and demand information is received from every node connecting to the SN in this

neighborhood. The trueNeighborhoodCost is now defined below.

trueNeighborhoodCost =
∑

u∈W
(m)
i

t(u)d(u, vi) (3.7)
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As mentioned before, this cost provides complete information regarding the distance

and demand of all nodes associated with a neighborhood. This provides a means to deter-

mine SN placement improvement in absolute terms from from a previous SN placement,

assuming the set of nodes connected to the neighborhood has not changed.

3.4.4 Distributed Supernode Placement Algorithm

Some initialization is necessary before executing r-mod. First, randomly pick an initial set

V
(0)
k ⊆ Vw of k0 = |V

(0)
k | nodes to act as SNs. Also, let Vk = V

(0)
k denote the unprocessed

SNs, or SNs that have not performed an iteration of the placement algorithm. Finally, let

V −

k = V
(0)
k denote a variable containing the initial group of SNs.

Algorithm 2 Placing SNs in a P2P Network (r-mod)

1: ConnectToBootstrapNode()
2: while Vk 6= ∅ do
3: vi ∈ Vk

4: DiscoverLocalTopology(vi)
5: GJ ← TestSupernodeNeighborMerge(vi)

6: V
(m)
k ← OptimizeSupernodeGroup(GJ)

7: Vk ← Vk \ (J
⋂

V −

k ) {Remove Processed Supernodes}
8: UpdateBootstrapNode(Vk)
9: if Vk = ∅ then

10: if V
(m)
k 6= V −

k then

11: Vk ← V
(m)
k , V −

k ← V
(m)
k

12: end if
13: end if
14: end while

The similarities and differences between the two algorithms, r-ball and r-mod, will

now be discussed. The initial changes made to the r-ball algorithm arose from implementa-

tion issues and subtle differences in the problems each aims to solve. The first change made

to the r-ball algorithm provides for a dynamic topology. The previous work assumed a

fixed size for the topology and ran simulations based on this size. In r-mod, nodes are able

to join the topology at any time. The second notable change is in the use of a bootstrap

node. As mentioned earlier the bootstrap node is used to assign nodes as temporary SNs
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or provide an address of an existing SN (line 1). The bootstrap node also maintains some

state for each SN to inform other SNs if it is able to merge at a particular time.

In lines 2 - 7 both algorithms perform nearly identical functionality. However, the

DiscoverLocalTopology method (line 4) was not explicitly described in the r-ball literature,

and simply referred to previous work [50]. We provide our description of the DiscoverLocal-

Topology method below. In line 8 another call is made to communicate with the bootstrap

node. Here, any changes to the SNs are reflected back to the bootstrap node to maintain

the state of the SNs. The remainder of r-mod is nearly identical to the r-ball algorithm

lines 9 - 14, where each SN determines whether to continue trying to improve its position.

The DiscoverLocalTopology method (Algorithm 3) is now described. This method

determines whether a node is inside or outside of the SN neighborhood (also known as an

interior or exterior node). First, each node connects to the SN and sends an initialization

string which reports its distance to the SN. The SN then decides if that nodes is an interior

or exterior node. After the initialization period is over, the interior nodes receive a list of all

other interior nodes from the SN. These nodes then calculate with all other interior nodes.

These distance vectors are then sent to the SN. The SN uses this information to create a

complete routing table of the neighborhood.

Now that we have presented an initial placement solution, an evaluation of this

algorithm will be explored. The next chapter investigates an implementation and evalua-

tion of this initial placement algorithm along with enhancements to provide improved SN

placement.
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Algorithm 3 Discover Local Topology

1: for all vi ∈W
(m)
i do

2: DistanceToSN ← CalculateDistanceToSN(vi)
3: if DistanceToSN ≤ r then
4: if WillingToBecomeSN(vi then

5: N
(m)
i ← AddNodeToNeighborhood(vi)

6: else
7: U

(m)
i ← AddNodeToOutsideNeighborhood(vi)

8: end if
9: else

10: U
(m)
i ← AddNodeToOutsideNeighborhood(vi)

11: end if
12: end for
13: for all vi ∈ N

(m)
i do

14: SendNeighborInformation()
15: end for
16: for all vi ∈ N

(m)
i do

17: ReceiveRouteTableInformation()
18: ReceiveDemandInformation()
19: end for
20: CreateRouteTable()
21: CreateDemandArray()

35



Chapter 4

Evaluation of Supernode

Placement in Overlay Topologies

To better understand the behavior of the algorithms discussed in Chapter 3, a wide range of

empirical data is presented. Careful analysis of this data yields insights into key characteris-

tics of the current state of the art in SN placement and motivates additional improvements.

This chapter focusses on understanding the initial behavior of the r-mod algorithm and a

new algorithm called r-SPOT. Both of these algorithms operate inside the the Supernode

Placement in Overlay Topologies (SPOT) system.

4.1 SPOT

SPOT is a distributed system written in Java that uses node and topology information to

find a subset of the nodes to serve as SNs. This decision is based upon the cost metric

described in the previous chapter. SPOT is designed as a service for other applications

to utilize. A brief description of SPOT is now provided followed by an evaluation of the

different aspects of the system.
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4.2 General Behavior

Nodes participating in the SPOT service first connect to a well known bootstrap server for

authentication. Once connected, these nodes are either promoted to SN status or provided

a SN to communicate with. If communicating with an SN, that SN decides whether the

node is close enough to become a member of its neighborhood, these nodes are also referred

to as interior nodes. Those nodes outside of the neighborhood are referred to as exterior

nodes. The eligibility is based on whether or not that node is a distance of r or less from

the SN. In order for the outside nodes to influence SN placement they must communicate

with an interior node. These interior nodes are called neighborhood representatives and

communicate on the exterior node’s behalf. These neighborhood representatives are the

interior nodes that are closest to the exterior node.

Neighborhood 2Neighborhood 1

SN 1

SN 2

D

C

B

G

H

A

F

E

I

Figure 4.1: Figure displays two communities with SNs located at positions C and H.

Figure 4.1 depicts two neighborhoods of nodes with SNs placed at locations D and

G. The exterior nodes are A, E, and I and the neighborhood representatives are B, C, F,

and G. Once all nodes are established as interior or exterior and all exterior nodes have

found their neighborhood representatives, SPOT tries to improve each SN’s location. First

the exterior nodes send service usage information (called demand) to their neighborhood

representatives. The neighborhood representatives aggregate that demand with their own

and send it to the current SN. All other interior nodes also send their demand to the SN.

The SN then sends all interior nodes a list of all other interior nodes. Each interior node

discovers the distance to all other interior nodes. This information is also sent to the current

SN. The SN creates a distance matrix of all interior nodes and a demand vector for service

requirements. The SN combines all of the route data along with the cost data to determine
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if the current location of the SN is in the optimal position in the local neighborhood. This

is accomplished by computing the k-median problem using Integer Linear Programming

(ILP). The ILP solver finds the best location in the local community using Equation 3.1 in

Chapter 3. If the cost of the new SN placement is better than the current cost, the SN is

relocated. This process continues until no further improvement is possible.

4.2.1 Nodes dynamically joining the network

Due to the dynamic nature of the SN placement problem, SPOT supports an arbitrarily

large network of nodes with an initial ratio of nodes to SNs. Initially, when the first node

joins the network it becomes the SN. All nodes after that are assigned to this SN. As the

ratio of node to SN is reached a new SN is created and subsequent nodes are assigned to it.

The ratios can vary depending of the type of service the SNs provide with values from 10-1

to 1000-1 nodes to SNs. Due to this difference, the original design of the r-ball problem

does not translate exactly to r-mod and r-SPOT. In the r-ball problem, the total number

of nodes is known in advance and a fixed partition is set. Also, since all SNs are known

in advance, it is easy for a node to evaluate the distance to each one and connect to the

closest. In SPOT this is not the case and the initial SN connection may not be the ideal

choice. Improvements to this are mentioned later in the chapter.

4.2.2 Merging Neighborhoods

In addition to individual neighborhoods relocating SNs, two neighborhoods can merge when

close enough to each other (within a distance of r). Merge neighborhoods allows SNs to

migrate outside of initially selected set of nodes assigned to it when more than one SN is

specified. In order for this process to occur, one SN is designated as the master SN and all

other SNs become slave SNs. The master SN collects the route and cost information from

all of its connected nodes as well as the costs and route information from the slave SNs.

The master SN then executes the k-median ILP again to place the k master and slave SNs

in the expanded neighborhood. If the solution set of new SNs is within the r distance of
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each other, the large neighborhood stays intact, otherwise it separates. If more than one

SN exists in the newly created neighborhood, a master SN is elected as before.

4.2.3 SPOT Metrics

4.2.4 Distance

Several different constraints influence the ILP solver in deciding a good SN location. As

mentioned before, the first constraint considered is distance. A few distance metrics are

available for the SN to use in determining placement. The first two metrics are very simple

and use ICMP ping messages, this distance can be measured through round trip time (RTT)

or a packet hop count (using the time to live (TTL) field). This provides a simple although

sometimes inaccurate metric for determining distance. In order to deploy more advanced

techniques, we interface with the Harvard Pyxida coordinate system [58]. Because SPOT

takes supports metrics such as RTT or the Pyxida coordinate system it is important to

note the units of measure involved. Unlike the hop count, where values of 1, 2, or 3 seem

appropriate, the RTT reports values in terms of milliseconds which range from tenths to

thousandths. This depends on the distance traveled, number of hops along the path, and

other characteristics of the network. In order to simplify the process, SPOT treats the

RTT in milliseconds the same as a hop count. Therefore, nodes deal with neighbors that

are hundreds of units away from other nodes. This does not become a large problem

though due to SPOT’s mechanism to dynamically scale the neighborhood when needed.

This technique also works in a similar fashion with the Pyxida coordinate system. Despite

the dynamic behavior though, larger default neighborhoods are still evaluated and shown

an ability to reduce SPOT’s SN placement costs.

4.2.5 Demand

Another important constraint in the k-median problem is node demand. Assuming homo-

geneous SN utilization from each node reduces the effectiveness of the placement solution.

A simple demand strategy is considered; however more complex strategies could be imple-

mented. The strategy deployed is a simple static demand for all nodes. More advanced
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demand strategies could involve the SN maintaining statistics for all connected nodes in

its local neighborhood or local neighbor nodes predicting their utilization and sending that

information to the SN.

4.2.6 CPU and Bandwidth Utilization

To consider real world systems with multiple users and congested links, SPOT allows for

additional ILP constraints. In addition to distance and demand, CPU utilization and

available network utilization are examples of additional constraints that can serve as inputs

to the ILP configuration. For example, when nodes send demand information, they might

also include the current load on their system. The bandwidth utilization or bottleneck of

their link can also be determined with currently available Planetlab tools [35]. Integrating

these tools with SPOT is left as future work.

4.2.7 Software Implementation

SPOT is written in 12000 lines of multithreaded Java code. Each node initializes by listening

on a well-known TCP socket and forks a thread for each incoming command. The ILP

software uses for the local k-medians problem is the GNU Linear Programming Kit (GLPK)

[24]. This open source solver performs provides reasonable performance compared to other

solvers [75].

4.3 Evaluation of r-mod

At the core of SPOT is the placement algorithm to determine the location of SNs. SPOT

currently supports two different algorithms, r-mod and r-SPOT. The r-mod algorithm was

developed first and is an extension of the related work [34]. An evaluation of it is now

provided, along with improvements made to it to create the r-SPOT algorithm.

The initial target testbed for performing experiments is Emulab. This testbed pro-

vides a reasonable balance between simulations and full scale Internet deployment. Previous

works demonstrated similar placement algorithms in simulation environments, therefore in

order to move the body of research forward an emphasis on increasing the realism of the
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experiments is appropriate. The initial goal was to first create a distributed system that

would place the SN functionality on nodes in a network. Using the r-mod algorithm such

a system was realized.

We are now interested in the how well the r-mod algorithm performs in finding

low cost SN placement solutions. The Emulab testbed [80] was utilized to perform these

emulation experiments. The first metric of interest is the total cost metric from Equation

3.1 in the previous chapter. This calculates the sum of the products of each node’s distance

and demand to its chosen SN.

4.3.1 Experimentation Details for r-mod

The order in which nodes connect to the bootstrap server can influence the overall placement

score due to SNs being located in local minimums. Therefore 100 experiments were run

for each topology with random nodes starting as the initial SNs. The initial set of SNs is

determined by the order in which the nodes connect to the bootstrap server. To randomize

this initialization a sleep function is placed before the nodes initialize. This sleep function

returns a random sleepTimer value between 1 and n, where n is the size of the network.

The sleepTimer value is the number of seconds to wait before connecting to the bootstrap

server. In order to vary the sleepTimer values for each experiment, a different initial seed

to the sleep function is provided.

The network topologies consisted of hierarchical networks of size 100, 200, 300, and

400 as shown in Figure 4.2. The Emulab physical nodes were of the type pc3000. The pc3000

are 3 GHz Pentium 4 CPUs with 2 GBytes of RAM. There are 160 nodes on Emulab of

this type. In order to create larger sized networks, virtualization is used with Emulab.

The virtual machine consisted of FreeBSD jails with an assignment of 10 virtual machines

per physical node. This allowed for larger experiments (greater than 160 nodes) while not

over-utilizing a single physical machine. The radius value (r) was set to 2 in all of the

experiments, consistent with related work [34]. The experiments were evaluated with a k

value (number of SNs) of 1 and 3. The SPOT software was loaded on each node and a
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Figure 4.2: Figure displays the various topologies created to deploy the SPOT
architecture. Shown are the 100, 200, 300, and 400 node topologies.

special bootstrap node was also created running the bootstrap software. Each node ran a

script which would execute the SPOT Java application and connect to the bootstrap node.

The results of these experiments are shown in Figures 4.3 and 4.4, with the number

of SNs set to k=1 and k=3, respectively. The results are the average scores out of the 100

executions using different nodes as the initial SNs. Also included in the graphs are the

optimal and worst case results for each the topology. These optimal and worst case results

were obtained using global knowledge of the topology and solved with the GLPK software

using a minimization or maximization constraint.

From Figure 4.3 it is clear the r-mod performs very close to the optimal placement

score with a single SN. These results are impressive with the r-mod obtaining placement

costs that are no more than 10% greater than optimal placement. In the k=3 case, however,

Figure 4.4 shows that the r-mod is placing SNs with an average cost of 60% more than

optimal.

4.4 Improving the r−mod algorithm

From these preliminary experiments it is evident that some opportunities for improvement

exist. This section describes those improvements and presents the new algorithm r-SPOT.
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Figure 4.3: Results of placement for one SN with various sized network topologies.
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Figure 4.4: Results of placement for three SNs with various sized network topologies.
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4.4.1 Multiple Iterations with Informed Placement

The first improvement made is to insert an outer for loop to the r-mod algorithm. This

allows for multiple iterations of r-mod with the output of the previous iteration used as

the initial set of SNs for the next iteration. This helps reduces the overall importance of

poorly chosen initial SNs. In the first iteration of SPOT, nodes may not initially connect

to the best SN, due to the order of nodes joining and assigning SNs. By reusing the

placement information and not randomly selecting the SNs an improvement in placement

costs can be obtained. In the next iteration, each node connects to the closest SN available.

Therefore, we are restoring some of the properties of the original r-ball placement algorithm

in which nodes connected to the closest SN. The choice though, comes after one iteration

of the algorithm and provides an improved placement of SNs for the second iteration of the

algorithm.

4.4.2 Dynamically Expanding Neighborhood

In r-mod it is possible for an initial SN to be selected that is more than distance r from any

other node that is willing to become an SN. This is not ideal as it does not permit the SN

to relocate if necessary. The previous work assumed a fixed value r for the radius of nodes

eligible to join the neighborhood. We propose a dynamically sized neighborhood in order

to deal with poorly selected initial SNs and to accommodate topologies where nodes are

more than a distance of r away from each other. This increases the size of r as needed until

at least one interior node is found. This strategy improves the mobility of SNs within a

neighborhood and promotes better placement scores by increasing the information available

within a neighborhood and reducing the chances of a stranded initial SN.

4.4.3 Preventing Loops in SN Placement

Currently, r-mod compares the cost of placing an SN at a new location against the costs

of the current SN location. This cost reflects distances and aggregated demands of those

nodes in the neighborhood and does not consider the distance costs of nodes outside the

neighborhood. An SN is relocated if the costs of the new SN is less than the current cost. A
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Figure 4.5: An example of a triangle inequality, where the distance from node A to node
C (62 ms) is greater than the distance from node A to node B (20 ms) plus the distance

from node B to node C (30 ms).

problem can arise if the metric to compute distance creates a Triangle Inequality Violation

(TIV). Consider Figure 4.5 from [42], here nodes A, B, and C are reporting ping times

in milliseconds to all other nodes. If the distance from node A to node C is longer than

the distance from node A to node B plus node B to node C, then that is a violation of

the Triangle Inequality. Savage et al. [65] have demonstrated experiments on the Internet

where approximately 20% of the nodes exhibit the Triangle Inequality Violation. A similar

distance metric problem can occur on Emulab when computing TTLs from nodes on complex

topologies. When either of these occurs, r-mod may end up in a state of flip flopping the SN

location between two SNs. In order to correct this a true neighborhood cost, one for all nodes

using that SN, is calculated. The true neighborhood cost is defined in Section 3.7. This

technique eliminates the problem from trying to compare costs of networks with different

configurations of interior and exterior nodes. Here, an SN may improve its location only if

the true neighborhood cost is lower. This incurs some additional communication overhead

but prevents cycles of SN placement.

4.4.4 Description of r-SPOT

A formal algorithm is now provided for r-SPOT. This builds on the previous algorithms

from Chapter 3 and is presented below. Both the r-SPOT placement algorithm and a new

DiscoverLocalTopologies method are presented in Algorithms 4 and 5 respectively.

The changes necessary to both 4 and 5 are now described.

• Added outer for loop to run multiple iterations of the placement algorithm.
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Algorithm 4 Improved placement of Supernodes in a P2P Network (r-SPOT)

1: for iter = 1 to PlacementIter do
2: ConnectToBootstrapNode()
3: while Vk 6= ∅ do
4: vi ∈ Vk

5: DiscoverLocalTopology(vi)
6: GJ ← TestSupernodeNeighborMerge(vi)

7: V
(m)
k ← OptimizeSupernodeGroup(GJ)

8: V
(m)
k ← EvaluateSupernodeGroup(V

(m)
k )

9: Vk ← Vk \ (J
⋂

V −

k ) {Remove Processed Supernodes}
10: UpdateBootstrapNode(Vk)
11: if Vk = ∅ then
12: if V

(m)
k 6= V −

k then

13: Vk ← V
(m)
k , V −

k ← V
(m)
k

14: end if
15: end if
16: end while
17: end for

– Allows for improved placement by using the output of the first iteration as the

input of the next iteration.

– Described in Section 4.4.1.

– Found in lines 1 and 17 of Algorithm 4.

• Introduced dynamically expanding neighborhoods.

– Enables neighborhoods to grow when an interior node is needed as a neighbor-

hood representative.

– Described in Section 4.4.2.

• Added topology loop detection.

– Introduced mechanisms to detect loops from Triangle Inequality Violations (TIV).

– Described in Section 4.4.3.

– Found in line 8 of Algorithm 4 and Algorithm 6.
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Algorithm 5 Discover Local Topology

1: for all vi ∈W
(m)
i do

2: DistanceToSN ← CalculateDistanceToSN(vi)
3: if DistanceToSN ≤ r then
4: if WillingToBecomeSN(vi) then

5: N
(m)
i ← AddNodeToNeighborhood(vi)

6: else
7: U

(m)
i ← AddNodeToOutsideNeighborhood(vi)

8: end if
9: else

10: U
(m)
i ← AddNodeToOutsideNeighborhood(vi)

11: end if
12: end for
13: if NeighborhoodSize < 1 then

14: N
(m)
i ← findClosestNodeToSN(U

(m)
i )

15: end if
16: for all vi ∈ N

(m)
i do

17: SendNeighborInformation()
18: end for
19: for all vi ∈ N

(m)
i do

20: ReceiveRouteTableInformation()
21: ReceiveDemandInformation()
22: end for
23: CreateRouteTable()
24: CreateDemandArray()

Algorithm 6 EvaluateSupernodeGroup

1: if currentCosts ≥ oldCosts then
2: if totalCost ≥ oldTotalCosts then
3: V

(m)
k ← V

(−)
k

4: end if
5: end if
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Figure 4.6: Results of the r-mod and r-SPOT placement for one SN with various sized
network topologies.

4.5 Evaluating r-SPOT

Experiments with r-SPOT are now presented. The same initial placement experiment, from

Section 4.3 is run for r-SPOT. The results for k=1 and k=3 are presented in Figures 4.6 and

4.7. The results for k=1 show r-SPOT and r-mod performing at comparable levels. Both

algorithms average placement costs range from 3% to 12% over the optimal. In Figure 4.7

the results for k=3 show improved placement for r-SPOT compared to r-mod. For example,

in the 300 node experiment r-SPOT was only 13% over the optimal compared to r-mod

with an average placement cost that is 61% higher than optimal.

Next, we evaluate the effects of each individual modification to the r-mod algorithm.

Here we are considering the same placement experiment in Emulab focusing only on the 100

node topology with k=3 SNs. In Figure 4.8 a whisker box plot is presented. The whisker-box

plot presents the lower quartile (0.25), median, and upper quartile (0.75) values along with

the sample minimum and maximum. An interquartile range (IQR) is also calculated which

is the upper quartile minus the lower quartile values. Any value which is 1.5 ∗ IQR less

than the lower quartile or 1.5 ∗ IQR above the upper quartile is considered an outlier and

denoted as a circle. Again the experiments were run 100 times with SPOT implementing

variations of the placement algorithms. The options were r-mod, r-mod with the ability

to remove loops (r-mod + NoLoop), r-mod plus the expanding neighborhood (r-mod +
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Figure 4.7: Results of placement for three SNs with various sized network topologies.

Expand), r-mod with two executions of the algorithm (r-mod + Iters). Finally, r-SPOT,

which is the combination of all three improvements.

From Figure 4.8 the r-mod plus the removal of infinite looping had very little effect on

the distribution. This was expected, as it does not improve performance but simply allows

SPOT to handle unexpected networking conditions, the average score (not shown) was 511

compared to 510 for the original r-mod. When r-mod allows for expanding neighborhood

sizes, a considerable improvement is observed. Here the median placement score improves

from 533 to 363, and the average drops to 338. This expanding neighborhood also improves

the score of a poorly placed initial SN. Next, more improvements are made when the r-mod

algorithm executes twice and uses the first set of SNs as an input for the initial set of SNs.

Here the median value is 336 and the average is 347. Finally, when combining all of these

together into r-SPOT the average placement cost drops to 334 and the median value is

328. The combination of all three of these improvements allows for reduced costs relative

to r-mod.

In addition to the cost of the resulting network topology upon algorithm completion,

other metrics of interest are also evaluated for r-SPOT. The total number of iterations to

reach a finishing state and total system time necessary before the experiments finished are

discussed next.
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Figure 4.8: Performance of the r-mod algorithm with enabling different improvements
along with the r-SPOT algorithm topologies.

The first experiment (Figure 4.9) uses a whisker-box plot again to display the total

number of iterations, (lines 3 - 16 in 4) needed for a stable placement. The number of

iterations needed increases as the number of SNs to place increase. The minimum number

of iterations is the value PlacementIter from line 1 of 4. This graph displays the total

number iterations for k values of 1 - 3 in the 100 node graph. Here as the number of SNs

increases so too does the number of iterations needed to find locally optimal solutions.

Using the same experimental setup from the last graph, the total system time nec-

essary to locate SNs in a network topology is shown in Figure 4.10. From this graph we

can see total system time increase as the number of SNs increase. This is to be expected

as increasing the number of SNs to place increases the total amount of work and the time

to complete it.

Additional experiments are run to understand some of the tradeoffs between r-SPOT

and an optimal placement strategy. In Figure 4.11 the total time to locate three SNs were
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Figure 4.9: Number of iterations for the outer for loop in r-SPOT algorithm for various
SN counts.

computed for various topology sizes in comparison to a global solution. The global solution

required fully topological information, which is equivalent to increasing the neighborhood

size to include all nodes in the network. At the 250 node size it starts to become increasingly

more expensive to place nodes as solving the centralized optimal solution is NP-Hard.

The next experiment compares the amount of network traffic generated for a sin-

gle node (on average) with the r-SPOT solution and an optimal solution which requires

global topology information. The network traffic comparisons are shown in Figure 4.12.

From the figure, the total amount of network traffic generated per node for the centralized

optimal solution is 20 times greater than r-SPOT. This would continue to grow for larger

network sizes. This graph demonstrates the scalability of r-SPOT compared to a centralized

approach.
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Figure 4.10: Total time to place SNs in r-SPOT algorithm.

4.6 Summary

This chapter has presented the SPOT system, along with the two placement algorithms

r-mod and r-SPOT. The evaluation demonstrates the improved placement performance of

the r-SPOT algorithm and how both approaches compare to the optimal results. The next

chapter explores other environments to evaluate SPOT and assesses the use of an application

taking advantage of this informed service placement.
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Chapter 5

Evaluation of SPOT in Diverse

Environments and Applications

This chapter investigates the performance of r-SPOT using the SPOT infrastructure under

a variety of environments. They include simulation, emulation, and experimentation. This

breadth of study provides a better understanding of the entire system and how it will

perform in diverse scenarios.

5.1 Simulation

5.1.1 Introduction

Simulation provides an excellent opportunity to extend the previous results to large and

more realistic network topologies. With research testbeds, a node size limit is reached some-

where in the hundreds of nodes. In order to evaluate systems larger than that, simulation

is very useful. Also with simulation, the experiments can run on different topologies very

easily.

In order to provide simulation with SPOT, a discrete event simulator called SPOT-

Sim was developed. SPOTSim was written in Java and models all of the communication

between nodes running SPOT. It also interfaces with the same ILP solver (GLPK) as SPOT.
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The simulator was developed after creating SPOT, therefore the true functionality of

the working system was captured in the simulation environment. Typically the simulator is

developed first and the final implementation ends up behaving somewhat differently due to

real world constraints. This is not the case with SPOTSim, which provides a fairly realistic

model of SPOT’s behavior. A few differences exist between a real execution of SPOT and

a SPOTSim simulation. First, SPOTSim does not model the runtime of SPOT. Some

very simple estimations are made regarding the amount of time it takes to send messages

between nodes. SPOTSim does not account for varying latency between nodes or model the

capacity of links to send messages. SPOTSim also does not model when SNs are unable to

merge with other SNs due to node timeouts or random networking failures. These events

occur in real systems and SPOT has timeout mechanisms built into it to exit gracefully

after a period of time of not communicating with any other node. SPOTSim never misses

an opportunity to merge with an available SN and the consistency of the placement scores

reflect that behavior.

5.1.2 SPOTSim Evaluation

In order to test the validity of the model, experiments were run on Emulab with SPOT

and on SPOTSim with the topology deployed on Emulab. The first experiment illustrates

the placement scores of both SPOT and SPOTSim for k=1 and 3 in Figures 5.1 and 5.2

respectively.

From these simulation and emulation experiments the simulation results closely

match the best emulation results. Differences however are found in some of the more costly

emulation placement results. These results are not captured by the simulation model. The

higher scores in emulation are due to the missed opportunities for SNs to join with other SNs

and create larger neighborhoods. In SPOT the SNs operate within a specific timeout and if

other nodes are unable to join or communicate with that SN it eventually reports a stable

position and exits. In the simulator, the merge operations occur with perfect knowledge of

the other SNs available, therefore all potential neighborhood merges will successfully occur.
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Figure 5.1: Comparison of Emulation and Simulation placement results for various
network topologies locating one SN.

Evaluating SPOTSim on an Emulab topology is useful to determine the validity of

the model. However, the real strength of the simulator is to experiment on a larger number

of nodes and more interesting topologies. To accomplish this a topology generator was used

to aid in the design and creation of larger more realistic topologies. The topology generator

used is BRITE [46]. BRITE provides an intuitive GUI interface which allows the researcher

to specify the number of nodes, average degree, and general structure of the topologies. A

large number of more advanced configuration options are available as well. The types of

networks include Waxman, BA, BA-2, and GLP and the model supports AS and router level

models. Based on previous related work [34] the BA-2 router level topology was selected. A

range of sizes were created (500, 1000, and 1500 nodes) using the BRITE’s default growth

rate parameters. An example topology is displayed in Figure 5.3.

The simulation experiments investigated the placement costs of SPOTSim scaling

for larger sized topologies. Using the three topologies created with BRITE, simulations
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Figure 5.2: Comparison of Emulation and Simulation placement results for various
network topologies locating three SNs.

were performed and the average placement cost is now presented. In Figure 5.4 SPOTSim

and the optimal results are presented. From the figure, SPOTSim is able to place SNs with

a cost of less than twice that of the optimal.

Simulations were also run with various default neighborhood node sizes. Thus far,

all simulation and emulation results were executed with a r or neighborhood size of two

units, where units are some metric such as network hops. In Figure 5.5 three different values

for the default neighborhood size are experimented with placing k=3 SNs in the 500 node

router topology. From the figure, increasing the default neighborhood size r reduces the

cost of placing SNs. Here the average placement costs are 1045, 954, and 965 for r values

of 1, 2, and 3. Therefore setting the default neighborhood size (r) to two provides a 7%

reduction in cost and setting r to three reduces the costs by an additional 1%.

Finally, experiments were run to determine the effect of the outer loop added to r-

SPOT. In Figure 5.6 one, two, and three iterations of SPOTSim were run before accepting
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Figure 5.3: 500 node router topology generated using BRITE.

the placement of k=3 SNs in the 500 node router topology. As with increasing the default

neighborhood size, increasing the number of iterations of the outer loop (PlacementIter)

leads to better SN placement and reduced cost. The average placement costs for Placemen-

tIter values of 1, 2, and 3 where 1046, 977, and 951 respectively. Therefore, adding one

additional iteration of the outer loop reduces average placements cost by approximately 7%,

with two iterations the costs are reduced by 9%.

5.2 Planetlab

5.2.1 Introduction

The next type of evaluation is via experimentation. Here, we are deploying the SPOT

system on the Planetlab testbed [56]. This testbed consists of over 1000 nodes distributed

around the world. The nodes are hosted at universities and corporations, with various

hardware and networking configurations. Each researcher is allowed access to a slice of
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Figure 5.4: Placement costs for SPOTSim simulations compared against optimal
placement costs.

every single node in the network. This is very useful with regards to the diversity of

systems and networking environments. It is common to encounter heavily loaded CPUs

and over-utilized low bandwidth network links. This type of environment increases the

realism and quality of experimentation greatly.

The test setup involved deploying SPOT on 50 nodes in the Planetlab environment.

The size of the experiment may appear small, however due to the unpredictable nature

of Planetlab, hundreds of nodes are unavailable at any given time. Also, when running

many different experiments using the same set of nodes is crucial given the large number

of variables present. The idea of network cost is also unreliable if the set of nodes ever

changes during the experimentation. For these reasons, a size of 50 nodes was selected.

This number is also common with other researches working with distributed systems [70].

5.2.2 Planetlab Evaluation

The initial experiments on Planetlab involved collecting statistics about the nodes. In

Figures 5.7 and 5.8 the cumulative distribution functions are provided for the number of

hops necessary to reach all of the nodes along with the round trip time (RTT) for each

node.
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Figure 5.5: Whisker-box plot of placement costs for SPOTSim on a 500 node topology
with varying initial neighborhood sizes.

Next we deployed the SPOT system on all 50 nodes and selected an arbitrary node

(not one of the 50) to operate as the bootstrap server. Once the software was deployed, 50

experiments were run with k values of 1, 2, and 3 SNs. The results of the experiments are

shown in Figure 5.9. These results use the same distance metric as Emulab, the hop count

metric. From the results, the total cost decreases as the number of SNs increase. This is to

be expected as adding more SNs should decrease the total network cost.

In these experiments we measured the total time to locate SNs, the number of

iterations to find SNs, and finally the total amount of network traffic generated from all of

the nodes in the experiment. This are illustrated in Figures 5.10, 5.11, 5.12 respectively.

In general, all three of the whisker-box plots demonstrate similar trends. As the

number of SNs increase, so too does the number of iterations, total time, and network

traffic necessary to assign SNs.
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Figure 5.6: Whisker-box plot of placement costs for SPOTSim for various iterations of the
outer-loop (PlacementIter).

5.3 Game Servers

5.3.1 Introduction

All of the previous results have dealt with SPOT, its ability to place SNs throughout a

network and measurements associated with it. Ultimately, the improvements that SPOT

provides for applications utilizing its service are important. In order to evaluate that, we

turn our focus to online video games, namely multi-player first-person shooters. Multiplayer

first person shooters (such as Quake III Arena and Half-Life [3]) are very sensitive to the

latency from the client to the game server. Typically anywhere from 16 - 64 people connect

to a single server or host. This host sends game updates to all players connected to the

server. If the client has a RTT to the server greater than 180 - 200 ms, it can greatly

reduce the quality of the experience as well as fairness in the game itself [2]. Therefore

when creating a multiplayer game, it is important to choose the game server carefully.
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Figure 5.7: CDF of the number of hops necessary for nodes to reach each other in the 50
node Planetlab experiments.

5.3.2 Planetlab Evaluation

In order to evaluate the effects of server selection, the 50 node setup in Planetlab was

studied. A map indicated the location of the 50 nodes is illustrated in Figure 5.13. Using

these 50 nodes, the ping data collected earlier was used to evaluate the RTTs letting each

node become the server in a online game. Therefore, we are interested in the RTT from

each client to that server. From this data 7 of the 50 servers or 14% of the nodes would

be unable to satisfy the requirement that every node maintain a RTT under 180 ms. This

demonstrates the importance of carefully selecting a SN. The RTTs are shown in Figure

5.14, after removing the four largest outliers a closer view is shown in Figure 5.15.

Next SPOT was run across all 50 nodes with k=1 and it selected node 8 as the SN,

the average RTT is 60 ms to the SN and the maximum RTT is 139 ms as shown in Figure

5.16. The optimal value is selecting node 6 as the SN with an average RTT of 40 ms and
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Figure 5.8: CDF of round trip time (RTT) in milliseconds for nodes to reach each other in
the 50 node Planetlab experiments.

a maximum RTT of 118 ms. The worst case selection is node 42, with an average RTT of

127 ms, a worst case RTT of 1545 ms and three nodes over the 180 ms threshold.

A larger topology of 263 Planetlab nodes was also evaluated. Figure 5.17 shows a

map of the node locations around the world. The RTTs were collected to and from all

nodes in the evaluation. The average RTT time with each node serving as the candidate

SN is illustrated in a whisker-box plot in Figure 5.18. From the figure, the nodes planetlab1

and planetlab2 at citadel.edu experience very high average RTT delays around 1.4 seconds.

Next we evaluated the individual RTT from each node to the candidate SN. Figure 5.19

depicts the maximum number of players that can join the candidate SN server. A player

can join the server if the RTT to that server is less than 180 ms. From the figure, 107

potential SNs can support 200 or more players in a single game (the largest is 236), also

116 potential SNs support 100 or more players. The least number of players came from the

pair of nodes located in Uruguay, supporting 4 and 5 players each. Finally, a comparison

is provided showing the relation between solving the k-medians problem and finding an SN
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Figure 5.9: 50 node Planetlab r-SPOT experiment using the TTL distance metric
illustrating the placement costs for k=1,2, and 3 SNs.

that supports the most number of players. In Figure 5.20, a bar graph represents the total

number of players that could connect to a single SN in the best and worst case. Also shown

are the results of the k-medians optimal solution and the SPOTSim solution with respect

to the number of players each SNs supports. From the results, the maximum number of

players in a single game with the best SN placement is 236 players, while the ILP solver

and SPOTSim, selected nodes supporting 227 and 226 players respectively. This helps to

demonstrate the ability of the k-median algorithm to determine SN locations for a first

person shooter.
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Figure 5.10: 50 node Planetlab r-SPOT experiment illustrating the total time to place
k=1, 2, and 3 SNs.

5.3.3 Updating the SN as the topology changes

We are now interested in the effects of a dynamic game state where players join the game

after some period of time. Here, we are interested in whether it is necessary to recalculate the

location of the SN after a number of new players join. Consider a 40 player node topology

taken from the original set of 50 nodes in the previous experiment. We use r-SPOT to

determine a location of the SN (node 7) and measure the RTT from all the players to that

SN. Now suppose 10 more players join the game and the SN is not re-evaluated with all

50 players. With node 7 still serving as the SN, one of the new nodes joining is unable to

play the game due to a large RTT (1545 ms to node 7). However, if the SN is re-evaluated

and moved to node 8, all players are able to participate. The results of this experiment are

shown in Figure 5.21 with a whisker-box plot of all RTTs. From the figure, when node A is

the SN in the 40 node experiment the average RTT is 44 ms. Once the 10 additional nodes

join, the average RTT jumps to 81 ms with the outlier node experiencing a large delay to

SN 7. When the topology is re-evaluated the SN moves to node B and the average RTT
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Figure 5.11: 50 node Planetlab r-SPOT experiment illustrating the number of iterations
place k=1, 2, and 3 SNs.

drops to 60 ms. This illustrates the importance of re-evaluating the SN assignment in order

to maximize the number of players in the game.

5.4 Summary

This chapter evaluated SPOT in a range of environments. The SPOTSim simulator was

introduced and compared against SPOT. This proved to be very helpful in creating large

(thousands of nodes) experiments to evaluate the placement of network services. The Plan-

etlab experimentation environment was also utilized to explore SPOT’s performance on a

diverse set of nodes. Finally, an application of SPOT for selecting game servers for first

person shooters was motivated with data from the Planetlab environment.
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Figure 5.12: 50 node Planetlab r-SPOT experiment illustrating the total traffic sent from
all nodes in order to place k=1, 2, and 3 SNs.

Figure 5.13: Map of the 50 nodes used in the Planetlab experiments.
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Figure 5.14: Round Trip Times from each node to all 50 nodes in Planetlab.
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Figure 5.15: Round Trip Times from each node to all 50 nodes after removing four outlier
RTT times.
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particular placement algorithm times.
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Figure 5.17: Map of the 263 nodes used in the larger Planetlab experiments.
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based on a 180 ms RTT required to connect to the SN.
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Chapter 6

Evaluation of Supernodes in

Satellite Networks

This chapter explores the value of deploying supernodes in a peer-to-peer (P2P) satellite

network. This network architecture is compared to a traditional client/server architecture.

The P2P architecture is evaluated in the Emulab testbed environment using satellite link

characteristics. The material in this chapter was originally published in IEEE Aerospace

2007 [71]. Portions of this chapter were written with my co-authors John Meier and John

Lockwood.

6.1 Introduction

Communication links transfer data between satellites, unmanned airborne vehicles (UAVs),

and devices on the ground. UAVs are used to analyze pollution, relay communications and

host a variety of sensors. By providing data processing services within the nodes of the

hierarchical networks, raw data can be locally and efficiently transformed into useful infor-

mation. Overlay networks with supernodes placed strategically in the hierarchical network

enables traffic to be effectively shaped and filtered.

Many centralized client/server architectures are used to process the compute inten-

sive applications. They channel information between a centralized set of data processing
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and storage nodes. Often, networked platforms (UAVs, and earth orbiting satellites) are

deployed thousands of miles away from a central processing center. Even with caching,

client/server architectures are not well suited for network services in media intensive real

time networks in dynamic mobile environments, due to changing topologies.

The latency and bandwidth constraints of long-distance communication networks are

a challenge for real time media and data fusion applications. As more network devices are

deployed, it becomes increasingly difficult to use a centralized processing center. Centralized

architectures do not scale well to handle large volumes of information, provide robustness

from failure, nor do they provide fast reaction times.

One service benefiting from distributed networks is the deployment of robots to

provide medical assistance for injured soldiers. Research efforts such as the Trauma Pod

[77] have investigated ways to deploy remote medical services. With telesurgery, surgeons

perform operations on wounded soldiers using robots. Bandwidth intensive network ap-

plications such as streaming video allow surgeons to perform many life-saving operations

from a remote location. The need for low latency communication is crucial to increase

responsiveness to the remote surgeon during an operation.

Using distributed (rather than centralized) services to interconnect a diverse set of

platforms increases scalability and real time performance. This chapter investigates the

tradeoffs in deploying a Peer to Peer (P2P) overlay network technology as compared to a

centralized client/server approach. The architecture enables mobile devices to efficiently

exchange large volumes of information using new P2P services rather than channeling all

information through a central server.

In heterogeneous networks, messages can flow between mobile devices on the ground,

vehicles in the air, and satellites in earth orbit. Overlay networks with content-based routing

services on P2P networks enhance real time decision making for multi-tiered communica-

tions. Overlay network services, such as content-based routing, to improve the Quality

of Information (QoI) that flows between devices. Improved QoI enables transmission of

useful information using minimal bandwidth. By using P2P services, mobile devices can

communicate with less latency and bandwidth than they would using a centralized system.
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Distributed services running on P2P networks enhance information rendezvous rates

while reducing latency of information exchange. P2P establishes efficient overlays to enable

content based routing. Overlays in P2P networks decrease routing time for advanced multi-

tiered communications. The three tiers of communication (space, air, and ground) must

seamlessly integrate low latency services on multiple platforms using overlays to provide

scalable real time network services. Long-distance links between geosynchronous satellites

and moving vehicles such as UAVs require a highly dynamic network environment.

UAVs like the Shadow fly at around 5000 feet while low-flyers such as the Dragon Eye

and Honeywell MAV operate at 100’s of feet. The bandwidth between these heterogeneous

nodes scales logarithmically as the altitude increases. P2P technology is used by the highly

dynamic ad hoc networks to improve reaction times in a service-oriented architecture (SOA).

Adhoc networks use overlays to improve neighbor node discovery, user authentica-

tion, and tunneling of sensitive data. Once set up, the overlay network facilitates discovery

of additional nodes with minimum reaction time. The P2P API JXTA facilitates discovery

of distributed services [26].

This work utilizes distributed P2P networks with an overlay to reduce latency and

maximize use of available network bandwidth. In this work, we measure the network metrics

of the network latency and bandwidth as a function of the configuration of the network.

We also measure an additional Measurement of Performance (MOP) to characterize the

number of successful requests for P2P services. Specifically, we measure the MOPs for four

services: transfer of streaming target tracking data (40 Kbps), still image transfer (100

Kbytes), streaming video (700 Kbps), and sensor query data (10 Kbyte).

We perform experiments using the emulation testbed laboratory, EMULAB [80].

Our experiments use up to 147 PCs to study link costs and we compare the overlay network

against traditional client/server models of tasking resources.

The nodes distribute resource request messages using multicast communication and

rendezvous nodes (also referred to as supernodes). There were significant challenges to

interconnecting and managing a diverse set of mobile platforms, network nodes, and end

systems with multicast.
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A supernode is a server, router, switch or other network device that has more mem-

ory, bandwidth, processing power, or better locality than other nodes in the P2P network.

Super nodes reduce the need for multicast traffic and P2P chatter by serving as a rendezvous

point for nodes deployed in the network.

Super nodes implemented with reconfigurable hardware, such as the Field Pro-

grammable Port Extender (FPX) [39], improve data processing services for applications

in the network, enforce Quality of Service for Voice, transport Voice over IP (VoIP), and

transcoded video.

6.2 Related Work

Today’s adhoc networks support a diverse set of services that require different priorities and

different allocations of bandwidth for traffic delivery. P2P topologies are scalable to meet

the needs of hundreds, thousands, and even tens of thousands of users [17].

Overlay trees help P2P networks optimize the use of bandwidth by minimizing the

overhead required to find peer servers [52]. In the related work of file sharing, it was found

that the choice of which peer to use in the overlay had a large impact on performance.

Picking the correct peer doubles the media file sharing capability in certain cases.

Simulations, such as p-sim, have shown how adaptive P2P topologies reduce latency

in overlay links [48]. Past work focused on how the application benefited from a P2P de-

ployment rather than measure the peer dynamics, performance of file sharing and searching,

or work load of search queries.

Several network simulators provide some support for large scale P2P network ex-

periments. P2PSim [54] is a discrete event simulator that models overlay networks such

as Chord [72] and Tapestry [82]. These P2P implementations are created by P2PSim and

do not model all of the features of these protocols [76]. PeerSim [55] is another example

of a P2P network simulator. It provides support for supernode topologies similar to our

deployment strategy. Unfortunately, it does not model the network transport but, it does

scale to large (1000’s of nodes) networks. PeerSim utilizes it’s own P2P protocols to sim-

ulate node behavior. This makes it difficult to compare to the well studied and academic
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P2P protocols such as [72]. As with other network simulators, both of these software tools

provide some of the functionality necessary to create realistic network experiments but, lack

the flexibility and realism gained through an emulation testbed.

The use of redundant super-peers (also know as supernodes) improves the perfor-

mance of P2P networks. Guidelines have been developed that suggest how to make best

use of redundant nodes. Careful use of super-peer redundancy is needed to handle large

aggregate processing loads at bottleneck nodes [7].

Client/Server with Caching

One optimization for the client/server architecture is the use of caching node advertisements

in the network itself. This is similar, though with reduced functionality, to the use of

supernodes. A caching node would provide some benefit to the client/server architecture

when nodes are static. However, we envision nodes continuously moving from location in

the grid to the next thus invalidating the cached values. The P2P approaches work well is

this scenario by publishing the service advertisements to a super when the node relocates.

If the client/server architecture sent update information to a caching node and queried it

directly we would argue that it is in effect a P2P architecture and not a client/server with

caching.

6.2.1 Node Architecture

Services Offered

We model a node that uses four types of services. The first type of service is for a high

bandwidth, constant bit-rate, User Datagram Protocol (UDP) video stream that has a

bandwidth of approximately 700 kbps. The second service is a low-bit rate service that

uses UDP to send coordinate and sensor information with a bandwidth of approximately 40

kbps. The third service models an aerial camera which transmits 100 kbyte images using the

Transmission Control Protocol (TCP). The final service transmits 10 kbyte sensor queries

using the TCP protocol. Nodes randomly select a service based on the distribution listed

in Table 6.1.
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Video Track Image Sensor Idle

10% 45% 10% 25% 10%

Table 6.1: Distribution of services for each node.

6.2.2 Implementation of Nodes in the Overlay Network

In our experiments, nodes both request for and provide services. All nodes request and offer

services for a fixed amount of time. A new service is requested once the previous service

completes or times out. After completing a service, nodes either request another service or

remain idle for one second before issuing another request. When the time for an experiment

expires, the node completes all currently active services before exiting the overlay.

Nodes are assigned an initial physical location in a grid with specific coordinates on

an (x,y) grid. Services are requested from and to specific locations. For example, a node at

overlay position (32,53) might request a video stream from location (27,92).

Overlay Software

The software that establishes the overlay network was written in Java using approximately

2000 lines of code. The client/server portion of the code utilized Java Sockets for all

communication. The P2P portion was implemented with JXTA 2.3.5 and unidirectional

JXTA pipes to send and receive messages. In both implementations, each node created

multiple Java threads to concurrently request and respond to services. Service locations

were randomly distributed and the type of service requested is based on the distribution

listed in the Table 6.1.

6.3 Experimentation

6.3.1 Experiment Setup

In order to emulate a multi-tiered communication network, a large testbed was needed.

Emulab was chosen since it is the one of largest academic testbed available. Emulab allows

machines to be allocated, a network to be created, and experiments to be conducted in a way
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that is reproducible. The current testbed consists of 365 PCs, of which a subset of nodes

can be allocated to perform experiments. Emulab provides a web interface to configure

experiments and allows for administrative control of each node. After an experiment is run,

a script is executed to collect statistics about the operation of the experiment and to report

the number of successful service transactions, average latency per service and bandwidth

utilization. Each experiment lasted approximately 15 minutes.

Two different types of topologies were deployed using Emulab. The first was a

star topology with each node connecting to a central switch. The star topology was used

to investigate how well the applications perform in an idealized environment. All of the

experiments with this topology utilized the pc3000s Emulab nodes which are 3 GHz, 64-bit

Xeon processors equipped with 2 GBytes of RAM. This equipment minimizes the effects of

the computing hardware relative to the network under test.

The second topology is hierarchical configuration with varying link delays and band-

width constraints. The hierarchical network provides more a more realistic deployment

scenario with models for different types of nodes requesting services at various rates. Due

to the size these experiments a mix of Emulab hosts were deployed ranging from Pentium

3 850 MHz PCs to the 3 GHz Xeon nodes. In general, the fastest nodes available were

deployed, giving a higher priority to assigning the server and supernodes with the most

capable machines.

6.3.2 Effects of Latency and Bandwidth

Several experiments were conducted to measure how latency and bandwidth constraints

affected the performance of the client/server architecture. The experiments measured per-

formance in terms of the number of successfully completed service operations. In order for

a node to complete a successful service, it must locate the service, request use of the service,

and finally transfer the data associated with the service.
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Figure 6.1: View of the 11 node star topology.

Bottleneck Link to the Server

The first experiment measured the total number of services completed as a function of

increasing latency between the performance-critical connection to the server. This exper-

iment used a star topology of 11 nodes (10 overlay nodes plus 1 server node) configured

with a fixed, 100 ms latency between nodes and variable latency to the server, as displayed

in Figure 6.1. Figure 6.2 shows how the number of successful service requests decreased

as the latency increased. The P2P architecture, which does not utilize the bottleneck link,

performs better than the client/server architecture when the delay constrained server link

becomes large. We found that once the delay to the server exceeded approximately 200

ms, the P2P architecture delivers more services than the client/server architecture. In the

client/server architecture, all communication is routed from a client to the server then to

another client. The performance of the client-server architecture depends on the proximity

of the clients to the server as well as the bandwidth of the links. This limits the scalability

of the client/server architecture.

In the next experiment, we deployed the same 11 node star topology as before.

However, we set the propagation delay of the bottleneck link to a constant then varied the

bandwidth. This experiment allowed us to parameterize link bandwidth for a variety of

client/server architectures with a P2P approach using a fixed latency (50 ms) on every link.

From Figure 6.3, we observe that the P2P architecture completed more services in a fixed

79



 0

 200

 400

 600

 800

 1000

 1200

 0  200  400  600  800  1000

S
uc

ce
ss

fu
l S

er
vi

ce
s

Latency at Bottleneck Link (ms)

Client/Server
P2P

Figure 6.2: Number of successful services for the client/server architecture as bottleneck
link increases. The 1 supernode P2P architecture is also shown as a reference.

period of time then the client/server once the bandwidth to the server dropped below 50

Mbits/sec.

6.3.3 Overhead associated with P2P API

A P2P solution adds additional overhead when compared to a client/server architecture for

discovery and communication of services. This section describes the amount of overhead that

is inherent to the P2P architecture. The P2P overhead is calculated per service by the use of

a separate port used for all P2P communication. The first experiment utilized three nodes

to calculate the per service overhead from a sender to a receiver communicating through

a Super Node. All communication between the sender and receiver was captured using

tcpdump. Filters were applied to the output of tcpdump to analyze traffic by IP address

and port number. The per service overhead includes the overhead introduced by JXTA

using XML messages to establish a handshake between two nodes and push out the service.

Table 6.2 lists the percentage of traffic that consists of service, and the overhead, with the

rest consisting of background traffic on the LAN. In this table, the 700 Kbit/sec service
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Figure 6.3: Number of successful services as the bandwidth is reduced for the client/server
architecture on the bandwidth constrained link. The 1 supernode architecture is provided

as a reference.

creates more total traffic than the 40 Kbit/sec service which accounts for the difference in

percentage of overhead traffic.

Service Type Service % Overhead %

700 Kbps UDP Video Stream 94.5 % 5.0 %

40 Kbps UDP Track Stream 51.7 % 48.3 %

100 Kbyte TCP Image Transfer 96.3 % 3.7 %

10 Kbyte TCP Sensor Reading 71.7 % 28.3 %

Table 6.2: Percentages of traffic associated with the service and the P2P overhead in
terms of total bandwidth.

Table 6.3 presents the amount of overhead traffic per successful service. Here the

TCP and UDP services require roughly the same amount of overhead traffic for the P2P

service requests and discovery, which is what we would expect. From the table, in order

to request a 100 Kbyte TCP Image, an additional 41 Kbytes is necessary to discover the

service in the overlay network and setup communication between the sender and receiver.
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Service Overhead (Kbytes)

700 Kbps UDP Video Stream 48

40 Kbps UDP Track Stream 48

100 Kbyte TCP Image Transfer 41

10 Kbyte TCP Sensor Reading 40

Table 6.3: Average overhead in bytes per successful service.

6.3.4 Network Scalability

Larger experiments were performed to evaluate how well the P2P and client/server archi-

tectures scale. These experiments evaluated the many successful services completed within

a fixed period of time as a function of network topologies which had differing sizes. The

latency per service and bandwidth utilized per node were measured. In these experiments,

a star topology was utilized as a reference that had a fixed latency and bandwidth between

each node.

We conducted experiments using 11, 26, and 51-node configurations. The topologies

required 17, 39, and 77 Emulab nodes, respectively. Traffic is routed through additional PCs

to emulate the desired link characteristics for latency and bandwidth. Each network link

incurred a latency of 50 ms between the node and central switch. The link to the remote

server was assigned a delay of 125ms. This latency modeled the penalty for accessing a

distantly remote server in the client/server architecture. The bandwidth for each link was

set to 100 Mbit/sec.

Several different types of architectures were explored in this scenario. The first

architecture used a client/server approach. The next four architectures used a P2P overlay.

The first P2P overlay used multicast, the next two used one and two supernodes, and finally

we deployed a configuration with one supernode in addition to multicast.

Figure 6.4 reports the number of successful services completed as the topologies

increase in size. The number of successful services was computed as the sum of total

successful services completed on each node. The approach with only the supernode provides

the best performance for the larger node experiments. Using multicast with one supernode

performs fairly well for the small to medium sized experiments. A multicast only approach
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is useful with the smaller sized nodes, but as the network increases in size, the performance

starts to decline because of the large amounts of traffic created on the network. The

client/server architecture performs worse than the P2P approaches.
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Figure 6.4: Successful number of services as the star topology increased in size. The
multicast architecture outperforms the other approaches, with the combined supernode

and multicast configuration leading the remaining options.

An additional metric to evaluate the different architectures is measuring the amount

of traffic created on the network for each experiment. This is measured in terms of total

traffic (Mbytes) and traffic per successful service (Mbytes/service). Figure 6.5 illustrates

the total traffic generated by each experiment for a given topology. The results were ob-

tained from reading switch counters before and after each experiment. From the figure, the

multicast P2P approach creates the largest amount of traffic with increasing node sizes.

The supernode and multicast combination generates the second highest amount of traffic.

This is no surprise due to the simple star topology and multicast sending service queries to

each node, essentially broadcasting in this configuration.

The traffic per successful service is shown in Figure 6.6. Again, the multicast only

approach is the most expensive in terms of bandwidth, requiring over 17 Mbytes per service
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Figure 6.5: Total network traffic as the star topology increased in size with the multicast
configuration demonstrating how poorly it scales in a star topology with larger number of

nodes.

completed. The supernode P2P and client/server experiments require around 1 Mbyte per

service.

The next statistics reported are the latencies associated with each service. Figures

6.7, 6.8, 6.9, and 6.10 measured in milliseconds the latency associated with each service.

The latency for the UDP streams was measured from the time that the client requested the

stream to the time when the client received the first byte of data. The TCP latency was

measured as the time when the data transfer was complete.

The latency experiments can be divided into two groups, the UDP services and the

TCP services. The multicast architecture was actually slower than the client/server in

the 40 Kbps UDP stream. This is due to the amount of traffic generated from each node

searching every node in the overlay for a particular service. Deploying supernodes eliminates

that problem by caching service advertisements for nodes utilizing that supernode. In the

TCP services the latencies for the P2P approaches were around 2-3 times faster than the

client/server model. With the UDP stream services offering around a 30% decrease in

latency to discover the service. Excluding the multicast case, as networks grow larger than
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Figure 6.6: Network traffic per successful service as the star topology increased in size,
with the multicast configuration providing the most expensive service per megabyte

solution.

90 nodes both types of services will benefit even more from the P2P architecture, especially

applications transferring large amounts of data.

6.3.5 Hierarchical Network of Super Nodes

This section explores experiments deployed using a hierarchical network topology. In this

tree topology, supernodes were placed at various locations near the root of the tree. This

network includes a range of bandwidths and link delays with 1 Mbps links on the low

flying nodes, 10 Mbps at the Tactical UAVs and 100 Mbps between high flying (X-45)

nodes [49]. Delays between links are fixed at 40 ms, 40 ms, and 20 ms for the Low Flying

UAV, Tactical UAV and X-45 respectively. The delay link to the server in the client/server

architecture was set to 600 ms. The 600 ms delay is a result of the propagation time and

queuing that takes place over a multihop satellite link or a wireless to ground infrastructure

similar to [81]. The two common methods currently used to route video to a centralized

remote set of processors are directly through a satellite (Figure 1) or relayed to a ground

station completing the path through the internet. The latency experienced by the satellite
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Figure 6.7: 700 Kbps UDP Stream Latency as the star topology increased in size. The
client/server and multicast configurations do not scale well with larger sized topologies.

is usually greater than 600 ms because the propagation delay to a geostationary satellite

(250 ms), the relay and switching delay to a secondary satellite (250 ms) plus the jitter (100

ms) from the multiplexing and encoding comprise the 600 ms latency. The jitter is due to

the multiplexer, modulator, coder, switch, decoder, demodulator and demultiplexer. The

use of technology such as Turbo Code provide substantial improvement in error correction

however increases jitter due to the large block size required during encoding and decoding.

The hierarchical topologies consisted of 11, 31, 54, 75, and 92 nodes in the overlay. The

total number of Emulab hosts required to support these experiments ranged from 19 PCs in

the 11 node example up to 147 in the 92 node example. Again, this large increase is due to

the additional nodes responsible for bandwidth and delay constraints placed between links.

Three different distribution types are simulated at various levels of the hierarchy.

Table 6.2 lists the assumed distribution of services.

In order to better exploit the locality of the services, an assumption is made regarding

the types of requests issued by the Low Flying UAV nodes. This assumption is that requests

are only issued to nodes one hop away, or in the same subnet. This assumption is fairly

reasonable given the fact that services are most valuable to the nodes closest to them. No
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Figure 6.8: 40 Kbps UDP Stream Latency as the star topology increased in size, again the
multicast configuration demonstrates a sharply raising latency for the larger topologies.

restriction is placed on the Tactical and X-45 nodes, permitting requests for any node in

the topology. These assumptions allow the low flying nodes near regions of interest access

to those important services and a global service request scheme for the high flying nodes

(Tactical and X-45).

In these experiments multicast was not deployed. With multicast enabled, nodes

between routers are unable to communicate with each other in Emulab. Instead, three

supernodes are deployed to investigate the benefits of increasing the number of supernodes.

video track image sensor idle

Low Flying UAV 10% 45% 10% 25% 10%

Tactical UAV 25% 25% 25% 5% 20%

X-45 40% 5% 20% 5% 30%

Table 6.4: Distribution of different nodes in hierarchical topology
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Figure 6.9: 100 Kbyte TCP Transfer Latency as the star topology increased in size, with
the client/server configuration unable to scale as well as the P2P architectures.

Results

This section presents the results of the hierarchical topologies. Figures 6.13, 6.14, 6.15

report the successes, bandwidth, and bandwidth per service respectively. Figures 6.16,

6.17, 6.18, and 6.19 report the individual service latencies.

The number of successful services scales well in P2P architectures. The P2P nodes

perform almost twice as many services as the client/server in the largest experiment. The

client/server experiences an initial decrease in bandwidth per service due to the difference

in topologies between the 11, 32, and 54 node experiments. The 54, 75, and 92 node

experiments share a similar structure with an increase in total nodes at the edges.

The P2P architectures generate more total traffic as the topologies increase in size,

however the number of services completed is also greater. It is important to note the rising

costs of services per MByte in the client/server model in Figure 6.15 with larger experiments.

The costs for the one supernode example remains fairly stable even for larger experiments

which is very encouraging for building larger systems. The bandwidths fluctuate for the two
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Figure 6.10: 10 Kbyte TCP Transfer Latency as the star topology increased in size. The
client/server performs better in this smaller file transfer size, however not at the smaller

latencies of the P2P architectures.

and three supernode examples in the larger node topologies, however the costs are always

considerably less than the client/server case.

The client/server model performs at 2-5 times the latency of the P2P architectures,

depending on topology size and the service. In the 10 KByte TCP transfer, Figure 6.19

the client/server approach increases by 17% moving 75 to 92 nodes, compared to the 1%

increase experienced by the single supernode P2P example.

6.3.6 Use of Super Nodes

From the results, the addition of more than one supernode does not necessarily improve

performance on all topologies. Strategic location of the supernode will impact the effective-

ness of the P2P technology. For the larger experiments though, performance improvements

were demonstrated when slower nodes were deployed in Emulab. For example, in the 92

node hierarchical, using a Pentium 3 850 MHz PC proved inadequate acting as a supernode

for the other 91 nodes in the overlay. The bottleneck was simply the JAVA application

consuming 99% of the CPU due to the overhead associated with handling service requests
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Figure 6.11: High level view of 92, 75, 54, 32, and 11 node hierarchical topologies.

for a large number of nodes. When deploying additional supernodes to divide the load

however, the number of successful experiments increased considerably.

The second benefit provided using additional supernodes is redundancy. When a

supernode fails in the P2P examples, the additional supernodes continue to operate to

provide services. Each additional supernode is capable of distributing resolving queries for

every node in the network. In the client/server model, a failed server or bottleneck link will

completely disrupt the use of services. Initial placement of the supernodes indicates two

hierarchial levels from the edge is optimal.

6.3.7 Benefits of Emulation

Current P2P network simulators [54][55] lack the realism found in an actual implementa-

tion of all the P2P protocol’s unique behavior. For example, with emulation, we are able

to evaluate with greater confidence than a simulator, the latency required to complete a

service. Also, with emulation more practical issues are exposed such as the amount of CPU

processing necessary for a supernode for support 100 nodes in a distributed environment.

One early result which came from the emulation and arguably would have came

from a JXTA P2P network simulator (if it existed) was the importance of locality in nodes

requesting services. When an arbitrary node requesting from any given neighbor the latency

was almost as large as the client/server architecture. Making the assumption that most low
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Figure 6.12: View of 11 node hierarchical topology.

flying nodes are generally interested in services from nearby nodes substantially increased

the number of services completed and decreased the per service latency.
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Figure 6.13: Successful number of services for localized communication hierarchical
topologies.
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Figure 6.14: Total network traffic for hierarchical topologies.
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Figure 6.15: Network traffic per successful service for hierarchical topologies. The
client/server approach requires more bandwidth for all sized topologies with a rising trend

in the largest experiments.
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Figure 6.16: 700 Kbps UDP Stream Latency for hierarchical topologies. The P2P
architectures discover services at least twice as fast as the client/server.
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Figure 6.17: 40 Kbps UDP Stream Latency for hierarchical topologies. The P2P
architectures service latency outperforms the client/server in requesting the UDP data

stream.
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Figure 6.18: 100 Kbyte TCP Transfer Latency for hierarchical topologies. The
client/server architecture continues to rise at an increasing rate for the largest

experiments.
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Figure 6.19: 10 Kbyte TCP Transfer Latency for hierarchical topologies with the P2P
latencies scaling very well with larger topologies.
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Chapter 7

Evaluation of Hardware

Accelerated Supernodes

This chapter investigates the use of Field Programmable Gate Arrays (FPGAs) to improve

the performance of a supernode (SN) operating in a avionic satellite network. This high

performance SN is clustering data and forwarding traffic to nodes designated to receive

the service. An architecture is proposed along with performance evaluations on the Emulab

testbed. The material in this Chapter was originally published in IEEE Aerospace 2008 [47].

Portions of this chapter were written with my co-authors John Meier, Adam Covington,

and John Lockwood.

7.1 Introduction

Multiple commercial and military aerospace platforms (aircraft, satellites, and trucks) use

a diverse set of sensors (e.g. radar, infrared) to track targets. Distributed track fusion is

also used for condition based maintenance, robotics, medical diagnosis and environmental

monitoring [28]. The application layer single sensor data is partitioned into sets of observa-

tions, or tracks, that provide both time and distance history of targets sent by the network

to a centralized location for fusion into a Common Operating Picture (COP). Having an

accurate and timely COP improves the ability to perform an accurate Situation Assessment
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(SA). Track observations are processed by the sensor system to uniquely identify the targets

using key metrics such as velocity, future predicted position, and target type. Centralized

fusion requires distributed sensors to send track information to a common aggregation

point which currently creates significant latency due to limited bandwidth and processing

challenges. Today large engagements can create more than 10 Gbps of distributed sensor

data. The ability to route and and process this data is limited by the network architecture

and processing capabilities on the platform. Many have suggested moving to a distributed

or hybrid architecture [28],[9] may improve cross-range accuracy through combining data

from multiple separated sensors while mitigating the risk of single fault failures. Track

data (observations) are distributed using shared bandwidth between platforms to improve

SA. Clustering improves SA by providing improved data association. Clustering results

in prioritization of network data, conservation of bandwidth and lowering the track fusion

latency. Real time SA requires improved dynamic exchange of sensor observations which

often generates duplicate data for targets located in overlapping coverage which cause net-

work overload. It is critical to select only the best information to send over the limited

bandwidth. Lossless compression techniques are not effective in fitting all the information

within the limited bandwidth for large scale systems. Clustering intelligently groups track

messages autonomously in real-time to use available bandwidth with the highest priority

track data. Intelligent grouping uses the algorithms described above with network data

content to prioritize, aggregate and disseminate key information in real time. Our goal is to

reduce the number of tracks exchanged while retaining information quality. The effective-

ness of using our clustering algorithm operating in a distributed environment was proven

using large-scale Emulab experiments.

Distributed sensor data has the risk of increasing the dissemination bandwidth ex-

ponentially as compared to centralized fusion. Adding a network layer that intelligently

distributes only high value measurements (sensor data) is needed to mitigate that risk. We

argue that flooding data to allow all sensors at each node to build separate COPs is not

an intelligent use of network resources [83]. Informed selective collaboration at the network

layer is needed to reduce latency and bandwidth. Improving bandwidth usage decreases
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latency which also improves track accuracy. Distributed fusion technology increases con-

nectivity by sharing and processing more data locally. After the data arrives at designated

aggregation nodes and is processed, the results (track reference table with unique IDs for all

tracks) are disseminated to each sensor node to achieve the COP. Traditional methods to

distribute track observations often load the existing bandwidth beyond the channel capacity

resulting in information latency and loss. We discuss the relative merits of a new network

architecture that is aware of the higher layer (application level) distributed data fusion to

improve situation awareness using real time technology at the network layer.

This chapter presents a brief overview of distributed sensor system track fusion (ap-

plication layer, intelligent network layer, and intelligent gateway), simulated and hardware

experimental results, hardware designs and future research plans. We contrast filtering

observations at the application with clustering at the network layer. Our simulation, em-

ulation and hardware results indicate a distinct advantage of performing clustering in the

network layer (node and gateway).

We assume the distributed fusion algorithms are operating on each wireless node

and the track observation content is accessible by the network. For simplicity we only

disseminate (not modify) new and update track message types provided to the network

prior to transmission.

7.2 Related Work

Distributed track fusion (DTF) includes data association and track filtering. Data associa-

tion receives observations and must assign them to existing tracks or identify them as new.

Sensor measurements of the targets may be imprecise due to measurement resolution, noise,

lack of other sensor information and other error sources. DTF has the potential to improve

accuracy [83] provided wireless networks can support the data dissemination. Clustering

applied to distributed fusion using avionic networks is a novel application. Image and text

based clustering was the basis which formed our current approach. The two main forms of

clustering are agglomerative (bottom-up) and divisive (top-down). Each approach utilizes
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a distance metric that measures the difference between two elements. Agglomerative clus-

tering treats every data element as a separate cluster and merges clusters if they exhibit

similar distance metrics. Divisive clustering starts with all data elements in the same clus-

ter and partitions them into different clusters based on the distance metric. Both forms of

clustering are described in [41] as it applies to hierarchical document clustering using the

k-means clustering algorithm.

The original k-means algorithm was described by Duba and Hart [18] and has been

used by Estlick et al. [21] and Lesser et al. [36] to implement a hardware approach of k-means

clustering for hypersectral images. We leveraged the basic idea of partitioning the pixels

composed of multiple spectral channels in N dimensions associated with a ”center”. Our

solution partitions the observations composed from multiple sensors at varying times into N

clusters associated with a center or centroid representing each track. One novel modification

of the existing algorithm is the projection of the centroid to help assess the value of the data.

They [36] compared three different distance metrics that included: Manhattan, Euclidean,

and Max distances. Euclidian distance is rotationally invariant and minimizes within class

variance but is more expensive requiring a multiplication for every distance vector to each

centroid or track recorded. They determined that the Manhattan distance would be the best

fit for their hardware. Our demonstration system uses only two dimensions and therefore

does not demand rotational invariance provided by the Euclidian distance. Covington et al.

[14] showed the implementation of k-means mapped into integer arithmetic. They utilized

a Cosine Theta distance metric since this metric (also known as the spherical distance)

provides a better distance in high dimensional sparse data.

Many data association algorithms have been presented [23] [22] for group target

clustering but few leverage recent advancements in data clustering technology to improving

bandwidth usage. Clustering has been used in two ways for tracking in the literature. Target

clustering groups similar data elements or observations together to form a track (usually

without prior knowledge). Group clustering typically computes a location and velocity PT

position of a large number of closely spaced targets moving in the same direction in order

to reduce the track data transferred, system loading, and miscorrelation. Older track fusion
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methods use Nearest Neighbor (NN) algorithms to make decisions as the data arrives while

newer methods delay decisions by storing the data. Our clustering methods rely on making

decisions as the data arrives. We extend the current research [36] for clustering dynamic

DTF data sets. We project a representation of the centroid (a projected target (PT)) to

calculate the distance from all known tracks stored. This novel method enables us to map

static data clustering techniques to dynamic data association required for DTF.

The traditional K means algorithm requires specifying the number of clusters. Since

we never know exactly the number of targets being tracked, applying traditional clustering

algorithms is impossible. Most clustering algorithms operate on a fixed set of data and

are iterative. Every cycle a data element is selected and is moved to the cluster that is

determined to be the best fit by the distance metric. The clustering algorithm used to

cluster track data differs from these cyclical algorithms. Since the clusters represent known

tracks that could move, the incoming track data can only be clustered once. The track

clustering also utilizes a cluster threshold to determine if a track is close enough to be

included in a cluster.

Clustering algorithms use similarity measurements known as the ”distance.” The

distance is computed from observations to centroids. Normally, centroids represent the

average of grouped data elements however we project the last observation to the temporal-

space for the discrete time interval needed to match the bandwidth available. Others [36]

have evaluated different distance algorithms (Manhattan, Euclidian, and Chebyshev) for

use with the k-means clustering algorithm. Although there are numerous distance metrics

that can be used for clustering, our work utilizes the Manhattan distance metric [36]. We

can implement the spatial clustering algorithm (SCA) using Manhattan distance with less

(50 percent) number of gates in an FPGA and the accuracy is adequate.

Our approach compares the value of the information being intelligently clustered

using active networking with normal application layer data disseminated using traditional

networking. We propose a simple method to project the target based on velocity and use

distance methods to assess the value of each observation. Our method simply compares the
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distance to the PT of each track to make the clustering and transmission decisions. Im-

provements to lower level queuing using higher level geometric methods Shannon [66]have

been observed. The challenge is to provide the information required for accurate tracking

while selectively eliminating redundant or unnecessary information to match the bandwidth

capacity available. Our solution adds intelligence between the source and receiver for diffi-

cult real time decision making at the network level to increase the value of information and

improve network quality of service (QoS).

Messages differing by only a slight variation of measurement (to a limited extent)

represent nearly the same information and offer an opportunity to eliminate redundant in-

formation. This may also reduce the number of dimensions in the current message space.

Track observations which are considered equivalent by the destinations (receivers of track

observations) can be grouped together and treated as one point or a reduced set of key

observations. Equivalency is evaluated by assessing the relative closeness of the observa-

tion to the PT. We propose that this grouping method requires fewer messages to specify

one of these equivalence classes defined as we cluster the track observations rather than

sending sequential non-prioritized observations. Distance methods, such as Manhattan or

Euclidean distance, compare the distance from the PT to the observations. If all observa-

tions are evenly spaced on a circle around the PT, they can be regarded as equivalent, and

theoretically can be reduced to a one-dimensional space or point. We extend this specific

example representing points (track observations) within the circle as key messages to be

sent at higher priority. The radius of this circle is defined by the clustering threshold. We

preserve state by storing each target’s most recent track observation sent for every PT.

7.3 System Overview

The future situational assessment (SA) capability is considering distributed fusion to in-

crease track accuracy and reduce latency in acquiring a unified common operating picture

(COP). Distributed fusion challenges are difficult due to the many constraints such as unreli-

able wireless transport, limited processing power at the network edge, exponential increased
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demand for bandwidth and the use of multiple legacy wireless communication links with

low throughput.

Sensor networks exhibit similar scalability and wireless network challenges when

deploying many tiny inexpensive sensors that integrate sensor data. These small sensors

can be deployed on platforms or ”sprayed” onto roads or other surfaces to monitor lights or

heat or fires or highway traffic [83]. The large number of small sensors connected using very

limited wireless bandwidth is a key challenge when disseminating sensor data. In either

avionic or distributed sensor networks the kinematic parameters (position, velocity, etc.)

are key to data fusion. Early Multiple Target Tracking (MTT) systems only used basic

kinematic quantities to track objects. Today Bayesian formulation is based on multiple

attributes from multiple sensors to improve target tracking and identification.

MTT data from multiple sensor was used to evaluate the bandwidth required for

distributed fusion using network clustering at the node and gateway. We selected a large

number of sensors (75 nodes) exchanging a maximum of 50 track observations from each

node which generated an upper bound of approximately 100 Mbytes or 800 Mbps. Avionic or

wireless sensor network architectures today limit interconnecting numerous moving sensors

each tracking multiple targets. The targets (T1...T3) are within range of two distributed

sensors relaying the track observations to the gateway node as shown in Figure 7.1. Target

T1 is static (not moving), T2 has random movement and T3 is flying in a defined pattern.

The gateway node is shown choosing the best track information and removing the redundant

T2 track information at the gateway (GW) supplied by N1 and N2 before passing it up the

hierarchial network chain. The scenario illustrates the integration of application with the

network layer.

Avionic and sensor network capacity is typically less than 100 Kbps which creates a

major bandwidth bottleneck. This bottleneck adds significant latency using normal network

queuing structures. We insert an intelligent gateway as shown in Figure 7.1 to reduce the

data at key bottleneck points by adjusting for the available bandwidth. We also have the

ability to eliminate the gateway queue to decrease data latency.
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Figure 7.1: Target (T1-3) are tracked by two sensors and the gateway (GW) node
eliminated the redundant target 2 data.

7.3.1 Application layer distributed track fusion dissemination

Existing MTT detection, classification, and tracking algorithms work well on a single plat-

form. Multiple platform sensor MTT systems need to accurately correlate a target’s pa-

rameters (position, range rate, velocity, and acceleration) [9]. Today the application layer

normally decides which MTT data will be distributed and passes it to the network layer.

It is not realistic for every node to be sent and process every track observation in a large

operation to develop exactly the same COP. The distributed application must evaluate the

data and determine what should be sent to enhance the COP.

The major challenge faced by distributed multi-target track (MTT) fusion is choos-

ing the right information to send at the right time over severely limited bandwidth links to

construct a scalable unified picture that will enhance situational awareness (SA). MTT em-

ploys one or more sensors, together with computing resources, to interpret the environment

based on a series of measurements.

Our Matlab experiments compared traditional application layer dissemination tech-

niques with adding an intelligent network layer. Traditional ”Queuing” network methods
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are contrasted with our new ”Clustering” method by evaluating the pattern generated

(percentage of area). All targets maintained known patterns (geometric shapes) and the

observations used normal network buffering operation. Bursts of data congested the link

and resulted in data losses due to finite length buffers dropping packets. The objective was

to evaluate the changes in the geometric shapes due to loss of the data (shown by the red

line - ”received target observations”) compared to the actual target pattern (shown in blue

- ”ideal target generation”) illustrated in Figure 7.2. The dropping of critical data prevents

regeneration of the ideal target pattern. The difference in the area of the two geometric

shapes was adopted as a measure of the value of the observations received, as suggested by

Shannon [66]. Significant value is lost (area reductions) using traditional application layer

dissemination depending on the randomness of the queue, available bandwidth, burstyness

of the data, and the changes in the target pattern.
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Figure 7.2: Decreased area represents reduced information value

Figure 7.3 represents the ability to recreate the ideal target pattern based on available

bandwidth. Our results indicate that a more accurate representation of the target pattern

is recreated with less bandwidth using clustering. The target pattern remains distorted
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using ”Queueing” until a large percentage of the bandwidth is available as illustrated in

Figure 7.3. The ”Clustering” solution is shown to provide increased information content

which reduces required bandwidth and latency.

Our clustering method can eliminate the majority of the delay by replacing the

traditional queuing mechanisms with parallel state machines in FPGA hardware to make

real time decisions. Figure 7.3 illustrates that clustering can recreate the target pattern

better at much lower bandwidths than traditional methods.
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Figure 7.3: Clustering increases information content

7.3.2 Intelligent network layer clustering

MTT partitions sets of measurements (observations) or tracks for object representations

in space and time. Target prioritization (missiles, aircraft, trucks, ships) is performed to

correctly assess the environment however this information is not normally passed on to the

network layer. Quality of Service (QoS) at the network layer normally relies on this type of

prioritization to route data more efficiently. MTT application developers have recently pro-

posed application layer solutions to address the QoS issues related to distributing the sensor
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data. One solution uses overlays to perform network layer functions. This approach creates

real time performance issues, demands significant increases in processing, significantly in-

creases the bandwidth, limits key access to network management control parameters, and

adds latency due to large queues buffering network packets. We evaluated this approach

using JXTA peer to peer (P2P) overlay technology in Emulab (see simulation results) and

found it increased the bandwidth by a factor of 17 while adding significant latency.

Our research evaluates performing intelligent distributed fusion data dissemination

at the network layer. We use clustering at the network layer to minimize the problems

associated with application layer techniques.

We implemented advanced techniques at the network layer to improve dissemination

of track fusion data. The techniques move a portion of the application layer logic into the

network. The logic was implemented using software on a general purpose CPU and on new

network hardware. Predicting target position either at the application or network layer is

difficult. Moving key application logic such as target projection is key to enable decisions at

the network layer. The real time hardware accelerates the decision making and distribution

logic. Our implementation simply uses kinematic data for the target projection. Reduction

of the data while selecting the right data to send in real time is critical to developing both

a realistic and scalable solution.

Two main distributed track fusion messages (initialize and update tracks) containing

kinematic data were provided to the network layer. Our generated distributed track mes-

sages simply contain position, velocity and relative time of the measurement information.

We assume the network layer has the ability to parse the messages to assess the distance

and time characteristics.

Our distance and time dissemination algorithms attempt to map the target predic-

tion and dissemination application layer functions efficiently to the network layer. The tar-

get prediction and dissemination are broken into distance and time functions. The distance

(spatial) algorithms (target projection, distance of observation to each track observation,

and track association) assess the value of each track observation by adding logic to make
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Figure 7.4: Tracks mapped into L dimensional vectors are clustered into groups of current
tracks

real time data dissemination decisions. Our time algorithms (prioritization of targets, up-

date rate decisions) evaluate the required update frequency for dissemination based on key

target characteristics accessible at the network layer.

The distance or spatial clustering algorithm (SCA) requires three steps. The algo-

rithm for track clustering operates as follows:

1. Calculate distances from incoming observation to predicted target position for each

track.

2. Determine if there is a projected track PTmin close enough to have a distance below

the cluster threshold.

(a) If PTmin exists, assign track ~t to centroid and update the position of PTmin

based on the velocity.

(b) If PTmin does not exist, add the track ~t as a new track.

We first project the target (PT) using the stored kinematic observation track data,

as shown in Figure 7.4, for each track (cluster) using following equation:

PT = stored(X, Y ) + (timeinc) ∗ (currentvelocity) (7.1)

We use the target projection similar to the centroid (mean value for all the objects in

the cluster). Second, the distance from the observation to the projected target is calculated.
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Each observations (received at different times t1, t2, t3,...) is compared to every track

(cluster) using the PT equation. Third, if the distance is less than the clustering threshold,

the observation is selected to send. The clustering threshold is currently set based on

empirical data.

Our temporal clustering algorithm (TCA) evaluates velocity of the observation then

prioritizes it to select the correct update rates. The update rate is varied based on the

priority level of the target. We cluster the data using three priority levels; high (e.g. missiles

traveling at Mach 2 or higher), medium (e.g. aircraft traveling between Mach 1 and Mach

2) and low (e.g. trucks, ships traveling below Mach 1). We currently use static thresholds

for the prioritization. Based on experience, the update rates for the high priority is set at

6 hertz, medium priority is set to 4 hertz and low priority is set to 2 hertz. TCA next

compares the relative system time associated with last observations sent to decide whether

the current observation should be sent. The observation won’t be sent unless the update

rate set for the target has been exceeded, even if the observation is below the clustering

threshold (close to the projected target). Our experimental software and hardware required

threshold to set key clustering and dissemination parameters. The three main thresholds

include the clustering threshold which determines the minimum acceptable distance from

the PT for association with a know track, the time increment determines the next time

the track observation should be sent and the two velocity thresholds partition the track

observations into high, medium and low priorities. The velocity thresholds determine the

frequency of disseminating the track observations. The thresholds were used to provide

clustering design and development constraints used in simulation, emulation and hardware

evaluation.

Currently the SCA and TCA algorithms operate independently but are sequentially

linked. The sequentially linked SCA and TCA determines if the observation should be used

only at the local node or disseminated to other nodes.
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7.3.3 Intelligent Gateway Node Clustering

The SCA or TCA algorithms were implemented in both hardware and software. To minimize

the latency required to cluster data and maximize throughput, we parallelize the processing

of the TCA and SCA algorithms using Field Programmable Gate Array (FPGA) technol-

ogy in the Intelligent Gateway Node (IGN). The IGN implemented the SCA and TCA

algorithms above using the NetFPGA platform. The NetFPGA is an open source project

that allows researchers to develop network applications and systems [40]. Many projects

including Secure Switches (Ethane) [43], Routers, and Rate Control Protocol (RCP) [20]

are also using this hardware.

The main three hardware modules are Track Cluster, Time Compare, and Update.

The Track Cluster module calculates the Manhattan distance to the PT and maintains a list

of current clusters/tracks. The Time Compare module determines the priority and whether

to send or drop the data. The Update module computes the projection of the target (PT)

for clustering the track data and passes the PT to the Track Cluster module. The prototype

modules are implemented and demonstrated on an open platform called the NetFPGA. The

NetFPGA processes the MTT data as it is received in real time over a network.

For the development of our network layer solutions, the NetFPGA contains a Xilinx

Virtex-II Pro FPGA. Real time decision making is made possible leveraging the board’s

Double Data Rate (DDR2) SDRAM device, two SRAM devices, two serial ATA (SATA)

connectors, and quad-port physical-layer transceiver. The NetFPGA library provides a

Verilog template for design that interfaces to the memory devices and the network interfaces

[40] for ease of design.

Deploying an intelligent gateway at strategic locations will significantly improve

the overall network performance for distributed fusion. Advanced SA requires the use of

high speed networks with increased bandwidth to implement centralized track fusion to

improve tracking performance. Distributed track fusion can process the data locally and

only exchange key observations to improve SA. It is critical to select the correct distance

and clustering methods to ensure the right data arrives at the right time to the distributed

nodes.
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Figure 7.5: The NetFPGA platform used to implement Track Clustering

The Emulab experiments indicated that the general purpose computer could not

keep up with the network traffic. The intelligent gateway node hardware demonstrated real

time performance at wired line rates was possible. The hardware design implemented each

of the functions (target projection, distance of observation to each track observation, and

track association,prioritization of targets, update rate decisions)in modules that leverages

parallel operations to achieve very high rate decision making performance.

The IGN achieved a significant improvement over traditional software processing

methods implemented at the application layer. Our parallel hardware design can perform 4

simultaneous distance metric measurements with up to 100 simultaneous tracks operating

at a clock speed of 125 MHz. The total time required for distance calculations, assignment

determination, and updates requires 0.904 µs for each incoming track which creates a real

time throughput of approximately 1.1 million packets per second.

7.4 Hardware Design

The track clustering algorithm performs four primary operations (1) calculating the dis-

tances between observations and centroids, (2) identifying if the incoming observation maps

to an existing centroid, (3) updating the centroid or creating a new cluster, and (4) deter-

mining if the track should be dropped or sent based on the timetable. The hardware

implementation is comprised of three primary modules: Track Cluster, Time Compare,

and Update. In addition to these modules, control modules were needed to load and run
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the hardware clustering system. Figure 7.6 shows the architecture of the track clustering

system.

Update
Control

Processor

Track Cluster Accept
Time

Compare
Time

Stamp

Report

Figure 7.6: Hardware Track Clustering Block Diagram

7.4.1 Time Stamp

As the track data enters the system it is provided with a time stamp. The time compare

module uses the 32-bit time stamp to determine if the track should dropped or sent based

on the defined update rates set by the time threshold.

7.4.2 Track Cluster

A set of smaller modules comprise the track cluster function. The first module calculates

the distance and is designed in a modular fashion so that it can be replaced with diverse

metrics implemented in hardware. The Manhattan distance calculation is replicated in

parallel to evaluate multiple distances simultaneously.

The second component is the cluster table. The cluster table maintains a list of

current clusters/tracks locally on the FPGA chip. The centroids of the clusters represent

the projected position of the track for prioritization. This projected position determines if

an incoming track matches a cluster. The calculated parallel distances are passed to the

accept module to make the critical decision to forward the data.

111



7.4.3 Accept

The accept module compares all parallel distances to a cluster threshold. If the distance is

less than the cluster threshold, the module will assign the incoming track to the specified

cluster. The module will not assign the incoming track if the distances are greater than the

cluster threshold. If this occurs, the system currently decides the incoming track is a new

cluster and will specify that a new entry needs to be added to the cluster table.

7.4.4 Update

After the accept module determines if an assignment is accepted, the update module then

updates the cluster table. The update is computed from the velocity information contained

in the track data and determines the projected position of the track. The projected position

is passed to the cluster table (in the track cluster module) for storage. The accept module

determines whether the track is a new track and needs to be added to the set of known

clusters. The update module will calculate the projection of the track and then send the

information to the cluster table to be stored.

7.4.5 Time Compare

The time compare module determines if the track should be dropped or forwarded to down-

stream modules/systems. The module is comprised of a timetable that maintains two time

values: the last time the cluster/track was reported and the last time a track message was

received. A time threshold determines if a track message should be sent or aggregated. If

the difference between the last sent time and the current time is greater than the threshold,

the data is sent from the node. However, if the difference is less than the time threshold

the data updates the cluster table however the data is not sent from the node.

The timetable also contains information regarding the velocity and the accuracy of

the incoming track data. This data is used in conjunction with the time data to determine

whether the system sends or drops the data. The velocity information is used to determine

the three time categories or priorities of traffic: high, medium and low.
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7.5 Clustering Observation Data

The track data is part of the network traffic flowing to and from each clustering node. Each

track observation has a current position and velocity in the xy dimension. The clustering

system can be expanded into a larger dimensional space, although the dimensionality is set

to two currently.

The clustering nodes are interconnected using a network where multiple sensors

on different platforms report the same track information but may have different accuracies.

These tracks are similar representations of the same information, but are received at multiple

clustering nodes at different times due to network traversal. The clustering nodes maintain

information on the current clusters (active tracks) and cluster centroids. In addition to the

position of the track, the system uses time stamps to determine the last time a cluster was

reported.

The clustering system uses a modified algorithm similar to k-means. In traditional

k-means, the number of clusters (K) is set to a specified number. We allow the number of

clusters to start from zero and expand as new tracks are found.

The algorithm utilizes two tables to achieve the desired functionality. The first table,

the cluster table, is comprised of the current clusters that are projections of where the track

should be in the next track message. As tracks are received, they are compared to the

clusters using the Manhattan distance. If the distance is less than a threshold (cluster

threshold), the track message is assigned to the specified cluster. The velocity of the track

message updates the projection of the cluster. This projection update allows the system to

account for tracks that are not static. If the distance from the input track is greater than

the threshold for all the current clusters, a new cluster is added.

The second table, the track time table, maintains two times for each cluster: the last

time a message was sent about that cluster and the last time a message was received about

that cluster. Since the track data is time stamped when the clustering system receives

the track, the system compares the time received to the time sent. If this time is greater

than the timing threshold the system will allow the message to pass and update the cluster
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received time in the table. However, if the time is less than the time threshold, the system

updates the cluster received time and removes the message from the outgoing traffic.

7.6 Hardware Fabrication

The implementation on the NetFPGA platform was able achieve a clock frequency of 125

MHz. The hardware utilization of a track clustering algorithm with four parallel distance

metrics is shown in Table 7.1. With a slice utilization of 44% the number of distance

metrics can be increased. This increase in parallel distance calculation reduces the latency

to compare incoming tracks to all known clusters.

XC2VP50 Utilization
Resources Utilization Percentage

Slices 10533 out of 23616 44%

4-input LUTS 14318 out of 47232 30%

Flip Flops 12958 out of 47232 27%

Block RAMs 82 out of 232 35%

External IOBs 353 out of 692 51%

Table 7.1: Device utilization for XC2VP50 Hardware Track Clustering with four concepts

Given our implementation with four parallel distance metrics with 100 total tracks in

the cluster table at any one time, we can estimate the total time for clustering an incoming

track. The parallel distances can be calculated in four cycles. The total number of cycles

required to produce all 100 distances would be 100. Since the operation of the clustering

circuits are pipelined, the accept module would only require three cycles for determining

the correct action to perform. The update module would require three cycles to perform

an update or creation of a new cluster. The time table compare takes three cycles. Add

in an additional four cycles for header processing and we have a total of 113 cycles. Since

we are running the hardware at 125 Mhz, the total time required for distance calculations,

assignment determination, and updates requires 0.904 µs for each incoming track. This

gives us an approximate throughput of 1.1 million packets per second.
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7.7 Simulated Experiments

Our large scale experiments help to quantify the distributed track fusion dissemination

bandwidth load and the latency related to available link capacity. We use software to

cluster the track observations in the large scale experiment to reduce cost and compare the

IGN with general purpose CPU performance.

The first set of experiments involved measuring the amount of bandwidth created in

transmitting track data to a distributed set of nodes using application layer (JXTA) and

network layer (Multicast, broadcast) protocols. The protocols tested were Ethernet Broad-

cast, IP Multicast, and a P2P Multicast called JXTA. Four different sized star topologies

were deployed; 10, 25, 50, and 75 nodes. The experiments were performed in an emula-

tion environment called Emulab, on an emulation testbed with over 300 nodes available for

researchers at the University of Utah.

The first set of experiments investigated the amount of latency experienced by a

single node receiving track data. This experiment inserted a time stamp on packets leaving

the sender. The receiver then compares the packet time stamp against its current time.

The network time protocol (NTP) synchronized clocks on all machines in the experiment.

Figure 7.8 illustrates a sample topology of the initial experiment. In this figure, the

ten node experiment deployed an additional Gateway Node (GW) that enabled multicast

routing in the Emulab environment. Each node sent sensor track data to all other nodes

in the network using IP Multicast. A Boeing track generator at each node created the

tracks. The generator creates targets of interest and records their position as they change

over time. Modifications were made to the track data generation software to provide simple

X, Y coordinates and X,Y velocities. The track data also contained an identifier field

describing the type of track data (initialize or update) and packet length. Each experiment

lasted approximately 20 minutes.

Figure 7.7 contains the graph demonstrating an increased latency experienced at

the GW node disseminating track data. As the networks grows from 10 to 68 nodes, the

amount of track data increases as well as the latency for a single track to be processed.

The maximum latency varied from 109 to 260 ms as the number of nodes increased. The
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average latency ranged only from 103 to 109ms. This illustrates application layer protocols

significantly load bandwidth and increase latency making scalability challenging.
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Figure 7.7: Maximum Latency to Receive a packet over a 100 ms link.

In the next experiment, we evaluate using clustering algorithms to to identify similar

track data and match the available bandwidth. Each packet that arrives at the gateway node

is clustered and compared to packets previously clustered. If a packet is similar to a one

previously clustered and recently forwarded to the neighboring network, it is considered

redundant and discarded. The nodes topologies consisted of 25, 50 and 75 nodes, each

sending track data to all nodes in the network, including a gateway clustering node.

In Figure 7.8, the GW node connects to a neighboring network or node. Our experi-

ments next deployed a single node connected to the other end of the GW with a 1 Mbit/sec

link had a latency of 100 ms. Figure 7.9 illustrates the number of packets that the gateway

node receives and clusters packets that are forwarded. The amount of packets it forwards

varies from 1130 to 9400 packets. This is a considerable reduction in the network load be-

cause the amount of packets it receives and clusters ranges from 187,000 to 435,000 packets.

Figure 7.10 displays the amount of bandwidth used in terms of megabytes processed in

and out of the gateway node. Again, significant reductions in bandwidth are demonstrated
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Figure 7.8: 10 node Emulab Experiment with a Gateway Cluster Node and Neighbor Link.

using clustering algorithms. The incoming amount of data varies from 40 to 90 Mbytes with

the clustering gateway node reducing the traffic to 1.9 to 2.1 Mbytes. This provides an 18

to 48x reduction in bandwidth before traversing to the low capacity neighboring link.

The last experiment performed investigates the amount of packet loss experienced by

the software clustering implementation. The clustering was developed in Java and operated

on a 3 GHz Pentium 4 CPU using a Linux operating system.

Packet loss is due to the slow sequential processing required for the clustering algo-

rithm. Processing compares the clustered hash value of each incoming packet against the

know hash values of the packets in memory. As bursts of packets arrived, the CPU was

unable to investigate all of the packets before buffers overflowed. Since the track data is

assuming the use of an unreliable communication protocol, no retransmission is issued for

track data and it is lost. The hardware implementation of this clustering algorithm will

not suffer the same speed limitations of software. Hardware maps the clustering algorithm

onto an FPGA, that allows for significant parallelism. The results of the packet loss at the

gateway node are presented in Figure 7.11. The number of packets that are unable to be

clustered varies from 27,000 to 209,000 packets.

Figure 7.9 illustrates the amount of traffic in and out of the gateway node. The

average packet size received at the gateway is 217 bytes. Each node generates 9,090 packets.
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Figure 7.9: Performance of Clustering Algorithm in Software (Packets).

In the 75 node example, 9090 x 75 = 681,750 packets are destined for the gateway node or

138,087,788 bytes. The gateway was only able to receive 434,995 packets, and the others

were dropped due to an overloaded CPU. The total traffic received at the gateway was 217

* 434,995 = 94,393,915 bytes or approximately 94 Mbytes. Testing confirms that even a 3

Ghz CPU could not keep up with receiving and clustering of the smaller multicast packets

which necessitates the use of FPGA or ASIC technology.

7.8 Conclusions

The results show that the real time hardware using the K-mean algorithm for clustering can

accurately locate redundant track data for aggregation, identify new tracks, and select the

critical tracks to be forwarded to other distributed sensor nodes for fusing. Improvements

in the information quality and latency for distributed track fusion were demonstrated using

advanced clustering.

Track data distributed using multicast is shown to generate 2.3 Gigabytes of traffic

for large scale (75 nodes) fusion. Experiments revealed state-of-the-art CPUs could not
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Figure 7.10: Performance of Clustering Algorithm in Software (Mbytes).

handle bursts of packets received which resulted in loss of packets due to network buffer

overflow. The clustering gateway node was shown to provide an 18 to 48x reduction in

bandwidth through eliminating redundant data. The results were tested in a distributed

environment called Emulab that used a software version of the clustering algorithms. State-

of-the-art Emulab CPUs could not keep up with the track data resulting in network buffer

overflow and loss of packets. This illustrates the need for our special processing solution

using FPGA technology.

Real time clustering is implemented in the network layer (OSI layer 3) to reduce

the bandwidth intelligently while maintaining high information content. Our pipelined

hardware design calculates four parallel distance metrics for 100 total tracks in 100 cycles.

The total time required for distance calculations, assignment determination, and updates

is only 0.904 µs for each incoming track. The hardware solution is prototyped using the

Stanford NetFPGA in the Boeing Center for Intelligent Networked Systems (CINS) lab.

Our real time solution preserves Layer 7 resources and decreases latencies. The

ability to add real time hardware in the network layer improves MTT performance in

bandwidth limited environments ultimately preserving legacy avionic network resources.
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Figure 7.11: Packet Loss experienced at Gateway Cluster Node due to Software
Clustering.

7.9 Future Work

Novel methods to illustrate the increased value of information using clustering over nor-

mal queuing methods was constructed based on spatial methods. Our use of clustering

algorithms was fairly limited with k-means however there are plans to implement solutions

based on N-means algorithms in the future. We realize selection of the correct clustering

thresholds must be dynamic based on the separation of targets and is highly dependent

on accurately projecting the centroid. The relationship between our temporal and spacial

clustering algorithms must be integrated into a single solution. We plan to develop dynamic

clustering thresholds for more accurate prediction of target paths while selectively reducing

the distribution bandwidth. Real time assessment of the information value allows us to

dynamically adjust the thresholds for preserving the key observations. We theorize that

changing the update rates proportionally with the target velocity will provide improved in-

formation value. The proximity of multiple tracks and the sensor accuracy must determine

the optimal value of the dynamic threshold setting. We also plan to add a weighting factor
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to take into account proximity, sensor accuracy and threat level will provide a more intel-

ligent solution. Interconnecting the time increment used in the projection of the clustering

centroid with the temporal target rate will simplify the algorithms and hardware.

Reliable transfer of data using wireless is available in several avionic systems and

will be evaluated as a separate test case. Latency will definitely increase if all dropped

packets are transferred as required by reliable transport.

Information content is improved by identifying key target characteristics such as

turning ratio, threat level and multi-target separation. Increasing information content while

decreasing bandwidth is the goal of the Boeing Intelligent Gateway (BIG) being developed.

BIG is an intelligent gateway that uses a highly parallel state machine to implement a

set of distributed services such as intelligent data association for improving the quality of

information with reduced bandwidth.
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Chapter 8

Conclusions and Future Research

8.1 Summary

The SPOT system was developed out of a need to assign SN functionality in avionic net-

works, however it became apparent that other applications stand to benefit from it as well.

Leveraging latency sensitive applications helped to clearly motivate the benefits of such a

system. Applications such as game servers for First Person Shooters and relays for Voice

over IP communication seem well positioned to benefit from this work. Also, with minor

changes to the constraints associated with SPOT, other bandwidth sensitive applications

can take advantage of dynamic distributed SN placement.

This research embraced prior work, refined the ideas to a slightly different application

and then improved upon that work to create a better system. The dynamic aspects of r-

SPOT serve an important role for ever complex networks. The development of SPOT

allows for further advancement in distributed systems research. In undertaking this task,

real world issues (such as Triangle Inequality Violations) were observed and addressed. Also

the SPOT system stands as a tool to serve other researchers interested in building on top

of it for more advanced experimentation.

Though the initial emulation experiments the technical and intellectual contributions

flourished. Emulation demonstrated the ability for this distributed algorithm to truly scale

for hundreds of nodes in a distributed system. The use of Planetlab also helped illustrate
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the capabilities of a heterogeneous system with a range of computation and communica-

tion capabilities. Using data gathered from Planetlab nodes provided insight into how an

application can successfully leverage the placement service that SPOT provides. For these

latency sensitive applications such as a First Person Shooter game server, SPOT allows can

provide an improved game play experience.

A description of the formal problem of SN placement was described in Chapter

3. Here a generic placement model was developed with a network consisting of nodes

and routers. Using this simple model various properties of the placement problem were

identified, a cost model was presented along with bounds on the cost as the network increases

in size. Finally a dynamic distributed placement algorithm called r-mod was presented.

In Chapter 4 the dynamic distributed placement algorithm was evaluated with soft-

ware system called SPOT. Using emulation, initial results demonstrated an ability to im-

prove the cost of placement even further when multiple SNs were considered. Enhancements

to the original algorithm were then proposed and analyzed demonstrating reduced costs for

multiple SNs.

Chapter 5 detailed the deployment of improved algorithms of r-SPOT in diverse

environments. Larger topologies were explored using an Internet topology generator along

with SPOTSim, the Java simulator that mimics the behavior of SPOT. The creation of

the SPOTSim simulator allows researches to discover the impact of different placement

algorithms on a much wider set of network topologies. By building off of the open source

GLPK solver, a system exists to experiment with SN placement on a range of environments.

In Chapter 6, the dissertation investigated the performance of P2P service deploy-

ment in contrast to a more traditional client/server service model. Here an avionic satellite

network was evaluated using the Emulab testbed environment. From those experiments, re-

ductions in latency and network traffic were observed as the location of the network services

were located on nodes utilizing the service.

Finally in Chapter 7 a hardware accelerated SN was presented and analyzed. The

SN was developed on an FPGA and provided a clustering service used to recognize targets

of interest in an avionic network environment. The hardware accelerated SN along with a

123



software SN were evaluated to determine the performance capabilities of each. The hard-

ware version demonstrates much greater throughput and reduced latency compared to the

software version.

8.2 Future Work

A few different areas of research emerge for future work. First, the study of more dynamic

aspects of SPOT. Provided now are a few bullet points on different areas of research.

• Explore additional dynamic aspects of the system

– Investigate nodes joining and leaving (churn)

– Evaluate the effects of dynamic neighborhood sizing to determine an appropriate

size per network topology

• Develop incremental SN placement

– Current results motivated through the amount of time required to assign SNs in

a large topology

– Develop algorithms to determine when a portion of the network needs reconfig-

ured

• Deploy SPOT as a generic service

– Allow SPOT to support more than one application using services

– Implement a richer set of constraints such such CPU load and available memory

While SPOT currently supports a dynamic nature in regards to the topology growing

in size, additional dynamic aspects are of interest. Additional research into nodes joining

and leaving the network (churn) will improve our understanding of this large dynamic system

to deal with rapid changes. Also, the study of incremental updates to the SN placement

shows promise. From the current research experiments helped establish the amount of

time necessary to reconfigure the entire network. Depending on the application, this time
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requirement may become a bottleneck. We need to investigate strategies to break up the

problem and reconfigure just a single neighbor or set of neighborhoods may be appropriate.

Mechanisms to detect the churn associated with nodes joining and leaving the network can

be used to determine which portions of the network stand to benefit from a reassignment

of SNs.

An additional area of research is the interaction between applications and SPOT

is also of interest. SPOT is a useful open-source tool for application developers to build

on top of. Deploying SPOT as a generic service for multiple applications creates a shared

infrastructure supporting a range of applications.
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