
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Winter 12-15-2014

Modeling Algorithm Performance on Highly-threaded Many-core Modeling Algorithm Performance on Highly-threaded Many-core

Architectures Architectures

Lin Ma
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Ma, Lin, "Modeling Algorithm Performance on Highly-threaded Many-core Architectures" (2014). McKelvey
School of Engineering Theses & Dissertations. 63.
https://openscholarship.wustl.edu/eng_etds/63

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/63?utm_source=openscholarship.wustl.edu%2Feng_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Kunal Agrawal, Chair

Roger Chamberlain, Co-Chair
James Buckley
Jeremy Buhler

Tao Ju

Modeling Algorithm Performance on Highly-threaded Many-core Architectures
by

Lin Ma

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

December 2014
Saint Louis, Missouri

c© 2014, Lin Ma

Table of Contents

List of Figures . v

List of Tables . x

Acknowledgments . xi

Abstract . xiii

Chapter 1: Introduction . 1

1.1 Examples of Highly-threaded Many-core Architectures 4

1.2 Research Questions . 6

1.3 Methodology for Performance Modeling . 9

1.3.1 Find Key Factors of Performance . 10

1.3.2 Correlate 3 Spaces of Parameters . 13

1.3.3 Define Performance Metric . 14

1.4 Contribution and Dissertation Structure . 14

Chapter 2: Background and Related Work 17

2.1 GPU Architectures and Programming Model 17

2.2 Abstract Machine Models . 20

2.2.1 Sequential Machine Models . 20

2.2.2 Parallel Machine Models . 21

2.2.3 GPU Machine Models . 23

2.3 Calibrated Performance Models . 24

2.4 Algorithms for Memory Constrained Applications 25

Chapter 3: Threaded Many-core Memory (TMM) Model 27

3.1 Abstraction of Highly-threaded Many-core Machines 27

ii

3.1.1 Architectures . 28

3.1.2 Parameters . 29

3.1.3 Applicability . 32

3.2 TMM Analysis Structure . 33

Chapter 4: Application of the TMM Model 36

4.1 All-pairs Shortest Path (APSP) . 36

4.1.1 Dynamic Programming via Matrix Multiplication 37

4.1.2 Johnson’s Algorithm: Dijkstra’s Algorithm (Binary Heaps) 40

4.1.3 Johnson’s Algorithm: Dijkstra’s Algorithm (Arrays) 42

4.1.4 n Iterations of Bellman-Ford Algorithm 45

4.1.5 Comparison of Various Algorithms 47

4.1.6 Effect of Problem Size . 51

4.1.7 Empirical Validation . 53

4.2 String Matching . 64

4.2.1 Suffix Tree . 64

4.2.2 Suffix Array . 68

4.2.3 Comparison and Empirical Validation 70

4.3 Fast Fourier Transform (FFT) . 74

4.4 Merge Sort . 77

4.4.1 Blocked Merge . 77

4.4.2 Merge Sort . 78

4.5 List Ranking . 80

4.6 Analysis of Additional Algorithms . 82

Chapter 5: Calibrated Performance Model . 83

5.1 Performance Modeling . 84

5.1.1 Base Model . 85

5.1.2 Model Extension . 88

5.2 Model Application . 92

5.2.1 Synthetic Micro-benchmark for Hashing 92

5.2.2 Parallel Bloom Filters Algorithm Design and Implement 97

5.2.3 Bloom Filters in BLAST . 103

5.2.4 Model Use to Evaluate Performance Tradeoffs 113

iii

5.2.5 DNA Classification . 114

Chapter 6: Integrated Analytical Framework 118

6.1 Bridge the Asymptotic Model and the Calibrated Model 118

6.1.1 Combining the Two Models . 122

6.2 Application of the Integrated Analytical Framework 123

6.3 Empirical Validation . 126

6.3.1 Effect of
√
Br/T . 128

6.3.2 Effect of T . 129

6.3.3 Effect of Br . 130

6.4 Discovering Unexpected Behavior . 131

Chapter 7: Conclusion and Future Work . 134

References . 137

Vita . 152

iv

List of Figures

Figure 1.1 Throughput of Bloom filter algorithm for set membership testing on

biosequence data. Performance (in membership tests per second) is

plotted vs. number of threads per processor both for a Tesla C1060

and a GTX 480 GPU. 8

Figure 1.2 Approach to bridge the problem space, architecture space, and design

space. 13

Figure 2.1 NVIDIA GPU Architecture [118] . 18

Figure 2.2 NVIDIA GPU thread hierarchy and programming model 19

Figure 3.1 Abstracted highly-threaded, many-core architecture. The short arrows

from the cores to the local memory symbolize low latency, while the

long arrows to the global memory symbolize high latency. 29

Figure 4.1 Speedup (theoretical T1 via PRAM model over empirically measured

TP) of the dynamic programming algorithm, varying the number of

threads per core from 2 to 32 (sub-block dimension SD = 64). 56

Figure 4.2 Speedup of Johnson’s algorithm using arrays vs. threads/core for dif-

ferent graph densities. All curves are with 8K nodes. Again, speedup

is theoretical T1 divided by empirically measured TP 57

Figure 4.3 Runtime of Johnson’s algorithm on graphs with constant 8K nodes

and varying density by increasing edges. Threads/core varies from 2

to 32. 58

v

Figure 4.4 Speedup of the dynamic programming algorithm for different sub-block

dimensions (SD), varying the threads/core on graphs with 16K nodes. 59

Figure 4.5 Different format of data from the two curves in Fig. 4.4 with the same

speedup scale in order to isolate the effect of sub-block size from the

effects of other parameters. (a) Spread of performance between sub-

block dimension 64 and sub-block dimension 32. (b) Ratio of perfor-

mance between sub-block dimension 64 and sub-block dimension 32. . 60

Figure 4.6 Speedup of dynamic programming using adjacency matrix for all-pairs short-

est paths problem on two generations of NVIDIA GPUs. On GTX480,

with memory size 12 KB and 48 KB, using more than 16 threads hides the

memory latency completely; on GTX680, due to the hardware limit on T ,

latencies are not fully hidden, and the speedup curve is still climbing slowly. 62

Figure 4.7 Runtime of the dynamic programming (DP) algorithm relative to John-

son’s algorithm on a graph with 8K nodes, varying threads/core from

4 to 32 and edges from 32K to 32M. 63

Figure 4.8 Suffix tree for string ‘mississippi ’. Each suffix is terminated by the

special character $. Leaves appear immediately after $, represented by

squares and labeled with suffix indices. Circles represent the internal

nodes. 65

Figure 4.9 Suffix array for string ‘mississippi ’. Suffixes are sorted in lexicograph-

ical order. s and t are the suffixes immediately ordered before and

after the query string ‘si’, and located by binary searches. ‘sippi’ and

‘sissippi’ are the suffixes between s and t, representing all occurrences

of the query string. 68

Figure 4.10 Performance of suffix trees and suffix arrays on GPU. Empirical data

are from Encarnaijao et al. [48]. 73

Figure 4.11 Data path and computation pattern of FFT. Radix-2 butterfly is the

basic computation unit of FFT. 75

vi

Figure 4.12 Runtime of FFT algorithm with various memory frequencies on an

NVIDIA GTX280. The FFTs are performed for two problem sizes N =

27 andN = 214. The y-axis is the runtime plotted on an arbitrary scale,

as the runtime data are converted from GFLOPs from Govindaraju et

al. [60]. The x-axis shows increasing memory clock rate, denoting

decreasing memory latency L. 76

Figure 4.13 Merge sort on multiple GPUs (data from [134]); Solid lines are smoothed

curves from data and dotted lines are linear references. (a) For small

n, the runtime increases slower than linearly with n. (b) For large n,

the runtime increases faster than linearly with n. 80

Figure 4.14 Runtime of Wyllie’s algorithm on NVIDIA GTX 280 (data from [131]).

The runtime grows slowly for small n and faster for larger n (dotted

line is a linear reference). Note that the graph is a log-log plot in order

to expose the trends over a wide range of n. 81

Figure 5.1 Micro-benchmark for random hashing on GPU architectures. (a) Hash

table on shared memory. (b) Hash table on global memory. 93

Figure 5.2 Throughput vs. Br for random accesses to both shared and global

memory subsystems with same problem size (n = 225) but distinct

working set sizes. (a) m = 8 KB. (b) m = 32 KB. 95

Figure 5.3 Cache hit and miss rates. 97

Figure 5.4 Impact of cache on execution time. 98

Figure 5.5 Parallel Bloom filters for detecting string matches of fixed length w

between a query and a database. 99

Figure 5.6 Implementation of parallel Bloom filter algorithm on GPU. 102

Figure 5.7 Theoretical and empirical results of FPR with varied sub-query size

nsub. (a) shows FPR for several values of m with a fixed k = 6.

(b) shows FPR for several values of k with a fixed m = 256 Kbits. . . 106

vii

Figure 5.8 Histogram of relative error between theoretical predictions and empir-

ical measurements for FPR. 107

Figure 5.9 Cumulative execution time for data movement and kernel. 108

Figure 5.10 Execution time for different number of hash functions. 109

Figure 5.11 Execution time for different sub-query sizes. 110

Figure 5.12 Throughput vs. Br on two GPU machines for Bloom filter of BLASTN.

(a) is for prediction and empirical measurements on GTX 480. Peak

performance is hit every 15 blocks as GTX 480 has 15 multiprocessors.

(b) is for prediction and empirical measurements on Tesla C1060. Peak

performance is hit every 30 blocks as Tesla C1060 has 30 multiprocessors.111

Figure 5.13 Modeled vs. measured execution time on GTX 480 (a1 = 4.01 × 105,

a0 = 10, R2 = 0.9909). 113

Figure 5.14 Tradeoff between false positive rate and execution time. 114

Figure 5.15 Implementation of FACS DNA classification application. 115

Figure 5.16 FACS throughput for different numbers of requested blocks. 117

Figure 6.1 Execution time variation with requested number of blocks, Br. For

this example, Ba = 1, P/Q = 15 (e.g., as in an NVIDIA GTX480),

and the max term in (6.3) is artificially set to 1. 127

Figure 6.2 Runtime and model prediction in terms of
√
Br/T for all-pairs shortest

paths problem with 8192 vertices. Measurements are from various runtime

configurations of (Br, T , SD), therefore with different Ba. Specifically, Br =

(n/SD)2, Ba is determined by Eq. (5.2). 129

Figure 6.3 Empirically measured and model predicted runtimes in terms of T for all-

pairs shortest paths problem with 8192 vertices. Measurements are from

various runtime configurations of (Br, T , SD), therefore with different Ba.

Specifically, Br = (n/SD)2, Ba is determined by Eq. (5.2). 130

viii

Figure 6.4 Empirically measured and model predicted runtimes in terms of Br for all-

pairs shortest paths problem with n = 8192 vertices. Measurements are

from various runtime configurations of (Br, T , SD), therefore with different

Ba. Specifically, Br = (n/SD)2, Ba is determined by Eq. (5.2). 131

Figure 6.5 Empirical measures of all-pairs shortest paths runtime for scenarios when

Ba = 1, Ba = 2 and Ba is determined automatically by the scheduler. The

APSP problem with 8192 vertices is divided into sub-blocks of dimension 32. 132

ix

List of Tables

Table 3.1 Architecture parameters. 30

Table 3.2 Program parameters. 31

Table 4.1 Algorithm running times and constraints for linear speedup. 48

Table 4.2 Batch size n at which suffix tree and suffix array runtime starts de-

pending on n. 71

Table 4.3 Bounds for suffix tree and suffix array after the transition point when

runtime starts depending on n. 72

Table 4.4 Analysis for some more classic algorithms. 82

Table 5.1 Application Parameters . 86

Table 5.2 Architecture Parameters . 86

Table 5.3 Model Variables . 89

Table 5.4 NVIDIA GTX 480 Architecture Specification 94

x

Acknowledgments

The fact that I survived the past 6 years, defended this dissertation and finally graduated

as a computer science Ph.D. would not be true without the many people for whom I am

grateful.

First of all, I would like to express my sincere gratitude to the two great advisors: Dr.

Roger Chamberlain and Dr. Kunal Agrawal. Roger is the most patient and friendly person

I have ever met. Since picked up into his research group, I was greatly impacted by his

research advice, systematic insight, and optimistic attitude towards both work and life.

Thank him for giving me so much freedom and flexibility so that I can manage my time

with a good balance, and finish a successful internship in NVIDIA Research. I was kept

being moved by his trust and kindness on me, as well as his warm smiles. Every tiny

little piece of my achievement would not have been achieved without his strong support and

encouragement. I would also thank Kunal to lead me and shape my thinking in theoretical

parallel computing. She impressed and influenced me by her critical thinking, straightforward

writing, and hardworking. I’m a firm believer that these influences, as life-long treasure,

would significantly benefit and train me as a capable researcher. It’s my great honor to be

her first graduated Ph.D. in her academic life.

I would like to thank my committee James Buckley, Jeremy Buhler, and Tao Ju for their in-

cisive comments and suggestions, and my colleagues Peng Li, Chengjie Wu, Jonathan Beard,

Michael Hall, Shobana Padmanabhan, Joseph M. Lancaster, Joseph G. Wingbermuehle, and

xi

Arpith C. Jacob for their kind help and insightful discussion. I truly appreciate the patience

and help from all the staff members in the Department of Computer Science and Engineering

over these years. Myrna Harbison, Lauren Huffman, Kelli Eckman, Jayme Moehle, Madeline

Hawkins, Andrea Levy, and Sharon Matlock make my Ph.D. study and life here really easier

and more colorful than it is supposed to be. Special thanks also go out to Dr. Ken Wong

and Dr. Jonathan Turner for their kind encouragement and strong endorsement.

I would also like to acknowledge the NSF Grant CNS-0905368, CNS-0931693, the NIH Award

R42 HG003225, and Exegy, Inc. for financially funding my research.

Finally on a personal note, I take this opportunity to express my deepest gratitude to my

parents for their unconditional love and consistent support. It is their thoughtful care and

encouragement that helped me going through those hard times over all these years. Part of

my life goal is to make their lives happier and happier than ever before. It is to them that I

dedicate this work and degree.

Lin Ma

Washington University in Saint Louis

December 2014

xii

ABSTRACT OF THE DISSERTATION

Modeling Algorithm Performance on Highly-threaded Many-core Architectures
by

Lin Ma
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2014

Professor Kunal Agrawal, Chair
Professor Roger Chamberlain, Co-Chair

The rapid growth of data processing required in various arenas of computation over the

past decades necessitates extensive use of parallel computing engines. Among those, highly-

threaded many-core machines, such as GPUs have become increasingly popular for accelerat-

ing a diverse range of data-intensive applications. They feature a large number of hardware

threads with low-overhead context switches to hide the memory access latencies and there-

fore provide high computational throughput. However, understanding and harnessing such

machines places great challenges on algorithm designers and performance tuners due to the

complex interaction of threads and hierarchical memory subsystems of these machines. The

achieved performance jointly depends on the parallelism exploited by the algorithm, the

effectiveness of latency hiding, and the utilization of multiprocessors (occupancy). Contem-

porary work tries to model the performance of GPUs from various aspects with different

emphasis and granularity. However, no model considers all of these factors together at the

same time.

This dissertation presents an analytical framework that jointly addresses parallelism, latency-

hiding, and occupancy for both theoretical and empirical performance analysis of algorithms

on highly-threaded many-core machines so that it can guide both algorithm design and

performance tuning. In particular, this framework not only helps to explore and reduce

xiii

the configuration space for tuning kernel execution on GPUs, but also reflects performance

bottlenecks and predicts how the runtime will trend as the problem and other parameters

scale. The main contribution of the dissertation is a pair of analytical models with one

focusing on higher-level asymptotic algorithm performance on GPUs and the other one

emphasizing lower-level details about scheduling and runtime configuration. Based on the

two models, we have conducted extensive analysis of a large set of algorithms. Two analysis

provides interesting results and explains previously unexplained data. In addition, the two

models are further bridged and combined as a consistent framework. The framework is

able to provide an end-to-end methodology for algorithm design, evaluation, comparison,

implementation, and prediction of real runtime on GPUs fairly accurately.

To demonstrate the viability of our methods, the models are validated through data from

implementations of a variety of classic algorithms, including hashing, Bloom filters, all-pairs

shortest path, matrix multiplication, FFT, merge sort, list ranking, string matching via suffix

tree/array, etc. We evaluate the models’ performance across a wide spectrum of parameters,

data values, and machines. The results indicate that the models can be effectively used

for algorithm performance analysis and runtime prediction on highly-threaded many-core

machines.

xiv

Chapter 1

Introduction

General-purpose computation has irreversibly stepped into the parallel era, along with rad-

ically increased volumes of data, new algorithms, and emerging powerful parallel hardware

platforms. Thanks to the development of new algorithms and computer systems, parallel

processing not only can solve problems faster, it can also handle larger problems than is

possible for sequential machines. However, as is commonly accepted, not every algorithm

runs well on every parallel machine. We attribute the performance to the joint effect of

algorithms and underlying architectures.

Abreast with traditional parallel architectures, such as shared memory machines and multi-

cores, highly-threaded, many-core devices such as GPUs have gained popularity in the last

decade; both NVIDIA and AMD manufacture general purpose GPUs that fall in this cate-

gory. The important distinction between these machines and traditional multi-core machines

is that these devices provide a large number of cores that support a massive numbers of hard-

ware threads with low-overhead context switching between them; this fast context-switch

mechanism is used to hide the memory access latency of transferring data from slow large

(and often global) memory to fast, small (and typically local) memory.

1

Over the years, various models have been designed to capture the most important aspects

of architectures and algorithms that dominate the effect on performance for a diverse range

of sequential and parallel machines. The most fundamental model that is used to analyze

sequential algorithms is the Random Access Machine (RAM) model [4], which we teach

undergraduates in their first algorithms class. This model assumes that all operations,

including memory accesses, take unit time. While this model is a good predictor of perfor-

mance on computationally intensive programs, it does not properly capture the important

characteristics of the memory hierarchy of modern machines and the nonuniform costs of

accessing memory. There are a number of other models that consider the memory access

costs of sequential algorithms in different ways [1, 2, 7, 8, 52, 126, 153]. For parallel com-

puting, the analogue for the RAM model is the Parallel Random Access Machine (PRAM)

model [51], and there is a large body of work describing and analyzing algorithms in the

PRAM model [79, 152]. In the PRAM model, the algorithm’s complexity is analyzed in

terms of its work — the time taken by the algorithm on 1 processor, and span (also called

depth and critical-path length) — the time taken by the algorithm on an infinite number

of processors. Given a machine with P processors, a PRAM algorithm with work W and

span S completes in max(W/P, S) time. The PRAM model also ignores the vagaries of the

memory hierarchy and assumes that each memory access takes unit time. For modern ma-

chines, however, this assumption seldom holds. All these models fail to capture the nature

of highly-threaded many-core machines.

There is no generally accepted theoretical model suitable for all architectures. Algorithm

design and analysis tends to be agnostic to architectures and neutral to the number of

processors so as to be general and universal. Unfortunately, this approach is insufficient

for complex parallel machines, because while these machines provide substantial parallelism

and efficiency, they impose important constraints on programs running on them. Failure

2

to respect those constraints will likely result in downgraded performance. Attempts to

understand algorithms’ performance on modern machines have been extensively made during

the past decades. Researchers have designed various models that capture memory hierarchies

for various types of modern machines such as distributed memory machines [44, 147, 155],

shared memory machines and multi-cores [11, 19, 20, 36, 41], or the combination of the

two [38, 39]. However, there is limited literature unveiling this relation on highly-threaded

many-core machines such as GPUs [64, 84, 116]. This becomes our motivation of successfully

bridging algorithms and highly-threaded many-core machines, so that people can be enabled

to predict and control the tradeoffs towards overall optimal performance.

We consider the general problem of how to understand, analyze, and ultimately optimize

algorithm performance on highly-threaded many-core machines and hopefully guide design-

ers or programmers to develop solutions with limited pitfalls and high performance. This

is a broad problem, in part because not every type of application manifests similar perfor-

mance patterns on many-core machines. Performance of some applications heavily relies

on the behavior of the memory subsystem. While other applications require fewer memory

transactions but more computation, in which case the performance is mostly subject to the

capability of the computing engine. In this dissertation, distinct from existing approaches,

we formalize a set of analytical models to reflect the performance of arbitrary algorithms. A

performance analysis framework is designed to bridge the gap of understanding between al-

gorithms and performance on such machines, consisting of a theoretical asymptotic model —

Threaded Many-core Memory (TMM) model and an empirical prediction model — Calibrated

Performance Model. Based on the insight gained from the performance analysis framework,

we also explore an end-to-end methodology for algorithm design, evaluation, comparison,

implementation, and prediction of real runtime on many-core GPUs accurately.

3

1.1 Examples of Highly-threaded Many-core Architec-

tures

The most common instantiation of highly-threaded many-core architectures include NVIDIA

GPUs, AMD/ATI GPUs, and YarcData uRiKA system. Although each of these machines

has its own distinctive features, there are some common properties that categorize them as

highly-threaded many-core machines. Those architectures typically consist of a number of

core groups, each containing a number of processors (or cores) 1, a fixed number of registers,

and a fixed quantity of fast local on-chip memory shared within a core group. A large slow

global memory is shared by all the core groups. Registers and local on-chip memory are the

fastest to access, while accessing the global memory many potentially take 100s of cycles.

Data is transferred from slow to fast memory in chunks in order to reduce long-latency

memory transfers and achieve high bandwidth; instead of just transferring one word at a

time, the hardware tries to transfer a large number of words during a memory transfer. The

chunk can either be a cache line from hardware managed caches, or an explicitly-managed

combined read from multiple threads.

On NVIDIA GPUs, a number of streaming multiprocessors (core groups in our terminology)

share the same global memory residing on the device. On each of these streaming multi-

processors, there are a number of CUDA cores2 that share a fixed number of registers and

on-chip (fast) memory shared among the cores of the streaming multiprocessor. Accessing

the off-chip global memory usually takes 20 to 40 times more clock cycles than accessing

the on-chip shared memory/L1 cache [118]. The streaming multiprocessor creates, manages,

1A core group can also have a single core.
2CUDA (aka Compute Unified Device Architecture) is a parallel computing platform and programming

model created by NVIDIA.

4

schedules, and executes threads in groups of 32 parallel threads called warps. When a warp

executes an instruction that accesses global memory, it coalesces the memory accesses of the

threads within the warp into one or more of these memory transactions depending on the size

of the word accessed by each thread and the distribution of the memory addresses across the

threads. Accesses are fully coalesced as long as all threads in a warp are organized such that

consecutive 32-bit words are accessed by consecutive thread IDs. A fast hardware-supported

context-switching mechanism enables a large number of threads simultaneously in flight.

The threads can be manually organized and managed in thread blocks. Each thread block

consists of a number of warps. One or more thread blocks will be scheduled on a streaming

multiprocessor, depending on the usage of on-chip resources per block.

AMD/ATI GPUs consist of multiple Single-Instruction-Multiple-Data (SIMD) computation

engines as core groups. Each of these compute engines accommodates a number of Thread

Processors (TP) and Local Data Store (LDS) shared by all the thread processors associated

with the SIMD engine. Each thread processor possesses ALUs called Stream Cores (SC),

and is arranged as a five-way or four-way Very Long Instruction Word (VLIW) processor

depending on different device families. Each of these thread processors executes a single

instruction across each lane for each of a block of 16 work-items. The instruction is repeated

over four cycles to make the 64-element vector called a wavefront. Taking Cypress, the

codename of Radeon HD5800 series GPUs, as an example, the architecture is composed of

20 SIMD computation engines. In each SIMD engine, there are 16 thread processors and

a 32 KB local data store. Low context-switch threading is well supported, and every 64

threads are grouped into a wavefront executing the same instruction in lockstep.

The uRiKA system from YarcData is also a good example of such machines. Based on

fundamental assumption from Smith et al. [10] about the nature of the computations this

5

processor was going to run, it is a purpose-built appliance for real-time graph analytics

featuring graph-optimized hardware that provides up to 512 terabytes of global shared

memory, massively-multithreaded graph processors (named Threadstorm) supporting 128

threads/processor, and highly scalable I/O. There can be up to 65,000 threads in a 512

processor system and over 1 million threads at the maximum system size of 8192 proces-

sors, so that the latencies are hidden by accommodating so many remote memory references

in flight. The processor’s instruction execution hardware essentially does a context switch

every instruction cycle, finding the next thread that is ready to issue an instruction into

the execution pipeline. This suggests that the memory access width is 1 on these machines.

Threads do not share anything, as the Threadstorm processor has 128 hardware copies of

the register set, program counter, stack pointer, etc., necessary to hold the current state of

one software thread that is executing on the processor. But different than the two GPU

architectures above, it has only one core on-chip.

1.2 Research Questions

While superficially, highly-threaded many-core machines are shared memory machines, their

characteristics are very different from traditional multicore or multiprocessor shared memory

machines. The most important distinction between multi-cores and highly-threaded many-

core machines is the number of threads per core. On multi-core machines, context switch

cost is high, and most models nominally assume that only one (or a small constant number

of) thread(s) are running on each machine and this thread blocks when there is a memory

access. Therefore, many existing models consider the number of memory transfers from slow

memory to fast memory as a performance measure, and algorithms are designed to minimize

6

these, since memory transfers take a significant amount of time. In contrast, highly-threaded

many-core machines are explicitly designed to have a large number of threads per core and

a fast context switching mechanism. They are explicitly designed to hide memory latency;

if a thread stalls on a memory operation, some other thread can be scheduled in its place.

In principle, the number of memory transfers does not matter as long as there are enough

threads to hide their latency. Therefore, if there are enough threads, we should, in principle,

be able to use PRAM algorithms on GPUs, since we can ignore the effect of memory transfers

which is exactly what the PRAM model does. However, the number of threads required to

reach the point where one gets PRAM performance depends on both the algorithm and the

hardware.

To motivate this enterprise and to understand the importance of high thread counts on

many-core machines, let us consider a simple application that performs Bloom filter set

membership tests on an input stream of biosequence data [105] on GPUs. The problem is

embarrassingly parallel, each set membership test is independent of every other membership

test. Fig. 1.1 shows the performance of this application, varying the number of threads

per processor core, for two distinct GPUs. For both GPUs, the pattern is quite similar, at

low thread counts, the performance increases (roughly linearly) with the number of threads,

up until a transition region, after which the performance no longer increases with increasing

thread count. While the location of the transition region is different for distinct GPU models,

this general pattern is found in many applications. Once sufficient threads are present, the

PRAM model adequately describes the performance of the application and increasing the

number of threads no longer helps.

7

0 8 16 24 32 40 48 56 64
0

0.5

1

1.5

2

2.5

3

x 10
5

Th
ro

ug
hp

ut
 (t

es
ts

/s
)

T : Threads/Core

Tesla C1060
GTX 480

Figure 1.1: Throughput of Bloom filter algorithm for set membership testing on biosequence
data. Performance (in membership tests per second) is plotted vs. number of threads per
processor both for a Tesla C1060 and a GTX 480 GPU.

Since no highly-threaded many-core machine allows an infinite number of threads, and dif-

ferent thread/block counts may result in a huge search space of diversified performance, it

is important to understand:

1. How many threads does a particular algorithm need to achieve PRAM performance

asymptotically?

2. How does an algorithm perform and compare when it has fewer threads than required

to get PRAM performance?

3. How does the variation of thread counts and thread block counts influence the schedul-

ing, and therefore the real performance?

4. How can the real performance be predicted or calibrated for arbitrary runtime config-

urations?

8

For the first two problems, we design a high-level theoretical model (TMM model), which

should abstract away the details of particular implementations so as to be applicable to many

instantiations of these machines, while still being particular enough to model the performance

of algorithms on these machines with reasonable accuracy. Basically it will characterize

properties of algorithms and machines, capture how well the latencies are hidden by a given

number of threads for a particular algorithm, and reveal how the performance of algorithms

compares with asymptotically changing problem size and hardware parameters. For the last

two problems, we develop a calibrated performance model, which, quite differently, plays

with real throughput rather than asymptotic performance by incorporating the impact of

hardware resources, real scheduling, and execution configuration. It will not tell you which

algorithm is more efficient among candidates, but it will reflect the calibrated performance

curve or pattern however you twist the execution configuration for the selected algorithm

(or application) and machine being used.

1.3 Methodology for Performance Modeling

Performance analysis relies upon models that represent underlying assumptions; if a model

does not capture the important aspects of target machines and programs, then the analysis

is not predictive of real performance. Therefore, failure to capture unique features of highly-

threaded many-core machines, especially the interaction between memory and the number

of threads, will lead to misleading model. Given the heterogeneity and complexity of emerg-

ing many-core architectures relative to previous architectures, most well-known models for

parallel architectures typically do not fit highly-threaded many-core machines. Researchers

and developers need a way to bridge between algorithms and their possible performance on

9

such machines so as to find key factors, understand their correlation, define a unified metric

to represent, measure, and predict the performance accurately and make decisions wisely.

Conceptually, our modeling process consists of 3 steps as followed.

1.3.1 Find Key Factors of Performance

It’s not too hard to implement an algorithm on a highly-threaded many-core machine, like

a GPU, but it is much more difficult to get it to run efficiently. The crux of the problem

is that few models or tools can precisely pinpoint the weakness of an algorithm in terms of

latency hiding and the efficiency of the program execution in terms of processor scheduling,

figure out the cause of the under-valued performance, and meticulously track the cause back

to various key factors as a systematic methodology. Our performance analysis framework is

designed to achieve this goal in a bottom-up approach. Basically, one needs to encompass

the following aspects that are pertinent to overall algorithm performance:

1. Architecture Parameters

Each highly-threaded many-core machine being used has its own hardware parameter

settings among machines from different manufacturers and of different generations

along the production road-map. Those parameters may include the number of cores,

core groups, registers, the maximal number of threads and thread blocks supported,

the memory access width, the size of local memory, and the latency between fast local

memory and global memory, etc. Some of these parameters are even configurable.

2. Algorithm Efficiency

For previous parallel machines, algorithm efficiency is mainly weighted by work and

parallelism, in terms of the number of computational instructions. For highly-threaded

10

many-core machines, this still holds, but is insufficient, due to unique memory subsys-

tem. Some algorithms that are efficient for previous machines, may exhibit irregular

memory accesses, and incur too much remote memory traffic on many-core machines.

Memory locality and cost plays a more critical role on such machines than other ma-

chines, and should not be ignored.

3. Design/Tune Settings

In the process of design or performance tuning, there are a number of aspects that can

be controlled and varied: runtime configuration for scheduling, choice of access pattern,

choice of memory spaces, and choice of data structures. The frequency, pattern, usage,

and cost of memory interactions are largely the determinant factors to be considered.

(a) Thread Access Patterns

In highly-threaded many-core machines, threads are typically organized and sched-

uled in batches, each executing the same instruction for all the inclusive threads

in lock-step. If a batch of threads access a contiguous block of memory, those

accesses will be coalesced into just one memory transaction. This is an important

pattern for reducing memory delays. The access pattern most of the time is deter-

mined by the algorithm itself, but sometimes also affected by the data structures.

For example, Structure of Arrays (SoA) and Array of Structures (AoS) refer to

two different ways of laying out data in memory, and they can significantly impact

the data access patterns and therefore perform distinctively.

(b) Choice of Data Structures

Various algorithms have preferred data structures on different machines in terms

of performance, depending on computation patterns. For example, if we look

11

at two example algorithms for all-pairs shortest path problem, the Floyd War-

shall algorithm uses an adjacency matrix for the vector-wise computation; while

Johnson’s algorithm would prefer an adjacency list to save space. On the other

hand, due to coalescing and divergence, not all data structures are friendly to

many-core machines. Poor choice of data structures results in more long-latency

memory accesses and downgrades performance dramatically.

(c) Choice of Memory Space

Which memory space to use can make significant difference in performance even

for cases with the same work or access pattern. We cannot avoid global mem-

ory transactions in general, but some important classes of computation can be

designed to have the working sets almost entirely fit on fast local memory and

hence benefit from that memory’s advantages. For example, if an algorithm un-

avoidably requires data accesses in a purely random way, designers may wish

to partition the random access range and deposit it on to fast local memory to

radically reduce the long-latency memory transactions.

(d) Efficiency of Scheduling

Scheduling has great impact on performance. On many-core machines, peak per-

formance only comes when all the cores are fully scheduled in use (i.e. full occu-

pancy). The same algorithm may behave distinctively given different scheduling

by altering the runtime configuration (i.e. threads per block, number of thread

blocks). Finally, the occupancy is determined by hardware resource requested

and real usage including registers, local memory, etc.

12

1.3.2 Correlate 3 Spaces of Parameters

Cognizant of the impact of various factors described above, we attempt to build performance

models by folding them into 3 spaces and correlating them as illustrated in Fig. 1.2 below.

Figure 1.2: Approach to bridge the problem space, architecture space, and design space.

For the problem space, we need to identify both input parameters and adjustable parameters

in the algorithm; for the architecture space, we need to identify both fixed (e.g. memory sizes

and cores) and configurable parameters (e.g. threads and thread blocks) for the machine.

Data access patterns stipulated by the algorithms should also be recognized considering

the memory spaces the machine can provide. If the pattern is somehow random or heavily

revisited, in design space, the fast local memory would be preferred for working sets to reside

on in order to reduce latency in the real implementation, as accessing fast local memory

would be 100s times faster than accessing the global memory for strided accesses. If the fast

13

local memory size is not big enough to accommodate the whole working set, designers might

either want to decompose the problem into smaller but more working sets, or just use the slow

global memory with sufficient amount of threads to hide latency. The strategy of choice in

the design space depends on all these parameters and factors, which are actually intertwined

and affected by some of the others. They jointly determine the overall performance of the

algorithm running on the underlying machines.

1.3.3 Define Performance Metric

To count in the effect of individual parameters, a performance metric needs to be defined

to encode, correlate, and formulate the information obtained above. Then the relationships

between input parameters and predicted performance can be explored both theoretically

and empirically. We will expose runtime as a unified metric for performance across all 3

spaces/domains presented in Fig. 1.2 above, with expression of parameters from individual

spaces positively contributing to it. From the theoretical side, we can effectively use the

number of instructions to measure runtime, assuming instructions take constant time. This

holds for both computation and memory instructions, although they differ from each other

by a factor. From the empirical side, we will measure real runtime with varied parameter

settings.

1.4 Contribution and Dissertation Structure

This dissertation makes contributions in the following aspects:

14

1. We design a high-level theoretical performance model named the Threaded Many-core

Memory (TMM) model to capture the performance characteristics of highly-threaded

many-core systems, and analyze algorithm performance using it. This is the first

formalized asymptotic model for algorithm design, analysis, and comparison in any

system which has fast context switching and large number of threads to hide memory

latency. It provides a more fine-grained and accurate performance prediction than

the PRAM analysis. This model is designed in [99, 101] and will be introduced in

Chapter 3.

2. A wide range of classic algorithms are analyzed through the TMM model with suffi-

cient details and empirical results to examine and highlight the power of the TMM

model. The algorithms involved include 4 all-pair shortest path algorithms (dynamic

programming via a adjacency matrix, Johnson’s algorithm via array/heap, Bellman-

Ford), FFT, merge sort, string matching via suffix array/string, list ranking, etc. These

analyses provide the detailed TMM results and extensively compare with PRAM re-

sults in [100, 102] and will be described in Chapter 4.

3. A low-level calibrated performance model is designed to quantitatively predict runtime

for all possible runs with various configurations by only one real run. This is achieved

by explicit inclusion of performance-impacting factors that are only important over

some range of the model’s input domain (especially, for example, for smaller input

sizes) in addition to the scale factors that enable the calibrated model to make specific

quantitative performance predictions throughout the entire configuration space. Those

critical factors include application algorithmic complexity, caching factor, and schedul-

ing factor. This model is designed in [104, 105] and will be expatiated in Chapter 5.

15

4. A number of empirical validations towards the calibrated performance model have been

done to demonstrate the effectiveness of this model. A parallel Bloom filter algorithm is

designed and implemented on GPUs with 35-fold speedup in [105]. A synthetic micro-

benchmark for hashing is presented [104], allowing us to quantitatively explore impact

of various access patterns and memory spaces of GPUs on application throughput.

Bloom filters in BLAST (the most widely used tool for biosequence similarity search)

and another application that exploits hashing in DNA classification are implemented.

Empirical results from all applications above line up closely with the model prediction

and are presented in Chapter 5.

5. An analytical performance framework is defined in [103] by exploring the coordinated

use of the TMM model and the calibrated model and confirming their consistency

of prediction for algorithm performance analysis. The framework is able to address

parallelism exploited by the algorithm, effectiveness of latency-hiding, and utilization

of multiprocessors (occupancy) all together. In particular, it not only helps to explore

and reduce the configuration space for tuning kernel execution on highly-threaded

many-core machines, but also reflects performance bottlenecks and predicts how the

runtime will trend as the problem and other parameters scale. The framework is mainly

described in Chapter 6.

In addition to those chapters mentioned above, Chapter 1 briefly introduces the architec-

tures, research questions and methodologies, and highlights the contributions of this disser-

tation. Chapter 2 describes background information, lists and compares related works for

machine models, calibrated models, and GPU algorithms from the literature. At the end,

the conclusion and future work are discussed in Chapter 7.

16

Chapter 2

Background and Related Work

In this chapter, we briefly describe GPU architectures and programming models. Then, we

review the abstract machine models for sequential machines, parallel machines, and partic-

ular GPU machines as related work. After that, we also review recent work on algorithms

and performance analysis of GPUs which are the most common current instantiations of

highly-threaded, many-core machines.

2.1 GPU Architectures and Programming Model

Generally, GPUs consist of a number of core groups , each of which can be a streaming mul-

tiprocessor in NVIDIA GPUs or an SIMD compute engine in AMD/ATI GPUs. Those core

groups share the same global device memory for inter-core-group communications. On each

of the core groups, there are a certain number of processors, named CUDA cores in NVIDIA

GPUs, and Thread Processors in AMD/ATI GPUs. Those processors have their own local

storage for individual thread such as registers, but they do share the same on-chip shared

memory and caches of different features for inter-core and inter-thread communications.

17

Figure 2.1: NVIDIA GPU Architecture [118]

While AMD GPUs are similar, we will focus the discussion on NVIDIA GPUs since the

empirical results we present are all on various NVIDIA platforms. Fig. 2.1 illustrates the

general architecture of NVIDIA GPUs. On GPU device, there are a number of multiproces-

sors sharing the same device (global) memory. On each of the multiprocessors, there are a

number of processors (cores) sharing the same shared memory and other specialized memory

space such as constant memory and texture memory. For each of the processors, there is

also local memory such as registers associated with it.

To harness such architecture, the Compute Unified Device Architecture (CUDA), a

parallel computing platform and programming model, is designed by NVIDIA to efficiently

solve many complex computational problems and transparently scale their GPU parallelism

to the ever-increasing number of processor cores and threads, while maintaining a stable

structure for programs and low learning curve for programmers familiar with the C pro-

gramming language [118]. As shown in Fig. 2.2, it mainly has 3 key components exposed to

18

the programmer – a hierarchy of thread groups, a hierarchy of shared memories, and bar-

rier synchronizations. Utilizing these components, people can easily manipulate fine-grained

data parallelism and thread parallelism, nested with coarse-grained data parallelism and task

parallelism. A CUDA program invokes parallel functions called kernels that, when called,

Block[0][0] Block[0][1] Block[0][2]

Block[1][0] Block[1][1] Block[1][2]

Block[0][0] Block[0][1] Block[0][2] Block[0][3]

Thread[0][0] Thread[0][1] Thread[0][2]

Thread[1][0] Thread[1][1] Thread[1][2]

Thread[0][0] Thread[0][1]

Thread[1][0] Thread[1][1]

Grid [1]

 2 X 3 Thread Blocks
Thread[0][3]

Thread[1][3]

Thread Block[1][2]

2 X 4 Threads

Grid[2]

1 X 4 Thread Blocks

Thread Block[0][3]

2 X 2 Threads

Kernel 1

<<<6, 8>>>

Kernel 2

<<<4, 4>>>

Global Memory

 Inter-Kernel Synchronization & Communication Between Grids

Program

Sequence

Per-Block Shared Memory

Per-Block Shared Memory

Per-Thread
Local Memory

Figure 2.2: NVIDIA GPU thread hierarchy and programming model

are executed N times in parallel by N different CUDA threads. A thread block is a set of

concurrently executing threads that can cooperate among themselves through barrier syn-

chronization and shared memory. A grid is an array of thread blocks that execute the same

kernel, read inputs from global memory, write results to global memory, and synchronize

between dependent kernel calls.

Each thread has a per-thread local memory space used for register spills, function calls,

and C automatic array variables. Each thread block has a per-block shared memory

19

space used for inter-thread communication, data sharing, and result sharing in parallel al-

gorithms. Grids of thread blocks share results in global memory space after kernel-wide

global synchronization.

2.2 Abstract Machine Models

Theoretical analysis relies upon models that represent underlying assumptions; if a model

does not capture the important aspects of target machines and programs, then the analysis

is not predictive of real performance. Over the years, computer scientists have designed

various models to capture important aspects of the machines that we use. Many machine

and memory models have been designed for various types of sequential and parallel machines.

2.2.1 Sequential Machine Models

The most fundamental model that is used to analyze sequential algorithms is the Random

Access Machine (RAM) model [4], which we teach undergraduates in their first algorithms

class. This model assumes that all operations, including memory accesses, take unit time.

While this model is a good predictor of performance on computationally intensive programs,

it does not properly capture the important characteristics of the memory hierarchy of modern

machines. Aggarwal and Vitter proposed the Disk Access Machine (DAM) model [3] which

counts the number of memory transfers from slow to fast memory instead of simply counting

the number of memory accesses by the program. Therefore, it better captures the fact that

modern machines have memory hierarchies and exploiting spatial and temporal locality on

these machines can lead to better performance. Aggarwal et al. [1] present the Hierarchical

20

Memory Model (HMM) and use it for a theoretical investigation of the inherent complexity

of solving problems in RAM with a memory hierarchy of multiple levels. It differs from the

RAM model by defining that access to location x takes log x time, but it does not consider the

concept of block transfers, which collects data into blocks to utilize spatial locality of reference

in algorithms. The Block Transfer model (BT) [2] addresses this deficiency by defining that a

block of consecutive locations can be copied from memory to memory, taking one unit of time

per element after the initial access time. Alpern et al. propose the Memory Hierarchy (MH)

Framework [8] that reflects important practical considerations that are hidden by the RAM

and HMM models: data are moved in fixed size blocks simultaneously at different levels in

the hierarchy, and the memory capacity as well as bus bandwidth are limited at each level.

But there are too many parameters in this model that can obscure algorithm analysis. Thus,

they simplified and reduced the MH parameters by putting forward a new Uniform Memory

Hierarchy (UMH) model [7, 153]. Later, an ‘ideal-cache’ model was introduced in [52, 126]

allowing analysis of cache-oblivious algorithms that use asymptotically optimal amounts of

work and move data asymptotically optimally among multiple levels of cache without the

necessity of tuning program variables according to hardware configuration parameters.

2.2.2 Parallel Machine Models

For parallel computing, the analogue for the RAM model is the Parallel Random Access

Machine (PRAM) model [51], and there is a large body of work describing and analyzing

algorithms in the PRAM model [79, 152]. In the PRAM model, the algorithm’s complexity

is analyzed in terms of its work — the time taken by the algorithm on 1 processor, and span

(also called depth and critical-path length) — the time taken by the algorithm on an infinite

21

number of processors. Given a machine with P processors, a PRAM algorithm with work

W and span S completes in max(W/P, S) time.

The PRAM model, although widely used, also unrealistically ignores the vagaries of the

memory hierarchy and assumes that all processors work synchronously with uniform cost

per memory access, and that interprocessor communication is free. For modern machines,

however, this assumption seldom holds. Quite different to PRAM, the Bulk-Synchronous

Parallel (BSP) model [147] attempts to bridge theory and practice by allowing processors to

work asynchronously, and it models latency and limited bandwidth for distributed memory

machines without shared memory. Culler et al. [44] offer a new parallel machine model

called LogP based on BSP, characterizing a parallel machine by four parameters: number

of processors, communication bandwidth, delay, and overhead. It reflects the convergence

towards systems formed by a collection of computers connected by a communication network

via message passing. Vitter et al. [155] present a two-level memory model and give a realistic

treatment of parallel block transfers in parallel machines. But this model assumes processors

are interconnected via sharing of internal memory.

More recently, several models have been proposed emphasizing the use of private-cache chip

multiprocessors (CMPs). Arge et al. [11] present the Parallel External Memory (PEM)

model with P processors and a two-level memory hierarchy, consisting of the main memory

as external memory shared by all processors and caches as internal memory exclusive to each

of the P processors. Blelloch et al. [19] present a multicore-cache model capturing the fact

that multi-core machines have both per-processor private caches and a large shared cache

on-chip. Bender et al. [17] present a concurrent cache-oblivious model. Blelloch et al. [20]

also propose a parallel cache-oblivious (PCO) model to account for costs of a wide range

of cache hierarchies. Chowdhury et al. [36] present a hierarchical multi-level caching model

22

(HM), consisting of a collection of cores sharing an arbitrarily large main memory through a

hierarchy of caches of finite but increasing sizes that are successively shared by larger groups

of cores. They in [39] consider three types of caching systems for CMPs: D-CMP with a

private cache for each core, S-CMP with a single cache shared by all cores, and multi-core

with private L1 caches and a shared L2 cache. All the models above do not accurately

describe highly-threaded, many-core systems, due to their distinctive architectures, i.e. the

explicit use of many threads for the purpose of hiding memory latency.

2.2.3 GPU Machine Models

More recently, there are a number of machine models proposed particularly for GPUs. Kirtzic

et al. [84] proposed the Parallel GPU Model (PGM), which is essentially an adaption of the

Bulk-Synchronous Parallel (BSP) model [147], and equates a super-step in BSP with a

function unit of a GPU program. This model does not explicitly model the memory sub-

system and assumes uniform cost access to all levels of memory. Nakano [116] proposed

the Hierarchical Memory Machine (HMM) model, which consists of multiple Discrete Mem-

ory Machines (DMMs) representing shared memory and a single Unified Memory Machine

(UMM) representing global memory. The HMM model does consider both shared memory

accesses and the grouping of global memory accesses. Haque et al. [64] proposed a Many-core

Machine Model (MMM) based on the Graham-Brent theorem, which is quite similar to the

TMM model, but does not model the impact of threading for hiding memory latency.

23

2.3 Calibrated Performance Models

While there hasn’t been much work on abstract machine models for highly-threaded, many-

core machines, there has been a lot of recent work on designing calibrated performance

models for particular instantiations of these machines such as NVIDIA GPUs. We review

some of that work here.

He et al. [67] focus on the access patterns of gather and scatter operations, which can suffer

from low memory bandwidth utilization, and design a probabilistic cache model to predict

cache misses. Govindaraju et al. [59] propose a cache model for efficiently implementing three

memory intensive scientific applications with nested loops. It is helpful for applications with

2D-block representations while choosing an appropriate block size by estimating cache misses,

but is not completely general. Liu et al. [92] describe a general performance model that pre-

dicts the performance of a biosequence database scanning application fairly precisely. Their

model incorporates the relationship between problem size and performance, but only targets

their biosequence application. Ryoo et al. [133] summarize five categories of optimization

mechanisms, and use two metrics to prune the GPU performance optimization space by 98%

via computing the utilization and efficiency of GPU applications. They do not, however, con-

sider memory latency and multiple conflicting performance indicators. Kothapalli et al. are

the first to define a general GPU analytical performance model in [85]. They propose a sim-

ple yet efficient solution combining several well-known parallel computation models: PRAM,

BSP, QRQW, but they do not model global memory coalescing. Using a different approach,

Hong et al. [73] propose another analytical model to capture an estimate of the cost of mem-

ory operations by counting the number of parallel memory requests in terms of memory-warp

parallelism (MWP) and computation-warp parallelism (CWP). However, their assumption

of no cache misses is not always realistic. Sim et al. [138] extend this MWP-CWP model

24

and present the GPUPerf framework. This framework quantitatively estimates performance

along four dimensions: inter-thread instruction-level parallelism, memory-level parallelism,

computing efficiency, and serialization effects. These four metrics help to identify perfor-

mance bottlenecks and suggest what types of optimizations should be done. Baghsorkhi

et al. [13] measure performance factors in isolation and later combine them to model the

overall performance via workflow graphs so that the interactive effects between different

performance factors are modeled correctly. The model can determine data access patterns,

branch divergence, and control flow patterns only for a restricted class of kernels on tradi-

tional GPU architectures. Zhang and Owens [170] present a quantitative performance model

that characterizes an application’s performance as being primarily bounded by one of three

potential limits: instruction pipeline, shared memory accesses, and global memory accesses.

More recently, Kim et al. [82] also design a tool to estimate GPU memory performance by

collecting performance-critical parameters. Parakh et al. [120] present a model to estimate

both computation time by precisely counting instructions and memory access time by a

method to generate address traces.

2.4 Algorithms for Memory Constrained Applications

There has been a rich body of work on the design of parallel algorithms to solve vari-

ous memory constrained problems on many-core machines, primarily GPUs. Graph ex-

ploration is one of the important classes of such problems due to the irregularity of the

underlying graph and random nature of memory access patterns. Attempts at acceler-

ating graph processing on GPUs have been extensively made in the past several years

for many algorithms, such as breadth-first search (BFS) [65, 71, 72, 97, 111], shortest

25

paths [28, 65, 81, 107, 108, 112], maximum flow/min cut [66, 69, 74, 98, 140, 149], mini-

mum spanning trees [117, 132, 150, 159], inclusion-based points-to analysis [110], list rank-

ing [46, 130], and connected components [14, 46, 142]. In addition to graph algorithms, a

wide range of other memory constrained algorithms have also been attempted on GPUs,

including hashing [5, 43, 94], sorting [29, 58, 61, 83, 88, 134, 139, 167], matrix multiplica-

tion [34, 55, 61, 63, 76, 88], FFT [61, 88, 113], and dynamic programming [91, 93, 95].

Other than those classic algorithms above, there are also a large set of complicated algo-

rithms for real-world memory constrained problems that can potentially be accelerated on

GPUs, such as reducing prediction and test time in machine learning [32, 54, 164, 165, 166],

reducing search time in artificial intelligence [33], boosting the efficiency in real-time sys-

tems [161] and streaming systems [27, 75, 90], parallelly solving game theory algorithms for

optimization [162] and 3D modeling algorithms for imaging [171, 172].

26

Chapter 3

Threaded Many-core Memory

(TMM) Model

The Threaded Many-core Memory (TMM) model is meant to model the asymptotic perfor-

mance of algorithms on highly-threaded, many-core machines. The model abstracts away

the details of particular implementations so as to be applicable to many instantiations of

these machines, while being particular enough to model the performance of algorithms on

these machines with reasonable accuracy. In this chapter, we will describe the important

characteristics of these highly-threaded, many-core architectures and our model for analyzing

algorithms for these architectures.

3.1 Abstraction of Highly-threaded Many-core Machines

This model is a high-level model meant to be generally applicable to a number of machines

which allow a large number of threads with fast context switching. Therefore, it abstracts

away many implementation details of both the machine and the algorithm. We also assume

27

that the hardware provides 0-cost, perfect scheduling between threads. In addition, it also

models the machine as having only 2 levels of memory. In particular, we model a slow

global memory shared by all processors and fast local memory shared by one core group. In

practice, these machines may have many levels of memory. However, we are interested in

the interplay between the farthest level, since the latencies are the largest at that level, and

therefore have the biggest impact on the performance. We expect that the model can be

extended to also model other levels of the memory hierarchy.

3.1.1 Architectures

The most important high-level characteristic of highly-threaded, many-core architectures

is that they provide a large number of hardware threads and use fast and low-overhead

context-switching in order to hide the memory access latency from slow global memory.

Highly-threaded, many-core architectures typically consist of a number of core groups, each

containing a number of processors (or cores), a fixed number of registers, and a fixed quantity

of fast local on-chip memory shared within a core group. A large slow global memory is shared

by all the core groups. Registers and local on-chip memory are the fastest to access, while

accessing the global memory may potentially take 100s of cycles. The TMM model models

these machines as having a memory hierarchy with two levels of memory: slow global memory

and fast local memory. In addition, on most highly-threaded, many-core machines, data is

transferred from slow to fast memory in chunks ; instead of just transferring one word at a

time, the hardware tries to transfer a large number of words during a memory transfer. The

chunk can either be a cache line from hardware managed caches, or an explicitly-managed

combined read from multiple threads. Since this characteristic of using high-bandwidth

28

transfers in order to counter high latencies is common to most many-core machines (and

most multi-core machines), the TMM model captures the chunk size as one of its parameters.

Figure 3.1: Abstracted highly-threaded, many-core architecture. The short arrows from the
cores to the local memory symbolize low latency, while the long arrows to the global memory
symbolize high latency.

These architectures support a large number of hardware threads, much larger than the

number of cores. Cores on a single core group execute in synchronous style where groups

of threads execute in lock-step. When a thread group executing on a core group stalls

on a slow memory access, in theory, a context switch occurs and another thread group is

scheduled on that core group. The abstract architecture is shown in Fig. 3.1. Note that this

architecture abstraction ignores a number of details about the physical machine, including

thread grouping, scheduling, etc.

3.1.2 Parameters

The TMM model captures the important characteristics of a highly-threaded, many-core

architecture by using six parameters shown in Table 3.1. L is the latency for accessing the

29

slow memory (in our case, the global memory which is shared by all the core groups). P

is the total number of cores (or processors) in the machine. C is the maximum chunk size;

the number of words that can be read from slow memory to fast memory in one memory

transfer. The parameter Z represents the size of fast local memory per core group and Q

represents the number of cores per core group. As mentioned earlier, in some instantiations,

a core group can have a single core. In this case, a many-core machine looks very much like a

multi-core machine with a large number of low-overhead hardware threads. Note that we do

not have a parameter for the number of core groups, that quantity is simply P/Q. Finally X

is the hardware limit on the number of threads an algorithm is allowed to generate per core.

This limit is enforced due to many different constraints, such as constraints on the number

of registers each thread uses and an explicit constraint on the number of threads. We unify

these constraints into one parameter.

Table 3.1: Architecture parameters.

Parameter Description

L Time for a global memory access
P Number of processors (cores)
C Memory access width
Z Size of fast local memory per core group
Q Number of cores per core group
X Hardware limit on number of threads per core

In addition to the architecture parameters, we must also consider parameters which are

determined by the algorithm. We assume that the programmer has written a correct syn-

chronous program and taken care to balance the workload across the core groups. These

program parameters are shown in Table 3.2. T1 represents the work of the algorithm, that

is, the total number of operations that the program must perform (including fast memory

accesses). T∞ represents the span of the algorithm, that is, the total number of operations

30

on the critical path. These are similar to the analogous PRAM parameters of work and time

(or depth or critical-path length).

Table 3.2: Program parameters.

Parameter Description

T1 The work or total number of operations
T∞ The span or the number of operations on the critical path
M Number of global memory operations
T Number of threads per core
S Amount of local memory used per thread

Next we come to program parameters that are specific to many-core programs. M represents

the total number of global memory operations performed by the algorithm. Note that this

is the total number of operations, not total number of accesses. Since many-core machines

often transfer data in large chunks, multiple memory accesses can combine into one memory

transfer. For instance, if the many-core machine has a hardware managed cache, and the

program accesses data sequentially, then there is only one memory operation for C memory

accesses; these will count as one when accounting for M . T is the number of threads created

by the program per core. We assume that the work is perfectly distributed among cores.

Therefore, the total number of threads in the system is T P . On highly-threaded, many-core

architectures, thread switching is used to hide memory latency. Therefore, it is beneficial

to create as many threads as possible. However, the maximum number of threads is limited

by both the hardware and the program. The software limitation has to do with parallelism,

the number of threads per core is limited by T ≤ T1/(T∞ ·P). The hardware limits T ≤ X.

Finally, we have a parameter S, which is local memory used per thread. S and T are related

parameters, since there is a limited amount of local memory in the system. The number of

threads per core is at most T ≤ Z/(QS).

31

3.1.3 Applicability

This TMM model explicitly models the large number of threads per processor and the mem-

ory latency to slow memory. Note that while we motivate this model for highly-threaded

many-core machines with synchronous computations, in principle, as a high-level abstract

model, it can be applicable to many instantiations of hardware platforms that feature a large

number of threads with fast context switching for latency-hiding and a hierarchical memory

subsystem of at least two levels with a large memory latency gap in between. Typical ex-

amples of this set include NVIDIA GPUs, AMD/ATI GPUs, and the uRiKA machine from

YarcData. We do not try to model the Intel Xeon Phi, due to its limited use of threading

for latency hiding. In contrast, its approach to hide memory latency is primarily based on

strided memory access patterns associated with vector computation.

For NVIDIA GPUs, a number of streaming multiprocessors share the same global memory.

On each of these multiprocessors, there are a number of CUDA cores that share a fixed

number of registers and on-chip (fast) memory A fast hardware-supported context-switching

mechanism enables a large number of threads to execute concurrently. Transfers between

slow global memory and fast local memory can occur in chunks of at most 32 words; these

chunks can only be created if the memory accesses are within a specified range. Accessing

the off-chip global memory usually takes 20 to 40 times more clock cycles than accessing the

on-chip shared memory/L1 cache [118]. All these features are well captured in the TMM

model. Streaming multiprocessors serve the same role as a core group, while CUDA cores

are equivalent to the cores defined in TMM. The width of memory access C is 32 due to

the coalescing of the threads in a warp. Global memory latency and size of on-chip shared

memory/L1 cache are also depicted by L and Z respectively.

32

Considering AMD/ATI GPUs and taking Cypress, the codename for Radeon HD5800 series

GPUs, as an example, the architecture is composed of 20 Single-Instruction-Multiple-Data

(SIMD) computation engines. In each SIMD engine, there are 16 Thread Processors (TP)

and a 32 KB Local Data Store (LDS). Every TP is arranged as a five-way or four-way

Very Long Instruction Word (VLIW) processor, and consists of 5 Stream Cores (SC). Low

context-switch threading is well supported, and every 64 threads are grouped into a wavefront

executing the same instruction. Basically, the SIMD engine can naturally be modeled by

core groups. Each SC is modeled as a core in TMM, summing up to 1600 cores totally.

LDS is straightforwardly described by the fast local memory of TMM. The width of memory

access C in TMM equals to the wavefront width of 64 for AMD/ATI GPUs.

The uRiKA system from YarcData is also a potential target for the TMM model. Their

massively-multithreaded Threadstorm processors support 128 threads/processor. Therefore,

128 defines parameter X, the hard limit of number of threads per processor. The processor’s

instruction execution hardware essentially does a context switch every instruction cycle,

finding the next thread that is ready to issue an instruction into the execution pipeline. This

suggests that the memory access width or chunk size C is 1 on these machines. Conceptually,

each of the Threadstorm processors is mapped to a core group in the TMM model but,

different than the two GPU architectures, it has only one core on-chip, thus Q equals 1.

3.2 TMM Analysis Structure

In order to analyze program performance in the TMM model, we must first calculate the

program parameters for the particular program. Once we have calculated these values, we

can then try to understand the performance of the algorithm.

33

We first calculate the effective work of the algorithm TE. Effective work should consider both

work due to computation and work due to memory accesses. Total work due to memory

accesses is M ·L, but since this work is hidden by using threads, the real effective work due

to memory accesses is (M · L)/T Therefore, we have

TE = O

(
max(T1,

M · L
T)

)
(3.1)

Note that this expression assumes perfect scheduling (the threads are context swapped with

no overhead, as soon as they are stalled) and perfect load balance between threads.

The time to execute on P cores is represented by TP and is defined as:

TP = O

(
max

(
TE
P
, T∞

))
= O

(
max

(
T1
P
, T∞,

M · L
T · P

))
(3.2)

Therefore, speedup on P cores, SP , is

SP =
T1
TP

= Ω

(
min(P,

T1
T∞

,
P · T1 · T
M · L)

)
(3.3)

For linear speedup, SP is P . More precisely, for PRAM algorithms, SP = min(P, T1/T∞).

Therefore, if the first two terms in the min of Eq. (3.3) dominate, then a highly-threaded,

many-core algorithm’s performance is the same as the corresponding PRAM algorithm. On

the other hand, if the last term dominates, then the algorithm’s performance depends on

other factors. If T could be unbounded, then the last term will never dominate. However, as

we explained earlier, T is not an unlimited resource and has both hardware and algorithmic

upper bounds. Therefore, based on the machine parameters, algorithms that have the same

34

PRAM performance can have different real performance on highly-threaded, many-core ma-

chines. Therefore, this model can help us pick algorithms that provide performance as close

as possible to PRAM algorithms.

35

Chapter 4

Application of the TMM Model

A model is only useful if it can explain and predict empirical data. In this chapter, we

investigate the effectiveness of the TMM model. We analyze algorithms for 5 classic problems

— all-pairs shortest paths, suffix tree/array for string matching, fast Fourier transform,

merge sort, and list ranking — under this model, and compare the results of the analysis

with the experimental findings of ours and other researchers who have implemented and

measured the performance of these algorithms on an spectrum of diverse GPUs. We find

that the TMM model is able to predict important and sometimes previously unexplained

trends and artifacts in the experimental data.

4.1 All-pairs Shortest Path (APSP)

In this section, we demonstrate the usefulness of our model by using it to analyze 4 different

algorithms for calculating all pairs shortest paths in graphs. All pairs shortest paths is

a classic problem for which there are many algorithms. Given a graph G = (V,E) with

n vertices and m edges, each edge e has a weight w(e). We must calculate the shortest

36

weighted path from every vertex to every other vertex. We are interested in asymptotic

insights, therefore, we assume that the graphs are large graphs, in particular n > Z.

4.1.1 Dynamic Programming via Matrix Multiplication

Our first algorithm is a dynamic programming algorithm [42] that uses repeated matrix

multiplication to calculate all pairs shortest paths. The graph is represented as an adjacency

matrix A where Aij represents the weight of edge (i, j).

Al is a transitive matrix where Alij represents the shortest path from vertex i to vertex j

using at most l intermediate edges. A1 is the same as the adjacency matrix A and we want

to calculate An−1 to calculate all pairs shortest paths.

A2 can be calculated from A1 as follows:

A2
ij = min

0≤k<n
(A1

ij, A
1
ik + A1

kj). (4.1)

Note that the structure of this equation is the same as the structure of a matrix multiplication

operation where the sum is replaced by a min operation and the multiplication is replaced by

an addition operation. Therefore, we can use repeated matrix multiplication which calculates

An using O(lg n) matrix multiplications.

PRAM Algorithm and Analysis

Parallelizing this algorithm for the PRAM model simply involves parallelizing the matrix

multiplication algorithm such that each element in the matrix is calculated in parallel. The

37

total work of lg n matrix multiplications using a PRAM algorithm is T1 = O(n3 lg n).3 The

span of a single matrix multiplication algorithm is O(n). Therefore, the total span of the

algorithm is T∞ = O(n lg n).

The time and speedup using P processors is

TP = O

(
max(

n3 lg n

P
, n lg n)

)
(4.2)

SP = Ω
(
min(P, n2)

)
(4.3)

Therefore, the PRAM algorithm gets linear speedup as long as P ≤ n2.

TMM Algorithm and Analysis

TMM algorithms are tailored to highly-threaded, many-core architectures generally by using

fast on-chip memory to avoid accesses to slow off-chip global memory, coalescing to diminish

the time required to access slow memory, and threading to hide the latency of accesses to

slow memory. Due to its large size, the adjacency matrix is stored in off-chip global memory.

Following traditional block-decomposition techniques, the matrix multiplication is performed

by dividing the matrix into sub-blocks with dimension SD such that the total number of sub-

blocks is (n/SD)2, and allowing each thread block on a core group to operate on an individual

sub-block of the data. Individual threads read in the required input sub-blocks, perform the

computation of Eq. (6.4) for their assigned sub-block, and write the sub-block out to global

memory. This happens lg n times by repeated squaring.

3This can be done faster using Strassen’s algorithm. Using Strassen’s algorithm will impact the PRAM
and the TMM algorithms equally. Therefore, we demonstrate our point using the simpler algorithm.

38

The work and the span of this algorithm remain unchanged from the PRAM algorithm.

However, we must also calculate M , the number of memory operations. Let us first consider

a single matrix multiplication operation. There are a total of n2 elements and each element

is read for the calculation of O(n/SD) other sub-blocks. However, due to the regularity

in memory accesses, each sub-block can be read fully coalesced. Therefore, the number of

memory operations for one matrix multiply is O((n2/C) · (n/SD)) = O(n3/(SDC)). Also

note that since we must fit an SD × SD sub-block in a local memory of size Z on one

core group, we get SD = Θ(
√
Z). Therefore, for lg n matrix multiplication operations,

M = O(n3 lg n/(SDC)) = O(n3 lg n/(
√
Z · C)).

Now we are ready to calculate the time on P processors.

TP = O

(
max(

T1
P
, T∞,

M · L
T · P)

)
(4.4)

= O

(
max(

n3 lg n

P
, n lg n,

n3 lg n · L√
Z · C · T · P

)

)
(4.5)

Therefore, the speedup on P processors is

SP = T1/TP (4.6)

= Ω

(
min(P, n2,

√
Z · C · T
L

· P)

)
(4.7)

We can now compare the PRAM and TMM analysis and note that the speedup is P as long

as
√
ZCT /L ≥ 1. We also know that T ≤ min(X,Z/(QS)), and S = O(1), since each

thread only needs constant memory. Therefore, we can conclude that the algorithm achieves

linear speedup as long as L ≤ min(
√
ZCX,Z3/2C/Q).

39

4.1.2 Johnson’s Algorithm: Dijkstra’s Algorithm (Binary Heaps)

Johnson’s algorithm [77] is an all pairs shortest paths algorithm that uses Dijkstra’s single

source algorithm as the subroutine and calls it n times, once from each source vertex. Di-

jkstra’s algorithm is a greedy algorithm for calculating single source shortest paths. The

pseudo-code for Dijkstra’s algorithm is given in Algorithm 1 [47]. The single source algo-

rithm consists of n insert operations, m decrease-key operations and n delete-min operations

from a min-priority queue. The standard way of implementing Dijkstra’s algorithm is to use

a binary or a Fibonacci heap to store the array elements. We now consider a binary heap

implementation so that each operation (insert, decrease-key, and delete-min) takes O(lg n)

time. Note that Dijkstra’s algorithm does not work when there are negative weight edges.

PRAM Algorithm and Analysis

A simple parallel implementation of Johnson’s algorithm using Dijkstra’s algorithm con-

sists of doing each single-source shortest path calculation in parallel. The total work of a

single-source computation is O(m lg n + n lg n). For simplicity, we assume that the graph

is connected, giving us O(m lg n). Therefore, the total work for all pairs shortest paths is

T1 = O(mn lg n). The span is T∞ = O(m lg n) since each single source computation executes

sequentially. The time and speedup using P processors is

TP = O

(
max(

mn lg n

P
,m lg n)

)
(4.8)

SP = Ω (min(P, n)) (4.9)

Therefore, the PRAM algorithm gets linear speedup as long as P ≤ n.

40

Algorithm 1 Dijkstra’s Algorithm

1: Input: Graph G = (V,E), |V | = n, |E| = m
2: Input: W is weight of edges, |W | = m
3: Input: S is source vertex
4: Output: dist[n]

{Initialize distance array}
5: for all u ∈ V do
6: dist[u] =∞
7: end for
8: dist[S] = 0
9: for all u ∈ V do

10: Q← dist[u]
11: end for

{Propagate the distance update to all vertices}
12: while Q not empty do
13: u = deletemin(Q)
14: for each edge (u, v) ∈ E do
15: if dist[v] > dist[u] +W [u, v] then
16: dist[v] = dist[u] +W [u, v]
17: decreasekey(Q, v)
18: end if
19: end for
20: end while

TMM Algorithm and Analysis

The TMM algorithm is very similar to the PRAM algorithm where each thread computes

a single source shortest path. Therefore, each thread requires a min-heap of size n. Since

n may be arbitrarily large compared to Z/QT (the share of local memory for each thread),

these heaps cannot fit in local memory and must be allocated on the slow global memory.

The work and span are the same as the PRAM algorithm. We must now compute M . Note

that each time the thread does a heap operation, it must access global memory, since the

heaps are stored in global memory. In addition, binary heap accesses are not predictable

41

and regular, so the heap accesses from different threads cannot be coalesced. Therefore, the

total number of memory operations is M = O(mn lg n).4

Now we are ready to calculate the time on P processors.

TP = O

(
max(

T1
P
, T∞,

M · L
T · P)

)
(4.10)

= O

(
max(

mn lg n

P
,m lg n,

mn lg n · L
T · P)

)
(4.11)

Therefore, the speedup on P processors is

SP = Ω

(
min(P, n,

T
L
· P)

)
(4.12)

Note that this algorithm gets linear speedup only if T /L ≥ 1. Therefore, the number

of threads this algorithm needs to get linear speedup is very large. We know that T ≤

min(X,Z/(QS)), and S = O(1) for this algorithm. This allows us to conclude that this

algorithm achieves linear speedup only if L ≤ min(X,Z/Q), since each thread needs only

constant memory. These conditions are much stricter than those imposed by the dynamic

programming algorithm.

4.1.3 Johnson’s Algorithm: Dijkstra’s Algorithm (Arrays)

This algorithm is similar to the previous algorithm in that it still uses n single-source Dijk-

stra’s algorithm calculations. However, instead of binary heaps, we use arrays to do delete-

min and decrease-key operations.

4There are other accesses that are not heap accesses, but those are asymptotically fewer and can be
ignored.

42

PRAM Algorithm and Analysis

The PRAM algorithm is very similar to the algorithm that uses binary heaps. Each single

source shortest path is computed in parallel. However, in this algorithm, we simply store

the current estimates of the shortest path of vertices in an array instead of a binary heap.

Therefore, there are n arrays of size n, one for each single source shortest path calculation.

Each decrease-key now takes O(1) time, since one can simply decrease the key using random

access. Each delete-min, however, takes O(n) work, since one must look at the entire array

to find the minimum element. Therefore, the work of the algorithm is T1 = O(n3 +mn) and

the span is O(n2 + m). We can improve the span by doing delete-min in parallel, since one

can find the smallest element in an array in parallel using O(n) work and O(lg n) time using

a parallel prefix computation. This brings the total span to T∞ = O(n lg n + m) while the

work remains the same.

The time and speedup using P processors is

TP = O

(
max(

n3

P
, n lg n+m)

)
(4.13)

= O

(
max(

n3

P
, n lg n,m)

)
(4.14)

SP = Ω

(
min(P,

n2

lg n
,
n3

m
)

)
(4.15)

TMM Algorithm and Analysis

The TMM algorithm is similar to the PRAM algorithm, except that each core group is

responsible for a single-source shortest path calculation. Therefore, all the threads on a

single core group (QT in number) cooperate to calculate a single shortest path computation.

43

Since we assume that n > Z, the entire array does not fit in local memory and must be read

with each delete-min operation. Therefore, the span of the delete-min operation changes.

For each delete-min operation, elements are read into local memory in chunks of size Z. For

each chunk, the minimum is computed in parallel in O(lgZ) time. Therefore, the span of

each delete-min operation is O((n/Z) lgZ). Therefore, the total span is T∞ = O(n2 lgZ/Z).

The work is the same as the PRAM work.

We must now compute the number of memory operations, M . There are n2 delete-min

operations in total, and each reads the array of size n coalesced. In addition, there are

a total of mn decrease key operations, but these reads cannot be coalesced. Therefore,

M = O(n3/C +mn).

TP = O

(
max(

T1
P
, T∞,

M · L
T · P)

)
(4.16)

= O

(
max(

n3

P
,
n2 lgZ

Z
,
(n

3

C
+mn) · L
T · P)

)
(4.17)

= O

(
max(

n3

P
,
n2 lgZ

Z
,
n3 · L

C · T · P ,
mn · L
T · P)

)
(4.18)

Speedup is

SP = Ω

(
min(P,

nZ

lgZ
,
C · T
L
· P , n

2 · T
m · L · P)

)
(4.19)

Again, in this algorithm, T ≤ min(X,Z/(QS)), and S = O(1) since each thread needs only

constant memory. Therefore, if L ≤ min(CX,CZ/Q, n2X/m, n2Z/(mQ)), then the PRAM

performance dominates.

44

4.1.4 n Iterations of Bellman-Ford Algorithm

This is another all pairs shortest paths algorithm that uses a single-source Bellman-Ford

algorithm as a subroutine. The algorithm is given in Algorithm 2 [16, 89].

Algorithm 2 Bellman-Ford

1: Input: Graph G = (V,E), |V | = n, |E| = m
2: Input: W is weight of edges, |W | = m
3: Input: S is source vertex
4: Output: dist[n]

{Initialize distance array}
5: for all u in V do
6: dist[u] =∞
7: end for
8: dist[S] = 0

{Update the distance for all vertices n− 1 times}
9: for i = 1 : (n− 1) do

10: for each edge e(u, v) ∈ E do
11: if dist[v] > dist[u] +W [u, v] then
12: dist[v] = dist[u] +W [u, v]
13: end if
14: end for
15: end for

PRAM Algorithm and Analysis

Again, one can do each single source computation in parallel. Each single source computation

takes O(mn) work, making the total work of all pairs shortest paths O(mn2) and the total

span O(mn). One can improve the span by relaxing all edges in one iteration in parallel

making the span O(n).

TP = O

(
max(

mn2

P
, n)

)
. (4.20)

SP = Ω (min(P,mn)) . (4.21)

45

TMM Algorithm and Analysis

The TMM algorithm for this problem is more complicated and requires more data structure

support. Each core group is responsible for one single-source shortest path calculation. For

each single source calculation, we maintain three arrays, A, B and W , of size m, and one

array D of size n. D contains the current guess of the shortest path to vertex i. B contains

ending vertices of edges, sorted by vertex ID. Therefore B may contain multiple instances of

the same vertex if that vertex has multiple incident edges. A[i] contains the starting vertex

of the edge that ends at B[i] and W [i] contains the weight of that edge. Therefore, both D

and B are sorted.

Each thread deals with one index in the array and relaxes that edge in each iteration. All

threads relax edges in parallel in order of B. The total work and span are the same as the

PRAM algorithm. We can now calculate the time and speedup assuming threads can read

all the arrays coalesced, M = O(mn2/C + n3/C) = O(mn2/C) for connected graphs.

TP = O

(
max(

T1
P
, T∞,

M · L
T · P)

)
(4.22)

= O

(
max(

mn2

P
, n,

mn2 · L
C · T · P)

)
(4.23)

Therefore, the speedup on P processors is

SP = Ω

(
min(P,mn,

C · T
L
· P)

)
(4.24)

In this case, we get linear speedup if CT /L ≥ 1. Subject to the limits on threads of

T ≤ min(X,Z/(QS)) and S = O(1) for constant local memory usage per thread, this

requires L ≤ min(CX,CZ/Q).

46

4.1.5 Comparison of Various Algorithms

As our analysis of shortest paths algorithms indicates, the TMM model allows us to take

the unique properties of highly-threaded, many-core architectures into consideration while

analyzing the algorithms. Therefore, the model provides more nuance in the analysis of

these algorithms for the highly-threaded, many-core machines than the PRAM model. In

this section, we will compare the running times of the various algorithms and see what

interesting things this analysis tells us.

Table 4.1 indicates the running times of the various algorithms in both the PRAM model

and the TMM model, as well as the conditions under which TMM results are the same

as the PRAM results. We have ignored the span term, since the span is small relative to

work in all of these algorithms. As we can see, if L is small, then highly-threaded, many-

core machines provide PRAM performance. However, the cut-off value for L is different

for different algorithms where the performance in the TMM model differs from the PRAM

model is different for different algorithms. Therefore, the TMM model can be informative

when comparing between algorithms.

We will perform two types of comparison between these algorithms in this section. The

first one considers the direct influence of machine parameters on asymptotic performance.

Since machine parameters do not scale with problem size, in principle, machine parameters

cannot change the asymptotic performance of algorithms in terms of problem size. That

is, if the PRAM analysis indicates that some algorithm has a running time of O(n) and

another one has the running time of O(n lg n), for large enough n, the first algorithm is

always asymptotically better since eventually lg n will dominate whatever machine parameter

47

Table 4.1: Algorithm running times and constraints for linear speedup.

Algorithm Time Time Constraints
(PRAM) (TMM) (for linear speedup)

Dynamic n3 lgn
P

n3 lgn·L√
ZCT P L ≤

√
ZCX L ≤ Z3/2C/Q

Programming

Johnson’s mn lgn
P

mn lgn·L
T P L ≤ X L ≤ Z/Q

(Binary Heap)

Johnson’s n3

P

n3L
CT P , n2

m
≥ C L ≤ CX L ≤ Z/Q · C

(Array) mnL
T P , n2

m
< C L ≤ n2X/m L ≤ n2Z/(mQ)

n iteration n2m
P

mn2L
CT P L ≤ CX L ≤ CZ/Q

Bellman-Ford

advantage the second algorithm may have. Therefore, for this first comparison, we only

compare algorithms which have the same asymptotic performance under the PRAM model.

Second, we will also do a non-asymptotic comparison where we compare algorithms when

the problem size is relatively small, but not very small. In particular, we look at the case

when lg n <
√
Z. In this case, even algorithms that are asymptotically worse in the PRAM

model can be better in the TMM model, for large latency L. In the next section, we will

look at even smaller problem sizes where the effects are even more dramatic.

48

Influence of Machine Parameters

As the table shows, the limits on machine parameters to get linear speedup are different

for different algorithms. Therefore, even when two algorithms have the same PRAM perfor-

mance, their performance on highly-threaded, many-core machines may vary significantly.

Let us consider a few examples:

• Dynamic Programming vs. Johnson’s Algorithm using Binary Heaps when m = O(n2).

If m = O(n2) (i.e., the graph is dense), the PRAM performance for both algorithms is

the same. However when Z/Q < L < Z3/2C/Q, Johnson’s algorithm has a significantly

worse running time. Take the example of L = O(Z3/2C/Q). The Johnson running time

is O(n3 lg n
√
ZC/P) while the running time of the dynamic programming algorithm is

simply O(n3 lg n/P).

• Johnson’s Algorithm using Binary Heaps vs. Johnson’s Algorithm using Arrays when

m = O(n2/ lg n).

If m = O(n2/ lg n) (i.e., a somewhat sparse graph), these two algorithms have the

same PRAM performance, but if Z/Q < L ≤ ZC/Q, then the array implementation

is better. For L = ZC/Q, the binary heap implementation has a running time of

O(n3C/P), while the array implementation has a running time of simply O(n3/P).

Influence of Graph Size

The previous section shows the asymptotic power of the model; the results there hold for

large sizes of graphs asymptotically. However, the TMM model can also help decide on what

algorithm to use based on the size of the graph. In particular for certain sizes of graphs,

49

algorithm A can be better than algorithm B even if it is asymptotically worse in the PRAM

model. Therefore, the TMM model can give us information that the PRAM model cannot.

Consider the example of dynamic programming vs. Johnson’s algorithm using arrays. In

the PRAM model, the dynamic programming algorithm is unquestionably worse than John-

son’s. However, if lg n <
√
Z, we may have a different conclusion. In this case, dynamic

programming has runtime:

n3 lg n · L√
ZCT P

=
n2L

T P ·
n lg n√
ZC

<
n2L

T P ·
n

C
(4.25)

While Johnson’s algorithm has runtime:

min(
n3L

CT P ,
mnL

T P) =
n2L

T P ·min(
n

C
,
m

n
) (4.26)

If n2/m < C, i.e. dense graphs, n/C < m/n. Combine (4.25) and (4.26), we have

n3 lg n · L√
ZCT P

<
n3L

CT P , if
n2

m
< C (4.27)

This indicates that when for small enough graphs where lg n <
√
Z, there is a dichotomy.

For dense graphs n2/m < C, the dynamic programming algorithm should be preferred, while

for sparse graphs, Johnson’s algorithm with arrays is better. We illustrate this performance

dependence on sparsity with experiments in Section 4.1.7.

We get a similar result when comparing the dynamic programming algorithm with Bellman-

Ford when m = O(n). In spite of being worse in the PRAM world, the dynamic programming

algorithm is better when lg n <
√
Z.

50

Our model therefore allows us to do two things. First, for a particular machine, given two

algorithms which are asymptotically similar, we can pick the more appropriate algorithm

for that particular machine given its machine parameters. Second, if we also consider the

problem size, then we can do more. For small problem sizes, the asymptotically worse

algorithm may in fact be better because it interacts better with the machine. We will draw

more insights of this type in the next section.

4.1.6 Effect of Problem Size

In Section 4.1.5, we explored the asymptotic insights that can be drawn from the TMM

model. However, the TMM model can also inform insights based on problem size. In

particular, some algorithms can take advantage of smaller problems better than others,

since they can use fast local memory more effectively. In this section, we explore the insights

that the TMM model provides in these cases.

Vertices Fit in Local Memory

When n < Z, all the vertices fit in local memory. Note that this doesn’t mean that the entire

problem fits in local memory, since the number of edges can still be much larger than the

number of vertices. In this scenario, the number of memory accesses by the first, second, and

fourth algorithms is not affected at all. In the dynamic programming algorithm, we consider

the array of size n2 and being able to fit a row into local memory does not reduce the number

of memory transfers. In Johnson’s algorithm using binary heaps, each thread does its own

single source shortest path. Since the local memory Z is shared among QT threads, each

51

thread cannot hold its entire vertex array in local memory. In the Bellman-Ford algorithm,

the cost is dominated by the cost of reading the edges. Therefore, the bounds do not change.

For Johnson’s algorithm using arrays, the cost is lower. Each core group can store the vertex

array and does not need to access it from slow memory. Therefore the bound on the number

of memory operations changes to M = O(n2/C +mn) = O(mn) for connected graphs.

For these small problem sizes, the TMM model can provide even more insight. As an

example, compare the two versions of Johnson’s algorithm, the one that uses arrays and the

one that uses heaps. When m = O(n2/ lg2 n), the algorithm that uses heaps is better than

the algorithm that uses arrays in the PRAM model. But in the TMM model, for large L, the

algorithm that uses heaps has the running time of O(Lmn lg n/(T P)) = O(Ln3/(T P lg n)),

while the algorithm that uses arrays has the running time of O(Ln3/(T P lg2 n)). Therefore,

the algorithm that uses arrays is better. Note that asymptotic analysis is a little dubious

when we are talking about small problem sizes; therefore, this analysis should be considered

skeptically. However, the analysis is rigorous when we consider the circumstance that local

memory size grows with problem size (i.e., Z is asymptotic). Moreover, this type of analysis

can still provide enough insight that it might guide implementation decisions under the more

realistic circumstance of bounded (but potentially large) Z.

Edges Fit in the Combined Local Memories

When m = O(PZ/Q), the edges fit in all the memories of the core groups combined. Again,

the running time of the first, second, and third algorithms do not change, since they cannot

take advantage of this property. However, the Bellman-Ford algorithm can take advantage

of this property and each thread across all core groups is responsible for relaxing a single

52

edge. Now a portion of the arrays A, B and W fit in each core group’s local memory and

they never have to be read again. Therefore, the number of memory operations reduces to

M = O(n3/C). The run time under the TMM model reduces to O(n3L/(CT P)). Again,

compare Bellman-Ford algorithm with Johnson’s algorithm using binary heaps. When m =

O(n2/ lg n), Johnson’s algorithm is better than the Bellman-Ford algorithm in the PRAM

model. However, in the TMM model, Johnson’s has run time of O(Lmn lg n/(T P)) =

O(Ln3/(T P)), while Bellman-Ford with a run time of O(Ln3/(CT P)) flips to be better.

4.1.7 Empirical Validation

In this section, we conduct experiments to understand the extent of the applicability of

our model in explaining the performance of algorithms on real machines. This evaluation

is a proof-of-concept that the model successfully predicts performance on examples of the

highly-threaded, many-core machine. It is not meant to be an exhaustive empirical study

of the model’s applicability for all instances of highly-threaded, many-core machines. We

implemented two all-pairs shortest paths algorithms: the dynamic programming using matrix

multiplication and Johnson’s algorithm using arrays, on NVIDIA GPUs.

In these experiments, we investigate the following aspects of the TMM model:

• Effect of the number of threads: The fact that the TMM model incorporates the

number of threads per processor in the model is the primary differentiator between the

PRAM and TMM models. The TMM model predicts that as the number of threads

increases the performance increases, up to a certain point. After this point, the number

of threads does not matter, and the TMM model behaves the same as the PRAM model.

53

In this set of experiments, we will use both the dynamic programming and Johnson’s

algorithms to demonstrate this dependence on the number of threads.

• Effect of fast local memory size: In some algorithms, including the dynamic pro-

gramming via matrix multiplication, the size of the fast memory affects the performance

of the algorithm in the TMM model. We investigate this dependence.

• Effect of machine parameters: Both the 2 investigations above use the same ma-

chine, therefore the machine parameters in the TMM model are constant and negligible.

Next, we will change the machine parameters by using a different machine, investigate

whether the observations above still hold, and demonstrate the effect of different ma-

chine parameters on real performance.

• Power of providing more fine-grained and accurate results than the PRAM

model for comparing algorithms: For Johnson’s algorithm using arrays, the PRAM

performance does not depend on the graph’s density. However, the TMM model pre-

dicts that performance can depend on the graph’s density, when the number of threads

is insufficient for the performance to be equivalent to the PRAM model. Therefore,

even though Johnson’s algorithm is always faster than the dynamic programming algo-

rithm according to the PRAM model (since its work is n3 while the dynamic program-

ming algorithm has work n3 lg n), the TMM model predicts that when the number of

threads is small, the dynamic programming algorithm may do better, especially for

dense graphs. We demonstrate through experiments that this is a true indicator of

performance.

54

Experimental Setup

The experiments are carried out on an NVIDIA Fermi architecture GTX 480 and a Kepler

architecture GTX680. GTX 480 has 15 multiprocessors, each with 32 cores. GTX 680 has 8

multiprocessors, each with 192 cores. As typical highly-threaded, many-core machines, they

also feature a big global memory and 16 KB/48 KB of configurable on-chip shared memory

per multiprocessor, which can be accessed with latency significantly lower than the global

memory.

Runtimes are measured across various configurations of each problem, including graph size,

thread count, shared memory size, and graph density. When plotted as execution time, the

performance units are in seconds. In many cases, however, the trends we wish to see are

more readily apparent when performance is shown in terms of speedup rather than execution

time. This poses a problem, however, as it is arguably meaningless to attempt to realistically

measure the single-core execution time of an application deployed on a modern GPU. We

address this issue using the following technique: all speedup plots compare the measured,

empirical execution time on P cores to the theoretical, asymptotic execution time on 1 core

using the PRAM model. As a result, the speedup axis does not represent a quantitatively

meaningful scale, and the scale is labeled “arbitrary” on the graphs to reflect this fact;

however, the shape of the curves are representative of the speedup achievable relative to a

fixed serial execution time.

Effect of the Number of Threads

The TMM model indicates that when the number of threads is small, the performance

of algorithms depends on the number of threads. With sufficient number of threads, the

55

performance converges to the PRAM performance and only depends on the problem size

and the number of processors. We verify this result using both the dynamic programming

and Johnson’s algorithms.

For the dynamic programming algorithm, we generate random graphs with {2K, 4K, 8K,

16K} vertices. To better utilize fast local memory, the problem is decomposed into sub-

blocks, and we must also pick a sub-block dimension SD so that the sub-block size is SD
2.

Since we only care about the effect of threads and not the effect of shared memory (to be

considered in the next subsection), here we show the results with a sub-block dimension SD

= 64, as it allows us to generate the maximum number of threads. We increase the number

of threads until we reach either the hardware limit or the limit imposed by the algorithm.

0 4 8 12 16 20 24 28 32 36
T : Threads/Core

S
pe

ed
up

 (a
rb

itr
ar

y
sc

al
e)

2048 Nodes
4096 Nodes
8192 Nodes
16384 Nodes

Figure 4.1: Speedup (theoretical T1 via PRAM model over empirically measured TP) of
the dynamic programming algorithm, varying the number of threads per core from 2 to 32
(sub-block dimension SD = 64).

Fig. 4.1 shows the speedup while varying the number of threads per core. We see that the

speedup increases approximately linearly with the number of threads per core (as predicted

by Eq. (4.7)) and then flattens out. This indicates that for this experiment, 8 is an estimated

56

threshold of threads/core where the TMM model switches to the “PRAM range” and the

number of threads no longer matters. Note that the expression for this threshold does not

depend on the graph size, as it is equal to L/
√
ZC. Also note that the speedup (both in

and out of the PRAM range) is not impacted by the size of the graph (again as predicted

by Eq. (4.7)).

0 4 8 12 16 20 24 28 32 36
T : Threads/Core

S
pe

ed
up

 (
ar

bi
tr

ar
y

sc
al

e)

32k Edges
128k Edges
512k Edges
2048k Edges
8192k Edges
32768k Edges

Figure 4.2: Speedup of Johnson’s algorithm using arrays vs. threads/core for different graph
densities. All curves are with 8K nodes. Again, speedup is theoretical T1 divided by empir-
ically measured TP .

We see a similar performance dependence on the number of threads in Johnson’s algorithm.

Here we ran experiments with 8K vertices and varied the number of edges (ranging between

32K and 32M). The speedup graph is shown in Fig. 4.2. As we increase the number of

threads, the speedup increases. We see two other interesting things, however. First, we

never see the flattening of performance with increasing thread counts that is seen with the

dynamic programming algorithm. Therefore, it appears that Johnson’s algorithm requires

more threads to reach the PRAM range where the performance no longer depends on the

number of threads. This is also predicted by our model as the number of threads/core

57

required by the dynamic programming algorithm to reach PRAM range is T ≥ L/
√
ZC

while the corresponding number of threads required by Johnson’s is T ≥ L/C, clearly a

larger threshold. Johnson’s algorithm is not taking advantage of the fast local memory, and

this factor influences the number of threads required to hide the latency to global memory.

Second, we see that the performance depends on the number of edges. This is consistent

with the fact that we are in the TMM range where the runtime is (mnL/T P) and not in

the PRAM range where the runtime only depends on the number of vertices.

The dependence on graph density is explored further in Fig. 4.3. Here, the runtime is plotted

vs. number of graph edges for varying threads/core. The linear relationship predicted by the

last term of Eq. (4.18) (for dense graphs) is illustrated clearly in the figure.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

0

100

200

300

400

500

600

700

m : Graph Edges

R
u

n
tim

e
 (

s)

2T/Core
4T/Core
8T/Core
16T/Core
32T/Core

Figure 4.3: Runtime of Johnson’s algorithm on graphs with constant 8K nodes and varying
density by increasing edges. Threads/core varies from 2 to 32.

58

Effect of Fast Local Memory Size

In highly-threaded, many-core machines, access to local memory is faster than access to slow

global memory. Among our shortest paths algorithms, only the dynamic programming algo-

rithm makes use of the local memory and the running time depends on this fast memory size.

In this experiment we verify the effect of this fast memory size on algorithm performance.

We set the fast memory size on our machine and measure its effect. Fig. 4.4 illustrates

how this change has an impact on speedup across a range of threads/core. For a fixed

Z (fast memory size), the maximum sub-block dimension SD can be determined. Then,

varying thread counts has the same effect as previously illustrated in Fig. 4.1, increasing

threads/core increases performance until the PRAM range is reached. But as we can see from

the figure, different sub-block dimensions have different performance for the same number of

threads/core. This effect is predicted by Eq. (4.7). As we increase the size of local memory,

the performance improves, since we can use bigger sub-blocks.

0 4 8 12 16 20 24 28 32 36
T : Threads/Core

S
pe

ed
up

 (a
rb

itr
ar

y
sc

al
e)

Sub−block Dimension S
D
 = 32

Sub−block Dimension S
D
 = 64

Figure 4.4: Speedup of the dynamic programming algorithm for different sub-block dimen-
sions (SD), varying the threads/core on graphs with 16K nodes.

59

0 4 8 12 16 20 24 28 32

∆
S

pe
ed

up

T : Threads/Core

(a) Spread

0 4 8 12 16 20 24 28 32
0

0.5

1

1.5

2

2.5

3

R
at

io

T : Threads/Core

(b) Ratio

Figure 4.5: Different format of data from the two curves in Fig. 4.4 with the same speedup
scale in order to isolate the effect of sub-block size from the effects of other parameters.
(a) Spread of performance between sub-block dimension 64 and sub-block dimension 32.
(b) Ratio of performance between sub-block dimension 64 and sub-block dimension 32.

In order to isolate the effect of sub-block dimension from the effects of other parameters, we

also plot this data in a pair of different formats in Fig. 4.5(a) and Fig. 4.5(b). The first curve

shows the difference between the speedups for different sub-block dimensions. As the curve

indicates, when setting the number of threads/core below the PRAM range (i.e.,the range

where speedup is linear in threads/core T), the delta speedup increases linearly with the

number of threads/core, consistent with the model prediction of (SD1 − SD2)T . However,

when setting the number of threads/core into the PRAM range, the delta speedup keeps

flat, consistent with the prediction that in PRAM range, the speedup no longer depends

on T , but only SD1 − SD2 which is a constant. The second curve shows the ratio of the

performance of sub-block dimension 64 to sub-block dimension 32, indicating a flat line all

through the range of T being varied, since the thread term cancels out.

60

Effect of machine parameters

We conducted experiments on the latest NVIDIA GTX680 Kepler architecture (Fig. 4.6(b))

in addition to the Fermi architecture GTX480 (Fig. 4.6(a)). The figures are qualitatively

similar in terms of the effect of threads variation — as T increases, the speedup increases

for a while and then flattens out — as predicted by the TMM model.

We also conducted experiments to evaluate the effect of local memory size Z by artificially

decreasing the memory by filling it with dummy data. The TMM model indicates that

reducing Z should decrease speedup, which is validated by the experiments on both GPUs.

The line for Z = 3 KB stops at T = 8 and 1.3 respectively since we can only load one

sub-block of size 16 × 16 in local memory. Each thread handles one location in this sub-

block, for a total of 256 threads per multiprocessor. GTX480 and GTX680 have 32 and 192

cores per multiprocessor, respectively, leading to a maximum of 8 and 1.3 threads per core,

respectively.

Quantitatively, the machines have different characteristics. GTX680 has a smaller hardware

limit on the number of threads per core X.5 However, it also requires fewer threads per core

T to achieve almost flattened speedup, indicating that memory latency L is small compared

to other parameters and can be hidden with fewer threads. However, it appears that the

speedup curve is not completely flat even at the maximum number of threads, indicating

that it may be beneficial to increase the hardware limit on the number of threads further.

This set of experiments indicates that the TMM model can be used to understand the

importance of a variety of parameters on algorithm performance, not only T and Z, but

5On each multiprocessor, GTX480 supports up to 1536 threads on 32 cores; GTX680 supports
up to 2048 threads on 192 cores.

61

0 4 8 12 16 20 24 28 32 36
T : Threads/Core

S
pe

ed
up

 (a
rb

itr
ar

y
sc

al
e)

Z = 3 KB, n = 2048
Z = 3 KB, n = 4096
Z = 12 KB, n = 2048
Z = 12 KB, n = 4096
Z = 48 KB, n = 2048
Z = 48 KB, n = 4096

(a) Speedup on NVIDIA GTX480 (Fermi).

0 1 2 3 4 5 6
T : Threads/Core

S
pe

ed
up

 (a
rb

itr
ar

y
sc

al
e)

Z = 3 KB, n = 2048
Z = 3 KB, n = 4096
Z = 12 KB, n = 2048
Z = 12 KB, n = 4096
Z = 48 KB, n = 2048
Z = 48 KB, n = 4096

(b) Speedup on NVIDIA GTX680 (Kepler).

Figure 4.6: Speedup of dynamic programming using adjacency matrix for all-pairs shortest paths
problem on two generations of NVIDIA GPUs. On GTX480, with memory size 12 KB and 48 KB,
using more than 16 threads hides the memory latency completely; on GTX680, due to the hardware
limit on T , latencies are not fully hidden, and the speedup curve is still climbing slowly.

also X and L. More importantly, the TMM model can be informative with respect to

understanding limits on performance that are due to constraints on machine parameter

ranges. For example, the maximum threads per core, X, is lower in the Kepler architecture

than in the Fermi architecture, while Fig. 4.6(b) indicates that a larger value of X for Kepler

could provide a performance benefit for this all-pairs shortest paths algorithm.

Power of providing more fine-grained and accurate results than the PRAM model

for comparing algorithms

It is interesting to compare the the dynamic programming algorithm and Johnson’s algorithm

with arrays, since the PRAM and the TMM model differ in predicting the relative perfor-

mance of these algorithms. The PRAM model predicts that Johnson’s algorithm should

62

always be better. However, from Eq. (4.27), for a small number of threads/core working on

a dense graph, the TMM model predicts that dynamic programming may be better.

For the graphs with 8K vertices that we explored earlier, lg n <
√
Z. Consequently, TMM

predicts Johnson’s algorithm is generally faster than dynamic programming for sparse graphs,

but slower for relatively dense ones. Fig. 4.7 demonstrates this effect concretely.

0 4 8 12 16 20 24 28 32 36
0

50

100

150

200

250

300

T : Threads/Core

R
un

tim
e

(s
)

DP (S
D
 = 64)

Johnson’s (32K Edges)
Johnson’s (128K Edges)
Johnson’s (512K Edges)
Johnson’s (32768K Edges)

Figure 4.7: Runtime of the dynamic programming (DP) algorithm relative to Johnson’s
algorithm on a graph with 8K nodes, varying threads/core from 4 to 32 and edges from 32K
to 32M.

In addition, for the dense graph, the figure also shows the intersection between the runtime

curves of the two algorithms. At that point (32 threads/core), dynamic programming has

already been in the PRAM range with stable performance since 16 threads/core, while

Johnson’s has not. Its runtime is still benefiting by increasing the threads/core. As a result,

we predict that Johnson’s runtime will flip to be the better one if given sufficient threads. The

peak performance of Johnson’s being better than that of dynamic programming is consistent

with what the PRAM model predicts.

63

4.2 String Matching

We now consider the string matching problem. In general, the problem of string matching

is to find all occurrences of the query string of length k in a given reference string of

length m (m � k). Both strings consist of characters from the same alphabet of constant

size. We consider batch string matching where we have a large number n of query strings

and want to find matches to all of them in the reference string.

In this problem, an index is precomputed using the reference string for fast matching with

query strings. We primarily focus on two types of indexing strategies: suffix tree — a

compressed trie containing all the suffixes of the reference string as keys and the starting

positions in the string as values, and suffix array — a sorted array of all indices of suffixes

in a string. We only focus on batch string matching, assuming that the index has been built

in advance.

4.2.1 Suffix Tree

Conceptually, each root-to-leaf path in the tree represents a suffix of the reference string. All

leaves store the starting position of the suffix they represent in the reference string. Each

edge represents a substring of the suffix along the path, and the outgoing edges for each

node represent substrings that start with different letters from that node. Instead of storing

entire strings at edges, generally, we only store the starting position and the length of the

string for each edge.

In order to explain the search procedure, consider the following example. Say, our query

string is ‘issips’. We start at the root, pick the first character i from the query, and follow

64

Figure 4.8: Suffix tree for string ‘mississippi ’. Each suffix is terminated by the special
character $. Leaves appear immediately after $, represented by squares and labeled with
suffix indices. Circles represent the internal nodes.

the edge that has a string that starts with an i i.e. the second edge leading out of the root

in the figure. We have now matched i. Next, we pick the second character s, and follow

the edge corresponding to s, which is the second outgoing edge of node F . At this point,

we match the string on that edge, ‘ssi’, character by character with the query string. We

have now matched ‘issi’ from the query string and the next character is p. Therefore, we

follow the edge corresponding to p and start matching the remaining query string with that

edge. We reach a mismatch when we don’t find s, and declare that the query string is not

a substring of the reference string. If we had reached the end of the query string while

continuing to successfully match it, then we would declare a success, and each leaf in the

subtree below this node represents an occurrence of the query in the reference. Considering

only computational complexity, the suffix tree is optimal. Given any query string of length

k, one can match it in O(k) time. If we have n strings, the total work is T1 = O(nk). Since

all the queries can be performed in parallel, the span is T∞ = O(k).

65

To calculate the memory complexity,we analyze a particular GPU implementation of suffix

trees [48] , where the suffix tree is stored in a flattened form using an array E of size α×N ,

where N is the number of nodes in the tree. Each node is represented by α cells in this array;

in particular, node j is represented by cells E[(j− 1)α] to E[jα− 1], each cell corresponding

to the α lexicographically ordered letters of the alphabet. Each of these cells essentially

represents an outgoing edge of node j; however, some of the cells may be dummies, since a

node can have fewer than α outgoing edges. Each non-dummy cell points to a structure called

EdgeInfo that has three pieces of information: (1) the starting index of the substring (that

this edge represents) in the reference string, (2) the length of the substring corresponding

to that edge, and (3) the index in the array E at which the destination node’s cells range

begins.

In order to implement the batch queries, one thread is assigned to each query string, until n

(the number of queries) exceeds the maximum number of allowed threads in the machine, at

which point, multiple queries are assigned to each thread. Considering only computational

complexity, the suffix tree is optimal. Given any query string of length k, one can match

it in O(k) time. For n strings, the total work is T1 = O(nk). Since all the queries can be

performed in parallel, the span is T∞ = O(k). Next we will calculate the memory complexity.

For each of the k characters in the query, one can locate its correct edge from the outgoing

edges in O(1) time, as the cells are lexicographically ordered. Thus, at most O(k) possible

positions in the reference sequence would be checked. The accesses to these positions may

have poor locality and therefore cannot be grouped. The number of memory transfers is

M = O(nk). So the runtime, using Eq. (3.2), is

TP = O

(
max(

nk

P
, k,

nkL

T P)

)
. (4.28)

66

The last term (memory complexity term) can be refined into two terms depending on the

relation between the batch size n and the thread limit XP . When n ≤ XP , each thread

handles a single query; the number of threads T P increases with n. So, n = O(T P), and

the two cancel in the last term. When n > XP , we do not have sufficient threads to run

all queries on separate threads. All X possible threads are used (T = X) and the n queries

are divided among these threads. Therefore, the third term becomes nkL
XP

. Considering both

scenarios for all possible n, Eq. (4.28) can be expressed as:

TP = O

(
max(

nk

P
, k, kL,

nkL

XP

)
. (4.29)

Interpretation of bounds:

• If L ≥ X, there are two cases:

– When n ≤ XP , we have kL ≥ nkL
XP
≥ nk

P
. Therefore, the third term (memory

complexity for small problem sizes) dominates, and the running time does not

depend on n.

– When n > XP , we have nkL
XP
≥ nk

P
and nkL

XP
> kL. The runtime is still dominated

by memory complexity, but bounded by the last term in Eq. (4.29). The runtime

increases linearly with the problem size n.

• If L < X, there are also two cases:

– When n ≤ LP , we have kL ≥ nk
P
> nkL

XP
. Again, the algorithm performance

depends on the third term, and the runtime does not depend on n.

67

– When n > LP , we have nk
P
> kL and nk

P
> nkL

XP
. The performance becomes

dominated by computation complexity, the first term. The runtime increases

linearly with n.

4.2.2 Suffix Array

A suffix array is an array of integers giving the starting positions of suffixes of a reference

string in lexicographical order [106]. In other words, all the suffixes are indexed by their

individual starting positions in the original reference string, and then sorted lexicographically.

Figure 4.9: Suffix array for string ‘mississippi ’. Suffixes are sorted in lexicographical order. s
and t are the suffixes immediately ordered before and after the query string ‘si’, and located
by binary searches. ‘sippi’ and ‘sissippi’ are the suffixes between s and t, representing all
occurrences of the query string.

To match a query string, we perform a binary search over the suffix array. At each step, we

compare the query string to the string at that point in the array, and either find a match

or decide to go up or down. The search does not stop until the two indices are located such

68

that all elements between these two in the suffix array are the instances of occurrence for

the underlying query string, allowing us to find multiple matches if they exist.

The computational complexity analysis is straightforward. According to the algorithm

in [48], each thread matches an individual query in O(k lgm) span with O(k lgm) work.

Therefore, the total work for an n-sized batch of queries is T1 = O(nk lgm) and the span is

T∞ = O(k lgm). Now for the memory complexity. At each step, the whole query is com-

pared against one entire suffix in the reference string; therefore, this suffix can be accessed

in chunks of size C. Therefore, each memory transfer can transfer O(C) characters6 of the

string for comparison. Therefore, the memory complexity for each query is O(k lgm
C

) and

the memory complexity of the batch is M = O(nk lgm
C

). Therefore, using Eq. (3.2) and by

the same logic of refining the last term (based on the number of threads) as suffix trees in

Eq. (4.29), the runtime can be expressed as:

TP = O

(
max(

nk lgm

P
, k lgm,

k lgm · L
C

,
nk lgm · L
CXP

)

)
. (4.30)

Interpretation of bounds:

• If L ≥ CX, i.e. X ≤ L/C, there are two cases:

– When n ≤ XP , we have k lgm·L
C
≥ nk lgm·L

CXP
≥ nk lgm

P
. Therefore, the running time

is dominated by memory complexity, and bounded by k lgm·L
C

; it does not depend

on n.

6Each character is represented using a constant number of bits.

69

– When n > XP , we have nk lgm·L
CXP

≥ nk lgm
P

and nk lgm·L
CXP

> k lgm·L
C

. Therefore, the

performance is still dominated by memory complexity, but is bounded by the last

term nk lgm·L
CXP

. The runtime should grow linearly as n increases.

• If L < CX, i.e. X > L/C, there are another two cases:

– When n ≤ LP/C, we have k lgm·L
C

≥ nk lgm
P

> nk lgm·L
CXP

. The running time is

dominated by memory complexity bounded by k lgm·L
C

; it does not depend on n.

– When n > LP/C, we have nk lgm
P

> k lgm·L
C

and nk lgm
P

> nk lgm·L
CXP

. The running

time is dominated by computational complexity (work in particular) and increases

linearly with n.

4.2.3 Comparison and Empirical Validation

If we just consider computational complexity, as in the RAM or PRAM model, suffix trees

are clearly better than suffix arrays for string matching by a factor of O(lgm), since their

work is smaller. However, in the TMM model, the relationship is not so straightforward.

Here we try to understand the interesting conclusions that can be drawn using the TMM

analysis of these algorithms.

Let us focus on Eq. (4.29) and Eq. (4.30) to theoretically compare the performance of the

two suffix algorithms. We notice a few interesting things about these bounds:

• First, when the number of queries n is small, for both algorithms, the runtime is

independent of n, and is only dependent on the memory cost. In this region, whether

suffix trees or suffix arrays will perform better depends on the relationship between

70

terms kL and k lgm·L
C

. For most reference strings lgm < C, and suffix arrays are better.

Only for very large reference strings will suffix trees be faster.

• As n increases, we reach a point where the running time goes from being independent

of n to being linear in n. The point of this transition depends on the characteristics

of the machine; particularly the relationship between memory latency L, the limit on

the number of threads per processor X, and the memory access width C. Table 4.2

gives the details of the transition points for suffix trees and suffix arrays, indicating

which algorithm transitions for smaller values of n. If the machine has large memory

latencies L or supports a relatively small limit on number of threads per core X, such

that X ≤ L
C
< L, both suffix tree and suffix array running time starts depending on

n at the same value of n = XP . However, if X > L
C

, then the suffix array’s runtime

becomes linear in n for a smaller value of n than the suffix tree.

Table 4.2: Batch size n at which suffix tree and suffix array runtime starts depending on n.

Condition
Problem size n Problem size n
(Suffix Tree) (Suffix Array)

L ≤ X LP L
C
· P

L
C
< X < L XP L

C
· P

X ≤ L
C

XP XP

• After the transition (the point at which the runtime starts depending on n), the run-

time of both the suffix tree and the suffix array increase linearly with problem size n,

however at different rates. Whether suffix tree or suffix array runtime increases faster

depends on the machine parameters again. When X ≥ L, both are dominated by com-

putation complexity (suffix tree by O(nk
P

), and suffix array by O(nk lgm
P

)). It is clear

that the runtime of suffix array grows a factor of O(lgm) faster than suffix tree. Given

sufficiently large n, one expects that suffix trees catch up in performance with suffix

71

arrays. When L/C < X < L, suffix tree is dominated by memory complexity O(nkL
XP

),

while suffix array is still dominated by computation O(nk lgm
P

). When X ≤ L/C < L,

they are both bounded by memory complexity (suffix tree by O(nkL
XP

), and suffix array

by O(nk lgmL
CXP

)). In the second two cases, which one grows faster depends on the ref-

erence size m and machine parameters L, X, and C. The asymptotic performance of

both after the transition point is shown in Table 4.3 for different machine parameter

relationships.

Table 4.3: Bounds for suffix tree and suffix array after the transition point when runtime
starts depending on n.

Condition
Bound Bound

(Suffix Tree) (Suffix Array)

L ≤ X
Compute Compute

nk
P

nk lgm
P

L
C
< X < L

Memory Compute
nkL
XP

nk lgm
P

X ≤ L
C

Memory Memory
nkL
XP

nk lgmL
CXP

Comparison with empirical data: Consider the empirical performance of these algo-

rithms as reported by Encarnaijao et al. [48]. We have reproduced the graph in Fig. 4.10

from their data. The figure supports all three predictions above, at least qualitatively.

For small values of n, both algorithms are dominated by memory complexity, and the running

times of both suffix tree and array remain flat as n increases, showing that the performance is

independent of n and depends on the third term of the running time bounds in Eq. (4.29) and

Eq. (4.30). In addition, for these experiments, the reference sequence is also of a moderate

length (m = 107), and the alphabet size is small; therefore, we expect that C > lgm, suffix

arrays perform better within the flat range.

72

1024 8192 65536 524288 4194304

10

100

1000

Number of query strings or batch size (n)

T
im

e
(m

s)

Suffix Tree
Suffix Array

Figure 4.10: Performance of suffix trees and suffix arrays on GPU. Empirical data are from
Encarnaijao et al. [48].

For the GPU being used (NVIDIA GTX 580), the hardware limit on the number of threads

X is large and of the same order as the latency7. Therefore, the suffix array’s transition

(where the running time starts depending on n) happens for smaller values of n than the

suffix tree. This fact is also consistent with the empirical observations. As n increases, both

performance curves ultimately bend up. The bend occurs at different points for the two

algorithms, and as predicted above, the suffix array curve bends sooner than the suffix tree

curve.

After the transition of algorithm performance to be linear with n, the runtimes of the two

algorithms increase with different rates. For the first case, the running time for suffix array

increases faster than suffix tree. If we are in the second case, for these machines, we expect

L/X < lgm, since it is expected to be small. Therefore, for both the first and the second

cases, suffix array running time grows faster than the suffix tree running time. In the figure,

7X = 48; Memory latency is 400-500 cycles, while arithmetic instructions take 4 cycles each, so L is about
100.

73

as predicted, the slope of the curve for suffix arrays is steeper than the slope for suffix trees

after the transition. Even though the curve does not go that far, we can speculate that

eventually, for large enough n, suffix trees will outperform suffix arrays.

Therefore, the choice of a particular data structure and a corresponding algorithm depends

on how well they match the characteristics and features of the target hardware, and that is

especially true for highly-threaded many-core GPUs. Although the asymptotic search time

of suffix array O(k lgm) is greater than that of the suffix tree O(k), experimental results

from real implementations on GPUs show that computational complexity is not the only

factor. To choose the appropriate algorithm for a particular machine, one must consider the

relationship between machine parameters L, X, and C, and even the relationship between

algorithmic parameters and machine parameters, lgm and C in this case.

4.3 Fast Fourier Transform (FFT)

The Discrete Fourier Transform (DFT) is a classic algorithm that is widely used in

many applications such as digital imaging, signal processing, and convolution, etc. The DFT

is obtained by decomposing a sequence of values into components of different frequencies.

For an N-point complex sequence x = x0, ...xN−1, its DFT is an N-point complex sequence

of X = X0, ..., XN−1, where

Xk =
∑N−1

n=0
xne

−2πk n
N , k = 0, ...N − 1. (4.31)

Fast Fourier Transform (FFT) is an algorithm that computes DFT in O(N lgN) op-

erations. At each of lgN recursive steps, it divides the DFT of size N into two interleaved

74

DFTs of size N/2, followed by a combining stage consisting of N/2 size-2 DFTs called

radix-2 ‘butterfly’. In each butterfly, one element of a DFT will have one addition and one

subtraction operation with the element of same index in the other DFT.

Figure 4.11: Data path and computation pattern of FFT. Radix-2 butterfly is the basic
computation unit of FFT.

Next we analyze the FFT algorithm on GPUs. At each of the lgN steps, N/2 2-point FFTs

are computed in parallel, each by a thread. Therefore, the work is T1 = O(N lgN) and the

span is T∞ = O(lgN). For each stage of the butterfly, we have to perform O(N) memory

accesses, but these are predictable at regular intervals. Therefore, they can be grouped into

chunks of size C, and the total number of memory transfers is M = O(N lgN/C)). Using

Eq. (3.2) and by refining the last term (based on relationship between N and T) as in suffix

trees/arrays, we get the running time of

TP = O

(
max(

N lgN

P
, lgN,

lgN · L
C

,
N lgN · L
CXP

)

)
. (4.32)

75

Comparison with empirical data: We compare our analytical observations with the

empirical result of FFT algorithm with radix-2 Stockham algorithm on GPUs [60]. Here, we

would like to highlight one interesting experiment, where they varied the memory clock rate.

Note that increasing the memory clock rate is equivalent to shrinking the memory latency L.

In Eq. (4.32), L affects the runtime only as long as the algorithm runtime is dominated by the

memory complexity term (the last two terms). As L shrinks, eventually it is small enough

that the algorithm runtime is no longer dominated by the memory complexity; instead it is

dominated by the computation complexity (the first term). Therefore, after a certain point

of increasing memory frequency, the algorithm runtime no longer depends on L, and further

increases in frequency have no affect. Fig. 4.12 shows the running times for 2 problem sizes as

the memory frequency increases. The graph validates the above observation; after a certain

point, increasing the memory clock rate (decreasing L) does not affect the runtime, and the

curve becomes flat.

600 800 1000 1200
1

2

3

4

5

6

Memory Clock Rate (MHz)

Ti
m

e

N = 27

N = 214

Figure 4.12: Runtime of FFT algorithm with various memory frequencies on an NVIDIA
GTX280. The FFTs are performed for two problem sizes N = 27 and N = 214. The y-axis is
the runtime plotted on an arbitrary scale, as the runtime data are converted from GFLOPs
from Govindaraju et al. [60]. The x-axis shows increasing memory clock rate, denoting
decreasing memory latency L.

76

4.4 Merge Sort

Merge sort is generally considered to be the preferred technique for external sorting, where

the sequence being sorted is stored in a large external memory and the processor only has

direct access to a much smaller local memory. In particular, it is asymptotically optimal in

the disk access model [3]. In this section, we analyze the merge sort of Satish et al. [134].

The idea of the merge sort algorithm is to divide the input sequence into blocks of size Z, sort

them in parallel locally within core groups so as to utilize the fast memory using odd-even

merge sort [83], and finally recursively merge them using the blocked merge . The blocked

merge is an important subroutine of merge sort. It merges two sorted sequences A and B

into a new sorted sequence S of size n that contains all the elements of A and B. We first

analyze the algorithm for blocked merge and then use it to analyze merge sort.

4.4.1 Blocked Merge

The idea of this algorithm is to decompose the overall problem into many smaller problems,

each of which is small enough to fit in fast memory. Therefore, sequences A and B are cut

into smaller sequences as follows: first divide the sequences A and B into sections of size

Z/2; say that the boundary elements are a1, a2, ..., a2n/Z and b1, b2, ..., b2n/Z respectively. We

then, in parallel, search for these boundary elements in the other sequence. If we include the

boundary elements and these new binary search locations, this divides both sequences into

4n/Z sections, each of size at most Z/2 and the corresponding sections match up. We can

individually merge the ith section in A to the ith section in B and this leads to the correct

final sequence S. The process of creating this partition involves n/Z parallel binary searches;

77

leading to a total of T∞ = O(lg n) span, T1 = O(n
Z

lg n) work, and incurs M = O(n
Z

lg n)

memory transfers, since the unpredictable memory accesses cannot be grouped.

Once subsequences of both A and B fit in memory, n < Z, we can merge the many subse-

quences in parallel. In order to For each element x ∈ A∪B we compute the rank rank(x, S),

which is equal to rank(x,A) + rank(x,B). If x ∈ A, it’s rank in A is simply its index in A,

since A is sorted. Its rank in B can be found by doing a binary search. Therefore, the total

span is T∞ = O(lg n) with T1 = O(n lg n) work and M = O(n/C) memory transfers (the

sequence must be brought into memory once).

Since there are totally n/Z blocks that can be merged in parallel, the total span is T∞ =

O(lgZ), with T1 = O(n lgZ) work and M = O(n/C). Thus, adding the cost of partitioning

and the local merges, and applying Eq. (3.2), we get

TP = O

(
max(

n lgZ + n
Z

lg n

P
, lg n,

(n
C

+ n
Z

lg n)L

T P)

)
. (4.33)

If lg n� Z, as is the case for many machines,

TP = O

(
max(

n lgZ

P
, lg n,

nL

CT P)

)
. (4.34)

4.4.2 Merge Sort

The odd-even merge sort [15] is based on a bitonic sorting network and proceeds in O(lg n)

phases for a sequence of size n. In each phase, there is O(n lg n) work and O(lg n) span.

Therefore, the total work is O(n lg2 n) and the total span is O(lg2 n). For subsequences of

size Z, the odd-even sorting step takes O(lg2 Z) span, O(Z lg2 Z) work, and O(Z/C) memory

78

transfers. Given O(n/Z) blocks to be sorted, the span is O(lg2 Z), work is O(n lg2 Z) with

O(n/C) memory transfers. Given that Z = Ω(Z), T1 = O(n lg2 Z), T∞ = O(lg2 Z).

Next, the O(n/Z) subsequences are merged in a parallel pair-wise merge tree of O(lg(n/Z))

depth. As we move down the tree, the sequences that must be merged stop fitting in local

memory, and we must use the merge algorithm described in Section 4.4.1. Therefore, each

layer of the tree has work O(n lgZ), span O(lg n) and memory complexity O(n/C). We

multiply them by lg(n/Z) levels to get the final computational and memory complexity.

Therefore, ultimately we can combine the sorting and the merging step. Since O(lg(n/Z)) =

O(lg n − lgZ) = Ω(lgZ), we can substitute into Eq. (3.2) and by refining the last term

according to problem size to get the runtime:

TP = O

(
max(

n lgZ lg n
Z

P
, lg n lg

n

Z
,
lg n

Z
· L

C
,
n lg n

Z
· L

CXP
)

)
. (4.35)

For small values of n < XP , the third term (representing memory complexity) dominates

performance, and the running time increases logarithmically, that is very slowly. As n gets

larger, the performance is bounded by either the first or the last term depending on the

relationship between C, Z and X. In both cases, the running time increases with n lg n
Z

,

that is, a little faster than linearly with n.

Comparison with empirical data: Empirical results in Fig. 4.13(a) and Fig. 4.13(b)

are re-plotted from the data represented in [134]. First let us look at small values of n in

Fig. 4.13(a). In this range, we see that the running time increases very slowly with n, as

expected, since it depends on the third term in Eq. (4.35). If we look at large values of n,

however, in Fig. 4.13(b), we see that the running time increases a little faster than linearly

with n (the dashed lines show linear growth for comparison), which we can speculate is

79

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

6

M
e
rg

e
 S

o
rt

 T
im

e
 (

m
s)

Sequence length (n)

GTX280 Data
GTX280 Smoothed Curve
8800GT Data
8800GT Smoothed Curve
8600GTS Data
8600GTS Smoothed Curve

(a) Runtime for small sequence size.

0 2 4 6 8 10 12

x 10
6

0

500

1000

1500

M
e
rg

e
 S

o
rt

 T
im

e
 (

m
s)

Sequence length (n)

GTX280 Data
8800GT Data
8600GTS Data
Linear Ref. Line for GTX280
Linear Ref. Line for 8800GT
Linear Ref. Line for 8600GTS

(b) Runtime for large sequence size.

Figure 4.13: Merge sort on multiple GPUs (data from [134]); Solid lines are smoothed curves
from data and dotted lines are linear references. (a) For small n, the runtime increases slower
than linearly with n. (b) For large n, the runtime increases faster than linearly with n.

approximately n lg (n/Z). The TMM model is able to predict the growth of running time

for both small and large sequences. In addition, it indicates that increasing the hardware

limit on threads (increasing X) is likely to increase the area where the growth is slow.

4.5 List Ranking

List ranking is a classic problem where we want to compute the rank of each element in a

list in parallel. Here we analyze the performance of Wyllie’s algorithm [163] in the TMM

model. In Wylie’s algorithm, each element’s rank is computed in parallel by repeated pointer

jumping; the successor pointer of each element in the list is repeatedly updated to its suc-

cessor’s successor, while also updating the rank estimate. Given a linked list of n elements,

the algorithm finishes in T∞ = O(lg n) span, thereby making the total work T1 = O(n lg n).

80

Rehman [131] implement this algorithm on GPU, assigning one thread to each element in the

list. Each thread accesses O(lg n) elements, and these memory accesses cannot be grouped,

since they are far away from each other. So the number of memory transfers isM = O(n lg n).

Refining the last term by considering all possible n, we get the runtime from Eq. (3.2):

TP = O

(
max(

n lg n

P
, lg n, lg n · L, n lg n · L

XP
)

)
. (4.36)

At a small list size when n < min(LP,XP), the third term in Eq. (4.36) dominates the

performance. Therefore the runtime is linear with lg n. As n increases, performance may be

dominated by memory complexity due to the last term or computation complexity due to the

first term; it depends on the relationship between L and X. Specifically, when L > X, and

n > XP , the memory complexity dominates; when L < X and n > LP , the computation

complexity dominates. However, in both cases, the runtime increases with n lg n.

 1K 4K 16K 64K 256K 1M 4M 16M 64M
0.01

0.1

1

10

100

1000

List size (n)

T
im

e
(m

s)

Runtime
Linear Reference Line

Figure 4.14: Runtime of Wyllie’s algorithm on NVIDIA GTX 280 (data from [131]). The
runtime grows slowly for small n and faster for larger n (dotted line is a linear reference).
Note that the graph is a log-log plot in order to expose the trends over a wide range of n.

Comparison with empirical data: These observations are borne out with the empirical

data which is re-plotted in Fig. 4.14 from the data presented in [131]. The runtime increases

slowly for small values of n and faster for larger values of n.

81

4.6 Analysis of Additional Algorithms

In this section, we briefly present the bounds on other classic algorithms in the TMM model.

These bounds are listed in Table 4.4. We do not describe these algorithms, but most of

them are either well-known primitives (reduce, scan, merge) or classic algorithms for well-

understood problems (such as connected components, minimum spanning tree, sorting). For

completeness, we include the bounds of the algorithms we analyzed in this chapter. Note

that the bounds on M shown are for large n; we are not presenting the detailed analysis for

all ranges of n as we did above. n is generally the problem size; for graph algorithms, n is

the number of nodes and m is the number of edges; for string matching, n is the number of

query strings, m is the length of the reference string, and k is the maximum query length.

Table 4.4: Analysis for some more classic algorithms.

Algorithms Work T1 Span T∞ Mem. Ops M

Reduce [136] n lg n n/C
Scan [136] n lg n n/C
Merge [134] n lgZ lgZ n/C
Merge Sort [134] n lgZ lg n

Z
lgZ lg n

Z
n
C

lg n
Z

Odd-even Sort [83] n lg2 n lg2 n n
C

lg n
Z

ConnectedComp [143] (m+ n) lg n lg2 n m+n
C

lg n
MST-Boruvaka [151] m lg n lg n m lg n
Suffix Tree [48] nk k nk
Suffix Array [48] nk lgm k lgm nk lgm/C
FFT [60] n lg n lg n n lg n/C
List Ranking [131] n lg n lg n n lg n

APSP [101] n3 lg n n lg n n3 lg n/(
√
ZC)

82

Chapter 5

Calibrated Performance Model

In this chapter, we propose an analytic model that helps improve the understanding of

the performance of memory-limited kernels on GPUs, especially as impacted by cache and

various configuration parameters that can be used to tune kernel execution, such as the

number of thread blocks and the number of threads per block. Distinct from the TMM

model introduced in Chapter 3, this calibrated performance model is a lower-level model

that is designed to quantitatively predict real runtime throughout the entire configuration

space by only one real run, with scale factors. We utilize both throughput (number of input

data elements processed per unit time) and execution time (time to process a fixed size data

set) as the performance metrics of interest. Our focus is on applications whose performance

is dominated by memory access bandwidth, either to the shared memory or to the global

memory. We concentrate on the throughput of the kernel executing on the graphics engine

itself, leaving the performance assessment of data transfers to and from the graphics engine

for future work.

The model is first explored through the use of a synthetic micro-benchmark, which is then

followed by an empirical validation using a pair of production applications used in compu-

tational biology. (In the two applications used for empirical evaluation, the performance is

83

dominated by kernel execution time.) A parallel Bloom filter algorithm is also described and

implemented as a benchmark to validate the model and also quantify the tradeoff between

false positive rates and runtime.

5.1 Performance Modeling

In terms of performance, both the CUDA and OpenCL development environments support

application implementation using familiar languages, and the available debugging and per-

formance monitoring tools provide substantial information about correctness and execution

speed. An important issue that remains, however, is a comprehensive understanding of what

algorithmic and architectural features have significant impact on the performance of partic-

ular applications. Getting a code running correctly is not difficult, but getting it to perform

well can still be quite a challenge. Ultimately, the achieved performance for an application

is a complicated interaction between a variety of parameters, some set by the application

developer, others imposed by the architecture of the particular graphics engine being used.

We first present an analytic base model [105] that describes the performance of a Bloom

filter [21] in Section 5.1.1. We constrain the number of requested thread blocks to evenly

divide the work across the multiprocessors. Then in Section 5.1.2, we extend the base model

by lifting the restriction, characterizing application performance over a wider parameter

space than the base model and a larger set of applications. We also add support for modeling

caches, incorporating the effect of cache misses into the performance expressions [104].

84

5.1.1 Base Model

Before the modeling, we first recall several important concept in describing how GPUs work

and get scheduled. As previously introduced in Section 3.1.1, a GPU consists of a number of

streaming multiprocessors with multiple cores executing in Single Instruction Multiple Thread

(SIMT) fashion. Instructions are issued per warp, which is a consecutive batch of threads

executing the same instruction while on different data. Context switches happen between

warps. When an operand of a warp is not ready, this warp will be stalled and switched

out by another warp of threads very fast. On each multiprocessor, there are a dynamically-

determined number of thread blocks scheduled depending on the resources being used per

thread block. On-chip Resources including registers and shared memory are finite. An entire

thread block will be assigned to a multiprocessor and become active block only when the

resources requested by the entire thread block are less than the resources remained on-chip.

Occupancy, defined in Eq. (5.1), is used to describe the efficiency of resource allocation and

schedule. Higher occupancy indicates higher utilization of on-chip resources.

Occupancy =
ActiveBlocks

MaximumActiveBlocksAllowed
(5.1)

We characterize application performance in terms of a variety of parameters, with application

parameters summarized in Table 5.1 and architecture parameters summarized in Table 5.2.

85

Table 5.1: Application Parameters

Parameter Description

n Data set size
k Number of hashing functions
ne Number of elements in Bloom vectors
m Working set size
nsub Size of decomposed sub-problem
RT Number of registers per thread
ZB Shared memory used per block (in bytes)
Br Requested number of blocks (total)
Tr Requested number of threads per block

Table 5.2: Architecture Parameters

Parameter Description

P Number of processors (cores)
Q Number of cores per multiprocessor
Z Shared memory per multiprocessor (in bytes)
R Number of registers per multiprocessor
W Warp size (in number of threads)
Cs Cache size
NW Min number of warps
Bmax Max number of blocks (total)
TmaxB Max number of threads per block
TmaxMP Max number of threads per multiprocessor

When a kernel is launched, the application specifies a request for a number of blocks, Br, and

a number of threads per block, Tr. Together, these two parameters determine the occupancy

of the multiprocessors in the graphics engine. First, we want to know how many active blocks

can be launched on each multiprocessor, denoted Ba. This can be expressed in terms of the

register usage, shared memory usage, and fixed device capability (max active blocks allowed

and max threads allowed). The resultant active blocks Ba will be the smallest among the

86

four terms in Eq. (5.2).

Ba = min

(⌊
Z

ZB

⌋
,

⌊
R

RT × Tr

⌋
,

⌊
Bmax

P/Q

⌋
,

⌊
TmaxMP

Tr

⌋)
(5.2)

Second, throughput is maximized when the requested number of blocks Br is an integer

multiple of the product of Ba and P/Q (number of multiprocessors), thereby balancing the

number of blocks allocated to each multiprocessor. Here, Bopt is the set of possible block

request counts that is required to yield peak (optimal) performance.

Bopt = {Br = i×Ba × P/Q | i ∈ N} (5.3)

Third, in a similar manner, the number of threads per block Tr should be an integer multiple

of the warp size W , forming a set of possible requested threads per block necessary for peak

(optimal) performance, Topt.

Topt = {Tr = j ×W | j ∈ N} (5.4)

Finally, we define a set of Boolean indicators that encode whether or not the requested

number of blocks is in the optimal set and is feasible given the practical constraints of the

engine (denoted by AB), and whether or not the requested number of threads per block

meets similar conditions (denoted by AT).

AB = Br ∈ Bopt ∧ (5.5)

Br ≤ Bmax

87

AT = Tr ∈ Topt ∧ (5.6)

Tr ≥ NW ×W ∧

Tr ≤ min

(
TmaxB,

TmaxMP

Ba

)
∧

Tr ≥
R
Rt

Br

P/Q
+ 1

Beyond membership in Bopt, the only constraint on the number of blocks is that it is within

the count allowed by the system. For the number of threads per block, constraints include a

minimum number (to mask latencies and provide sufficient parallelism) as well as an upper

bound based on resource limits. We address the performance achievable when there are

insufficient threads to mask memory latencies in the next chapter.

5.1.2 Model Extension

Additional variables used in the models are listed in Table 5.3. What follows extends

the model from Section 5.1.1. Each application’s peak performance is first described in

terms of its algorithmic complexity. The algorithmic complexity is expressed via a function

fapp(−→algo,−→inpt), defined in terms of an algorithm parameter vector −→algo and an input size vector

−→
inpt. −→algo includes parameters from the algorithm design and implementation, e.g., number

of hashing functions in a Bloom filter, size of a sub-block computation, etc. −→inpt takes the

parameters relevant to the input problem size and working set size. The form of fapp is, of

course, application specific. Specific examples will be provided in the sections below. fapp

can be regarded as a general adapter of the model to different problem sizes, algorithms,

and even to different implementations of each algorithm.

88

Table 5.3: Model Variables

Variable Description

Ba Active number of blocks per multiprocessor
AB Optimal block number indicator (Boolean)
AT Optimal thread number indicator (Boolean)
AC Working set fit in cache indicator (Boolean)
Bopt Set of optimal numbers of blocks (total)
Topt Set of optimal numbers of threads per block
fapp Application algorithmic complexity
fcache Cache factor
fsched Block scheduling factor
rH Cache hit rate
rM Cache miss rate
G Ratio of cache to main memory throughput−→
algo Vector of algorithm parameters−→
inpt Vector of input size parameters
Time Execution time (in seconds)
Timemin Shortest execution time (in seconds)
Tput Throughput (in data elements per second)

Similar to the indicators AB and AT (described above) that articulate whether or not a

kernel’s configuration (the combination of Br and Tr) is optimal, an additional indicator AC

can be used to articulate whether or not the kernel’s working set m fits in on-chip memory

spaces, either shared memory or L1 cache. If the working set is allocated to and fits in shared

memory, AC is true because each reference to the working set is a hit. If shared memory

isn’t used, AC is true when the working set fits in L1 cache. This can be expressed as:

AC =

 m < Z if using shared memory

m < Cs if using global memory.
(5.7)

89

We now articulate the peak performance of an application given −→algo and −→inpt. If and only if

AB, AT and AC are true does the kernel configuration provide peak performance.

Timemin ∝ fapp(−→algo,−→inpt) if AT ∧ AB ∧ AC (5.8)

Moving from peak performance, we next extend Eq. (5.8) to incorporate the effects of cache

and of block scheduling. Here, fcache reflects the performance impact due to cache misses

and fsched reflects that due to the scheduling of blocks. We consider each factor in turn.

Time ∝ fapp(−→algo,−→inpt)× fcache × fsched if AT (5.9)

Assuming that our memory access patterns are random (due to hashing), a simple model

considering the size of cache Cs and working set m for the cache hit rate is:

rH = min(1,
Cs
m

). (5.10)

The above expression yields a hit rate of 1 when the working set size m is smaller than the

cache size Cs. As m exceeds Cs, the hit rate is modeled as their ratio (reflecting the random

access assumption). Given a hit rate rH , the miss rate is straightforward to model:

rM = 1− rH (5.11)

90

We complete the cache performance model by expressing the cache factor as a linear combi-

nation of execution times that are blended by cache hit and miss rates:

fcache =

 1 if AC

rH + rM ×G otherwise,
(5.12)

where G reflects the multiplicative slowdown experienced with very low cache hit rates. In

principle, one would like to express G in terms of the relative performance of the cache and

the global memory. In practice, however, their relative performance difference is masked by

the large number of threads supported. In this work, G is empirically determined.

In a similar manner to the cache effects, fsched models the impact of block scheduling on the

application performance, extending the overall model to predict execution time for numbers

of requested blocks that are not only within the set Bopt, but also those outside of it.

fsched =
d Br

Ba×P/Qe ×Ba × P/Q
Br

(5.13)

The above expression reflects the block scheduling process on the multiprocessors, with the

time determined by the multiprocessor with the largest number of blocks assigned to it

(expressed via the ceiling function
⌈

Br

Ba×P/Q

⌉
). As we will see below, this yields a distinctive

zigzag pattern in the throughput as the number of requested blocks is varied.

Given an expression for execution time in Eq. (5.9), we can describe processing throughput

in terms of the data set size n and the execution time.

Tput = n/Time (5.14)

91

5.2 Model Application

In this section, the calibrated performance model is first validated using a synthetic micro-

benchmark which allows us to quantitatively explore the impact of random memory access

patterns in terms of cache effects and varied kernel configuration options. Two real applica-

tions from computational bioinformatics are also used to further examine the model’s effec-

tiveness. Given the excellent match between model predictions and empirical measurements,

we conclude that the model can be effectively used not only to understand the performance

of existing applications, but it can also be used to help configure the tuning parameters that

must be set when executing any graphics engine kernel. The model confirms that, in general,

shared memory is better suited to handling random memory access patterns. However, given

sufficient parallelism and a small enough working set, even random access to global memory

can be effective.

5.2.1 Synthetic Micro-benchmark for Hashing

Given the stated goal of understanding the performance of applications with poor memory

access patterns, we present a synthetic micro-benchmark that allows us to quantitatively

explore the impact of random access patterns on application throughput. The computation

is intentionally simple enough to ensure that memory accesses dominate its performance.

The choice of memory subsystem potentially has a significant performance impact, especially

for randomly distributed accesses. In the present work, we focus on the shared memory and

global memory subsystems, leaving the constant memory and texture memory for future

work.

92

(a) Shared memory random accesses. (b) Global memory random accesses.

Figure 5.1: Micro-benchmark for random hashing on GPU architectures. (a) Hash table on
shared memory. (b) Hash table on global memory.

Fig. 5.1 helps us understand the operation of the micro-benchmark. Random numbers within

a specified address range (i.e., working set size) are populated initially in the global memory.

Then, as illustrated in Fig. 5.1(a), each thread reads an individual data element, interprets

that data element as a (random) pointer to a (synthetic) hash table in shared memory, and

fetches the value from the table. Each block performs the same pattern of accesses, working

with an assigned range of the pointers stored in global memory. In a variation of the micro-

benchmark, illustrated in Fig. 5.1(b), the random pointers point to a (synthetic) hash table

in global memory. In both cases, the size of the hash table (the working set size) is denoted

by m.

We are now in a position to formulate a function fapp for the above micro-benchmark. Here,

there are no parameters appropriate for −→algo, so it is empty. The only input parameter is the

data set size n, so −→inpt = (n) and thereby

fapp(n) = n (5.15)

93

and according to Eq. (5.9),

Time ∝ n×
d Br

Ba×P/Qe ×Ba × P/Q
Br

if AT ∧ AC . (5.16)

To investigate how the block scheduling factor fsched influences the runtime, a small working

set size is used to guarantee it fits on-chip, either in shared memory or L1 cache, so that AC

is true. The impact of the choice of memory subsystem accessed (whether shared or global)

will be represented in the proportionality constant, which will be explored empirically.

The graphics engine used for this investigation is the NVIDIA GTX480, which has 15 stream-

ing multiprocessors, P/Q = 15, i.e. there are totally P = 480 cores, and each multiprocessor

has Q = 32 cores. The GTX480 has 1.5 GB off-chip global memory. Other architecture

parameters are presented in Table 5.4.

Table 5.4: NVIDIA GTX 480 Architecture Specification

Parameter Specification

P 480
Q 32
Z 16 KB or 48 KB (configurable)
Cs 48 KB or 16 KB (configurable)
R 32768
W 32
NW 6 (NVIDIA recommended)
Bmax 120
TmaxB 1024
TmaxMP 1536

We first empirically investigate how a range of choices for Br influences the throughput for

Tr = {960, 1024} ⊆ Topt. The data set is 225 random 4-byte words. In Fig. 5.2(a), we use a

94

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

Th
ro

ug
hp

ut
: D

at
a

E
le

m
en

ts
/s

Br: Number of Blocks Requested (m = 8 KB)

Real Run Result (Global)
Theoretical Prediction (Global)
Peak Throughput (Global)
Real Run Result (Shared)
Theoretical Prediction (Shared)
Peak Throughput (Shared)

(a) Working set size m = 8 KB.

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

Th
ro

ug
hp

ut
: D

at
a

E
le

m
en

ts
/s

Br: Number of Blocks Requested (m = 32 KB)

Real Run Result (Global)
Theoretical Prediction (Global)
Peak Throughput (Global)
Real Run Result (Shared)
Theoretical Prediction (Shared)
Peak Throughput (Shared)

(b) Working set size m = 32 KB.

Figure 5.2: Throughput vs. Br for random accesses to both shared and global memory
subsystems with same problem size (n = 225) but distinct working set sizes. (a) m = 8 KB.
(b) m = 32 KB.

working set size of 8 KB as the hashing range. In Fig. 5.2(b), we use a working set size of

32 KB as the hashing range. In both experiments, Br is varied continuously from 1 to 90.

Our first observation from Fig. 5.2(a) is that for both the shared memory subsystem and the

global memory subsystem the empirically measured throughput is closely aligned with the

model predictions. Over the range of requested blocks explored in the graph, the values Br =

{15, 30, 45, 60, 75, 90} ⊆ Bopt give peak throughput (minimum execution time) consistent

with the prediction of Eq. (5.3), and when Br is not in Bopt the zigzag pattern predicted by

Eq. (5.13) is observed in the empirical data.

Our second observation is that there is a fairly significant difference in throughput between

the shared memory and the global memory. This is consistent with our expectation that the

shared memory is better suited to the random access patterns that drive the performance of

the micro-benchmark.

95

To explore the impact of working set size on performance, we repeat the experiments above

varying m from the initial value of 8 KB to 32 KB. The results of these experiments are

shown in Fig. 5.2(b) (m = 32 KB).

As the working set size gets larger, the throughput for the shared memory stays the same.

This is consistent with the entire hash table fitting in shared memory for each working set

size, so larger working sets do not provide any throughput disadvantages. In contrast to the

shared memory result, the working set size has a dramatic impact on the performance of

global memory accesses. While the zigzag pattern dependency on Br is retained, the peak

throughput is noticeably lower as the size of the working set increases. This is due to the

smaller working set size being able to effectively exploit the on-chip caches that sit between

the global memory and the multiprocessors on the GTX480.

To quantify the effect on performance of cache, the cache model fcache proposed in Eq. (5.12)

is examined via the micro-benchmark, fixing fsched to be optimal by ensuring that Br ∈ Bopt.

Cache hit rate rH and cache miss rate rM are explored by varying the working set size m.

Different L1 cache sizes are also explored by setting it to 16 KB and 48 KB. Both the

measured and model-predicted rates are shown in Fig. 5.3. Dramatic increases in cache

misses and decreases in cache hits are observed once a larger-than-cache working set size m

is used. We see a nice correspondence between the modeled and measured results.

We next explore the cache model fcache. Fig. 5.4 compares measured and predicted execution

times for the micro-benchmark as the working set size is varied over the same range as in

Fig. 5.3 (in this case, only for cache size 48 KB). For small working sets (that fit in cache) and

for large working sets (that almost always miss cache) the execution time is flat. Eq. (5.12)

does a reasonably good job of modeling the transition region between these two spaces.

96

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

R
at

e

m: Working Size (KB)

Theoretical Hit Rate(m=48K)
Measured Hit Rate(m=48K)
Theoretical Miss Rate(m=48K)
Measured Miss Rate(m=48K)
Theoretical Hit Rate(m=16K)
Measured Hit Rate(m=16K)
Theoretical Miss Rate(m=16K)
Measured Miss Rate(m=16K)

Figure 5.3: Cache hit and miss rates.

Given the close match between model predictions and empirical measurements for the micro-

benchmark, we next consider a pair of real applications from the field of computational

bioinformatics that are based either substantially or entirely on hashing.

5.2.2 Parallel Bloom Filters Algorithm Design and Implement

Bloom filters test set membership by performing multiple hashes on a candidate element and

checking a bit-vector, called the Bloom vector, to see if the addresses resulting from these

hashes are all set to “true.” Fig. 5.5 illustrates this idea as applied to BLAST-style [26] string

matching. Fixed-length candidate substrings of length w, or w-mers, from the database are

fed into k independent hash functions, and the resulting addresses are checked against one

or more Bloom vectors loaded with portions of the query sequence.

97

10
0

10
1

10
2

10
3

10
4

0

2000

4000

6000

8000

10000

R
u
n
n
in

g
 T

im
e
 (

m
s)

m: Working Size (KB)

Predicted Time
Real Run Time

Figure 5.4: Impact of cache on execution time.

Algorithm 3 gives pseudocode describing the Bloom filter string-matching computation.

With multiple candidate elements, multiple sets, and multiple hash functions, this algorithm

provides many opportunities to exploit parallelism.

In our design, a long query of length Qs is split into multiple sub-queries of a given length

nsub. Each sub-query is assigned an individual Bloom vector of size m bits, and each w-

mer in the sub-query is considered to be an element of the set for that vector, such that

the number of element to a single Bloom vector is ne = nsub − w + 1 ≈ nsub
8. Each w-

mer in the database is simultaneously checked for set membership in each sub-query. This

decomposition of a large set into multiple smaller sets (i.e., dividing a given query into a

collection of sub-queries) is common practice with Bloom filters, as the false positive rate is

a function of the number of elements in the set. A larger number of sub-queries, each with

fewer elements, can lower the overall false positive rate.

8Each sub-query is contiguously chopped by a sliding window of size w

98

Figure 5.5: Parallel Bloom filters for detecting string matches of fixed length w between a
query and a database.

Mercury BLAST [26], being FPGA-based, uses hash functions hq from the H3 family [128],

denoted as the set {hq|q ∈MBool}, where MBool represents the set of all possible i×j Boolean

matrices. q(k) is the bit string of the kth row of a given matrix q ∈MBool. Correspondingly,

x(k) is the kth bit of x, the element that needs to be hashed. The hashing function hq(x) is

therefore defined as

hq(x) = x(1) · q(1)⊕ x(2) · q(2)⊕ · · · ⊕ x(i) · q(i) (5.17)

where · denotes the bit by bit AND operation and ⊕ the exclusive OR operation. These bit-

level linear transformations are well-suited to hardware implementation. In this dissertation,

we do not investigate the use of alternative hash functions, leaving this for future work.

99

Algorithm 3 Parallel Bloom Filters

1: Input: query sequence
2: Input: database sequence
3: Output: stream of database w-mers
4: {Initialize Bloom vectors}
5: for all sub-queries do
6: initialize all-zero bitV ector of size m bits
7: for each w-mer in sub-query (denoted x) do
8: for each hash function h do
9: bitV ector[hashh(x)] = 1

10: end for
11: end for
12: end for
13: {Perform membership tests}
14: for all sub-queries do
15: for each w-mer in database (denoted y) do
16: for each hash function h do
17: if bitV ector[hashh(y)] = 0 then
18: discard this w-mer
19: break
20: end if
21: end for
22: if bitV ector[hashh(y)] = 1 for all h then
23: output w-mer
24: end if
25: end for
26: end for

GPU Implementation

The GPU used for this study is the NVIDIA GTX 480, based on the Fermi architecture.

It has 15 streaming multiprocessors, each of which has 32 streaming processors or processor

cores (480 cores total) running at 1.4 GHz. The GTX 480 has about 1.5 GB of off-chip

global memory, while each streaming multiprocessor has 48 KB of on-chip shared memory.

100

Kernel computations on the GPU are organized around thread blocks, which are independent

from one another and are distributed across the multiprocessors for execution. Each block

consists of a number of threads, which are distributed across the processor cores within a

multiprocessor. Threads are scheduled in groups of 32, called warps. The shared memory

is shared across threads but is partitioned across blocks. The registers within each core are

not shared but rather are partitioned across threads.

Problem Decomposition

We implement only the membership tests from Algorithm 3 (lines 13 to 26) on the GPU.

As sub-queries are independent, they are distributed across the blocks, each with their

associated Bloom vector. The vectors reside in shared memory to ensure fast access. This

decomposition of the problem, assuming B blocks and k hash functions, is illustrated in

Fig. 5.6.

The database resides in the GPU’s global memory. If, as is typically the case, the entire

database is too large to fit in global memory, an additional outer loop (not shown) streams

chunks of the database into global memory one at a time and serially executes the for loop

on line 14 for each chunk.

Individual threads partition the w-mers in the database. Each thread executes the inner loop

of lines 15 to 25. A thread fetches a w-mer from the database (located in global memory),

computes the k hash functions for its assigned Bloom vector, checks the resulting k addresses

in the vector, and finally returns any hits to global memory.

101

Figure 5.6: Implementation of parallel Bloom filter algorithm on GPU.

Operating Procedure

The overall sequence of operations consists of a number of steps, which are articulated below.

1. On the CPU:

(a) The database is encoded using two bits per DNA base (character). Encoding need

only be done once, after which the encoded database is stored in the file system.

(b) The H3 hash functions for each Bloom vector are generated, and the Bloom vectors

are initialized (lines 5 to 12).

(c) The hash functions, Bloom vectors, and database are loaded into GPU memory.

2. On the GPU:

(a) The membership tests are performed.

(b) The database w-mers that hit in the Bloom filters are returned to CPU memory.

102

Optimization

We next describe various implementation decisions made in an attempt to optimize the

performance of the kernel.

• On-chip vs. off-chip memory allocation. The off-chip global memory performs well

when memory accesses within a warp can be coalesced. We accomplish this by having

the 32 threads in a warp read 32 consecutive w-mers from the database. The on-

chip shared memory more readily supports the random access pattern required by the

Bloom vectors.

• Thread-level parallelism (TLP) vs. Instruction-level parallelism (ILP). There is a trade-

off between the work assigned to a single thread and the total number of threads. This

corresponds to balancing TLP (more threads, less to do in each thread) and ILP (fewer

threads, more to do in each thread). In the Bloom filter implementation, more TLP

would be exploited if we had assigned each of the k hash functions to a distinct thread.

However, the additional synchronization overhead implied by a one-thread-per-hash

design makes it more efficient to compute all hash functions for one w-mer in a single

thread.

• Unrolling loops. As suggested in [133], we unrolled the loop (lines 16 to 24) that iterates

through the k hash functions.

5.2.3 Bloom Filters in BLAST

BLAST is the most widely used tool for biosequence similarity search, which is a fundamental

and crucial application for comparing and revealing the possibly biologically meaningful

103

relationships between a given query sequence and an annotated database [9]. Given the

rapid rate at which new genomic sequence data is being produced, BLAST searches have

become progressively more and more expensive. In Buhler et al. [26], a Bloom filter [21],

a probabilistic hashing algorithm and data structure for performing set membership tests

with a manageable risk of producing false positives, is introduced at the front end of the

traditional BLAST pipeline to discard a large fraction of the database prior to explicit table

look-up and match verification.

A parallel Bloom filter algorithm for BLAST using a graphics engine is described in Sec-

tion 5.2.2. The algorithm deposits portions of the database in global memory, divides long

queries into a set of sub-queries, and maps each sub-query to a specified Bloom-vector in

shared memory for each kernel block. Multiple passes over the database are needed as the

number of sub-queries are larger than the blocks the device can maximally support. Each

thread reads a string of DNA characters (called a w-mer, since it is w characters in length)

from the database in global memory, sequentially executes several hash functions in the

kernel, and interrogates the values in shared memory pointed to by the hash results.

It is common for the performance of an application to be multidimensional. In the case

of Bloom filters, we have two primary performance indicators of interest: throughput and

sensitivity. Throughput can be quantified for our BLAST application as the number of

database w-mers processed per unit time, while sensitivity is quantified as the false positive

rate realized during set membership tests.

104

Sensitivity

The sensitivity of a Bloom filter is quantified by the false positive rate, FPR, or fraction of

set membership tests that return true when the element tested is not a member of the set.

Lower false positive rates reflect better Bloom filter sensitivity.

Assuming element independence and good uniformity in the hash functions, the false positive

rate for a Bloom filter is well modeled [25]. FPR is a function of the Bloom vector size m,

the number k of hash functions, and the number ne of elements hashed into the vector:

FPR =

(
1−

[
1− 1

m

]kne
)k

. (5.18)

According to the analytic model, FPR increases with ne and decreases when m is increased.

Increases in k can cause FPR to move in either direction, depending upon the value of the

other two parameters.

In our usage of the Bloom filter within BLAST, both k and m are design parameters under

direct control of the developer, while ne is indirectly set by how the user decomposes the

complete query into sub-queries.

To investigate whether biosequence data sets are sufficiently well-behaved so as to fit the

theoretical expression for FPR above, we tested our implementation using real DNA se-

quences. Human chromosome 1 (250 Mbases) was used as our query sequence, while human

chromosome 22 (50 Mbases) was used as the database. During execution of our GPU kernel,

we counted false positives FP, false negatives FN, and true positives TP. The empirical FPR

105

0 1 2 3 4 5

x 10
5

0

0.2

0.4

0.6

0.8

1

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

Sub−query Size n
sub

 (w−mers)

Analytical FPR (m=256 Kbits)
Empirical FPR (m=256 Kbits)
Analytical FPR (m=128 Kbits)
Empirical FPR (m=128 Kbits)
Analytical FPR (m=64 Kbits)
Empirical FPR (m=64 Kbits)
Analytical FPR (m=32 Kbits)
Empirical FPR (m=32 Kbits)

(a) Fixed k with varied m

0 0.5 1 1.5 2

x 10
5

10
−4

10
−2

10
0

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

Sub−query Size n
sub

 (w−mers)

Analytical FPR (k=4)
Empirical FPR (k=4)
Analytical FPR (k=6)
Empirical FPR (k=6)
Analytical FPR (k=8)
Empirical FPR (k=8)
Analytical FPR (k=10)
Empirical FPR (k=10)

(b) Fixed m with varied k

Figure 5.7: Theoretical and empirical results of FPR with varied sub-query size nsub.
(a) shows FPR for several values of m with a fixed k = 6. (b) shows FPR for several
values of k with a fixed m = 256 Kbits.

for a database of size n is given by

FPR =
FP

n− TP . (5.19)

We confirmed empirically that FN = 0, as required by any correct implementation. Fig. 5.7(a)

and Fig. 5.7(b) compare the theoretical and empirical FPR for a range of values of k, m,

and nsub. In both figures, lines indicate the theoretical FPR, while mean measured FPR

values over all sub-queries are shown as points with associated 95% confidence intervals.

Fig. 5.7(a) varies nsub for several values of m with a fixed k = 6, while Fig. 5.7(b) varies nsub

for several values of k for a fixed m = 256 Kbits. As expected, FPR grows with increasing

nsub (effectively ne) in all cases. For a given nsub, larger m leads to a smaller FPR and larger

k can influence FPR either direction (depending on the value of nsub).

106

While the theoretical and empirical results are highly similar, the theoretical quantities

frequently lie outside the confidence intervals of the empirical measurements. This is due

to the fact that DNA bases are, generally, not independent of one another, but are in

fact correlated. We explore the magnitude of this discrepancy by plotting a histogram of

the relative error in Fig. 5.8. While there are individual measurements with relative error

greater than 10%, they are few, and the bulk of the errors are near zero.

−0.2 −0.1 0 0.1 0.2
0

5

10

15

20

25

Relative Error

C
ou

nt

Figure 5.8: Histogram of relative error between theoretical predictions and empirical mea-
surements for FPR.

Throughput

We focus on the throughput of the kernel execution rather than the overhead of data move-

ment into and out of the GPU. Fig. 5.9 stacks measured data movement times below kernel

execution time for a range of values of the sub-query size nsub. The data movement times

include loading the initial Bloom vector contents, loading the database, and returning the

results. As can can be seen in the graph, the kernel dominates the overall time, and I/O is

not a bottleneck for this application.

107

0 2 4 6 8 10

x 10
5

10
−4

10
−2

10
0

10
2

10
4

C
um

ul
at

iv
e

Ti
m

e
(s

)

Sub−query Size n
sub

 (w−mers)

Bloom Vector Init
Database Copy
Return Results
Kernel Execution Time

Figure 5.9: Cumulative execution time for data movement and kernel.

As there is significant interaction among the various application-specific and architecture-

specific parameters that influence throughput, we will construct the model piece by piece

until all relevant parameters have been included. The first two parameters to be investigated,

the number of hash functions k and the sub-query size nsub, influence both sensitivity and

throughput and so partly control the tradeoff between them.

• Number of Hash Functions

Kernel execution time should be linearly proportional to the number k of hash functions

used. This is because each thread computes the k hash functions sequentially for each

database w -mer assigned to it. Fig. 5.10 shows empirical execution times vs. k for a

variety of sub-query sizes nsub, along with a linear trend line fit to the data for each nsub.

The tight fit of the trend lines to the data confirms our expectation that Time ∝ k.

Increasing k to improve sensitivity therefore negatively impacts throughput.

• Sub-query Size

108

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

E
xe

cu
tio

n
T

im
e

(s
)

k: Number of Hash Functions

Q

s
/n

sub
 = 20000 (R2=0.995)

Q
s
/n

sub
 = 40000 (R2=0.995)

Q
s
/n

sub
 = 60000 (R2=0.994)

Q
s
/n

sub
 = 80000 (R2=0.994)

Q
s
/n

sub
 = 100000 (R2=0.994)

Figure 5.10: Execution time for different number of hash functions.

With a query of size Qs that is divided into sub-queries of size nsub, the number of

sub-queries that must be processed is Qs/nsub. Because each sub-query is assigned to

a block, and there are more sub-queries than blocks, multiple passes over the currently

resident portion of the database are needed to process all sub-queries. Execution time is

therefore proportional to total query size and inversely proportional to sub-query size.

Fig. 5.11 tests the above relation in four sets of experiments with different numbers k

of hash functions. As above, the points represent empirical execution, while lines are

fitted to the empirical data. The high goodness of fit confirms that Time ∝ Qs/nsub.

Increasing nsub therefore improves throughput but negatively impacts sensitivity.

Then, it is straightforward to develop an expression for fapp that reflects the Bloom filter

implementation described above. The algorithmic parameters include the number of hashing

functions k and sub-query size nsub, both are included in −→algo. In terms of input problem size,

109

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n
T

im
e

(s
)

Q
s
/n

sub
 : Number of Sub−queries

k=4 (R2=0.9999)

k=6 (R2=0.9999)

k=8 (R2=0.9998)

k=10 (R2=0.9998)

Figure 5.11: Execution time for different sub-query sizes.

we have the database sequence size n and the query sequence size Qs. This results in

−→
algo = (k, nsub),

−→
inpt = (n,Qs),

and

fapp(−→algo,−→inpt) = k × Qs

nsub
× n. (5.20)

As the Bloom-vector is entirely held in shared memory, AC is true. Substituting Eq. (5.20)

into Eq. (5.9) yields an expression for the performance of BLAST’s Bloom filter executing

on a graphics engine.

Time ∝ k × Qs

nsub
× n×

d Br

Ba×P/Qe ×Ba × P/Q
Br

if AT . (5.21)

110

15 30 45 60 75 90
0

0.5

1

1.5

2

2.5

3
x 10

5
T

h
ro

u
g

h
p

u
t

(w
−

m
e

rs
/s

)

B
r
: Number of Requested Blocks

Measured Data for T
r
 = 1024

Predicted Peak Points
Theoretical Prediction

(a) GTX 480 (15 Multiprocessors)

15 30 45 60 75 90 105 120
0

0.5

1

1.5

2
x 10

5

T
h

ro
u

g
h

p
u

t
(w

−
m

e
rs

/s
)

B
r
: Number of Requested Blocks

Measured Data for T
r
 = 384

Predicted Peak Points
Theoretical Prediction

(b) Tesla C1060 (30 Multiprocessors)

Figure 5.12: Throughput vs. Br on two GPU machines for Bloom filter of BLASTN. (a) is for
prediction and empirical measurements on GTX 480. Peak performance is hit every 15 blocks
as GTX 480 has 15 multiprocessors. (b) is for prediction and empirical measurements on
Tesla C1060. Peak performance is hit every 30 blocks as Tesla C1060 has 30 multiprocessors.

The Bloom filter was executed while searching human chromosome 1 (250 MBases) against

human chromosome 22 (50 MBases). Choosing Tr = 1024 ∈ Topt, the predictive power of

Eq. (5.21) is explored on two different GPU machines in Fig. 5.12. As can be seen in the

figure, there is an excellent correspondence between the empirical measurements and the

model predictions. The zigzag pattern of Fig. 5.2(a) and 5.2(b) is again present, both in the

empirical data and in the model’s predictions.

111

Overall Model

The overall performance model is therefore:

FPR =

(
1−

[
1− 1

m

]kne
)k

(5.22)

and

Time ∝ k

nsub
·Qs · n · fsched if AT . (5.23)

or

Time = a1 ·
k

nsub
·Qs · n ·

d Br

Ba×P/Qe ×Ba × P/Q
Br

+ a0 if AT . (5.24)

for constant coefficients a1 and a0. Also,

Tput = n/Time.

Fig. 5.13 establishes the constant coefficients for the GTX 480 by fitting a linear curve to

measured data. The range of parameters for this plot include: k ∈ {4, 6, 8, 10}, 10000 ≤

nsub ≤ 300000, m ∈ {64, 128, 256} Kbits, Br ∈ Bopt, Tr ∈ Topt. The throughput predicted

by the model, and confirmed via experiment, represents a speedup of approximately 35-fold

over a 2.6 GHz, quad-core, AMD Opteron system executing the same algorithm (300,000

w-mers/s vs. 8,500 w-mers/s with nsub = 50000 and k = 6). On the Opteron, the code

was compiled using gcc version 4.1.2 at optimization level -O2 using OpenMP to express

thread-level parallelism, but no attempt was made to exploit the SIMD instruction set.

112

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

100

200

300

400

500

E
xe

cu
tio

n
T

im
e

(s
)

k/n
sub

Figure 5.13: Modeled vs. measured execution time on GTX 480 (a1 = 4.01 × 105, a0 = 10,
R2 = 0.9909).

5.2.4 Model Use to Evaluate Performance Tradeoffs

It is common practice when using Bloom filters to trade execution speed (throughput) for

improved sensitivity (false positive rate) by partitioning the original set into subsets and

performing set membership tests on each of the subsets. This is precisely what we are

doing in BLAST when the original query sequence is decomposed into sub-queries. Fig. 5.14

illustrates the quantified (via the model) tradeoff between execution time and false positive

rate for k = 6 hash functions, m = 256 Kbits, Br ∈ Bopt blocks, and Tr ∈ Topt threads per

block.

In this way, the user is capable of quantitatively assessing the tradeoff between throughput

and sensitivity as controlled by the sub-query size, nsub.

113

0 0.5 1 1.5 2

x 10
5

0

100

200

300

400

500

E
xe

cu
tio

n
T

im
e

(s
)

Sub−query Size n
sub

 (w−mers)

0 0.5 1 1.5 2

x 10
5

0

0.2

0.4

0.6

0.8

1

F
al

se
 P

os
iti

ve
 R

at
e

Execution Time
False Positive Rate

Figure 5.14: Tradeoff between false positive rate and execution time.

5.2.5 DNA Classification

Another application that exploits hashing is DNA classification with Bloom filters. As DNA

sequencing technologies provide ever more data to be analyzed, frequently biologists are in-

terested in identifying only the novel sequence in a given data set. Stranneheim et al. [144]

describe an algorithm, called FACS, which uses Bloom filters to classify sequences as belong-

ing to one of many reference sequences vs. being novel. Their perl-based implementation

is evaluated using synthetic meta-genomic data sets and compared to conventional methods

such as BLAT and SSAHA2. Stranneheim et al. observed a 21-fold speedup when FACS was

executed on a 2.8 GHz Intel Xeon processor.

We ported FACS to the NVIDIA graphics engine to explore the potential for even greater

performance gains. There are numerous opportunities for parallel execution, making it po-

tentially well suited for the graphics engine; however, its reliance on hashing as a basic

114

operation poses some question as to its ultimate suitability. Let us first assess the opportu-

nities for parallelism. Within each short query sequence (typically less than 390 characters

long), hashing the w-mers (substrings of length w) are independent. In our implementation,

each w-mer within a query is assigned to a thread, which is responsible for computing all of

the k hashes to implement the Bloom filter.

Second, the queries themselves (totaling approximately 105 sequences) are also independent

and can be analyzed in parallel. We assign queries to thread blocks. Further, multiple

kernel invocations are used to process groups of queries, and CUDA streams are used to

provide overlapping kernel execution and memory copy to/from the graphics engine. Fig. 5.15

illustrates the organization of the FACS implementation on the graphics engine. Here, Qi is

the ith query sequence. In the empirical investigation that follows, Bloom filters were created

Figure 5.15: Implementation of FACS DNA classification application.

based on reference sequences from [144] with a measured false positive rate of 0.014% (lower

than that in [144]), with one Bloom-vector per reference sequence. Due to the much larger

size of the Bloom-vectors than on-chip shared memory, they were allocated to global memory.

115

The performance of this implementation can also be predicted by our model. The number

of hashing functions k and the number of CUDA streams (which is inversely proportional to

Br) are the key parameters to be included in −→algo. In terms of problem size, n is the number

of sequences to be classified. This results in

−→
algo = (k,Br) (5.25)

and

−→
inpt = (n). (5.26)

Since Br might be larger than the number of active blocks that the multiprocessors can

support, i.e., Ba × P/Q, multiple passes are needed. So we have

fapp(−→algo,−→inpt) = k × n

Br

× Br

Ba × P/Q
= k × n

Ba × P/Q
. (5.27)

AC is false for this application due to the much larger Bloom-vector as working set than

caches. So fcache is greater than one, and substituting Eq. (5.27) and Eq. (5.12) into Eq. (6.3),

we obtain the runtime expression for DNA classification as

Time ∝ k × n

Ba × P/Q
× (5.28)(

min

(
1,
Cs
m

)
+

(
1−min

(
1,
Cs
m

))
×G

)
×

d Br

Ba×P/Qe ×Ba × P/Q
Br

if AT .

The model is experimentally assessed on the GPU with the same synthetic meta-genome

data set as [144], including 105 short query sequences. In our implementation, sequences are

evenly distributed across a set of streaming kernels, and Br blocks are requested on each

116

kernel. This division restricts the number of sequences to be processed per kernel, therefore

value options for Br are limited, thereby preventing Br from being a multiple of Ba × P/Q.

The predictions of the model are presented in Fig. 5.16. Because of the implementation

restrictions described above, there are fewer empirical values for Br relative to the previous

application. Nonetheless, we see an excellent alignment between the model’s predictions and

the measured throughput achieved by our implementation.

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

4
x 10

5

T
hr

ou
gh

pu
t:

Q
ue

rie
s/

s

B
r
: Number of Blocks Requested

Real Run Result (K = 1)

Predicted Value (R2=0.916)

Figure 5.16: FACS throughput for different numbers of requested blocks.

For this problem, the working set size m (512 KB) is much larger than the cache, independent

of the choice of cache size (16 KB or 48 KB). As a result, we do not predict a change in

performance when the cache size is changed, and this was confirmed experimentally as well.

Quantifying the throughput in terms of hashes processed per second, our implementation

executing on the GTX480 is 20 times faster than the perl version implementation executing

on an Intel Core 2 Duo CPU running at 2 GHz.

117

Chapter 6

Integrated Analytical Framework

In this chapter, we extend previously proposed analytical models in Chapter 3 and 5, jointly

addressing the parallelism exploited by the algorithm, the effectiveness of latency-hiding, and

the utilization of multiprocessors (occupancy). In particular, the integrated model not only

helps to explore and reduce the configuration space for tuning kernel execution on GPUs,

but also reflects performance bottlenecks and predicts how the runtime will trend as the

problem and other parameters scale. The model is validated with empirical experiments. In

addition, the model points to at least one circumstance in which the occupancy decisions

automatically made by the scheduler are clearly sub-optimal in terms of runtime.

6.1 Bridge the Asymptotic Model and the Calibrated

Model

Performance of algorithms on GPUs largely depends on the suitability of the underlying

algorithm, the effect of memory subsystem on performance, and the efficiency of scheduling

on many-core architectures. An algorithm is well suited for GPUs only when it has sufficient

118

parallelism and is not unduly bounded by memory latencies. A program runs efficiently only

when it launches a large number of threads while not incurring too much memory traffic. A

scheduling scheme works perfectly only when it manages and distributes the resources among

the thread hierarchy in a well balanced manner so that all the streaming multiprocessors

run with full occupancy. These factors all jointly impact the performance. Ultimately, the

achieved performance for an algorithm is a complicated interaction between a variety of

parameters, some determined by the algorithm, some set by developers, and others imposed

by the architecture of the particular machine being used. The interactions between these

parameters, as well as the impact of each on the algorithm’s performance, are often not well

understood.

We are interested in improving the understanding of the performance of algorithms on many-

core GPUs through the use of analytic performance models. Chapter 3 and 5 of this dis-

sertation are examples of developing such models. As a general rule, these models fall in

two categories: (1) asymptotic models for algorithm analysis at a high level of abstraction

that attempt to capture only the essential features of GPU architectures; and (2) calibrated

performance models that attempt to make specific, quantitative predictions about applica-

tion runtime, including many lower level details that would be considered unimportant in

an asymptotic analysis.

In this chapter, we utilize both asymptotic analysis and calibrated performance prediction

on many-core GPUs, in effect drawing on the concepts of both Chapter 3 and5. We develop

an integrated analytical framework combining both, analyzing algorithm efficiency and pre-

dicting the achievable execution time based on a quantification of parallelism , latency-

hiding , and occupancy . Within the context of the asymptotic analysis, in addition to the

119

computational complexity expressed in terms of work T1 — the total amount of computa-

tion, or, in other words, its running time on 1 processor — and span T∞ — the amount of

computation on the critical path or, in other words, the running time on an infinite number

of processors, we also consider the memory complexity determined by the number of memory

transfers M from slow memory to fast memory as a critical performance measure. In general,

GPUs attempt to mask memory transfers to/from slow memory by executing a substantial

number of concurrent threads, whereby nominally there is always a set of threads ready for

execution (i.e., not waiting on a memory reference to complete). However, one cannot launch

arbitrarily large numbers of threads due to limited on-chip resources, which are managed by

the scheduler. At the same time, simply seeking a large thread count per thread block may

not always provide high occupancy on streaming multiprocessors and therefore cannot guar-

antee good performance. As a result, we model GPU scheduling mechanisms and use them

as a factor bridging the gap between the asymptotic model and calibrated model, between

the theoretical performance and real runtime.

Our model is useful in a number of aspects:

1. It is able to identify the performance bottleneck of a particular algorithm, and judge

whether the algorithm is more likely to be performance bound by memory accesses or

by computation.

2. It predicts performance trends as the problem size (or other parameters) scale up. This

can be quite helpful when comparing and ordering different algorithms with various

parameter settings.

3. It can explore and reduce the design and configuration space for tuning kernel execution

on GPUs. A kernel execution launches a grid of thread blocks, each of which consists

120

of a number of threads. Problems can be decomposed and processed on this two-level

thread hierarchy as shown in Fig. 2.2 by specifying the grid size (number of thread

blocks per kernel) and block size (number of threads per block). Choosing how to

decompose the problem into subproblems and picking the right thread block/grid size

for better scheduling constitutes a gigantic search space. The model is able to project

the possible runtime given different inputs and prune the space accordingly.

4. It is helpful for identifying performance improvement opportunities along two dimen-

sions, scheduling and algorithm design. Oftentimes, general algorithms may suffer

from insufficient parallelism or bad access patterns, or both to a different extent. Sub-

optimal configuration of kernel launch can also impede the performance. Guided by

the model, algorithms can be designed to maximize the parallelism while at the same

time minimizing frequent and irregular long-latency memory accesses. The scheduling

scheme should balance among the choices of sub-problem size, thread block/grid size,

and also the workload and resources consumed per thread. On one hand, given a fixed

resource consumption per thread, increasing threads in a block will increase on-chip re-

source request (registers/shared memory) for the entire thread block. Given the finite

on-chip resources, the active blocks that can be launched simultaneously on-chip may

reduce as previously introduced in Section 5.1.1. In this case, the occupancy defined

in Eq. (5.1) may drop as the total number of active blocks and threads is reduced.

However, on the other hand, enlarging the sub-problem size and, for each, assigning a

bigger thread block can reduce the passes that are needed to solve the entire problem.

This trade-off relation is quantified in our model.

5. It highlights the sub-optimality of existing GPU scheduling schemes in some scenarios.

Chasing high occupancy, the current GPU scheduler dispatches thread blocks onto a

121

certain number of streaming multiprocessors in a greedy way depending on the resource

usage of each thread block. However, a good occupancy does not necessarily guarantee

the best runtime. We illustrate a set of use cases where artificially increasing the

requested amount of shared memory results in substantial performance gains.

6.1.1 Combining the Two Models

As the first step in combining the above two models, we observe that the algorithm com-

plexity, fapp, of the calibrated model directly corresponds to the asymptotic runtime, TP . In

addition, the TMM model for TP extends fapp in two important ways:

1. The TMM model explicitly includes the impact of memory references on execution

time. In particular, the memory complexity explicitly reflects the cost of memory

behavior and, at the same time, the caching effect in terms of C — how many memory

operations or data accesses can be grouped and Z — how much data can be cached

and shared. This implies that TP takes over not only the functionality of fapp in the

model of Chapter 5 but also the functionality of fcache.

2. The model of Chapter 5 is constrained to the circumstance where there are sufficient

threads to mask memory latency. The TMM model has no such constraint, and there-

fore the condition variable AT in Eq. (5.9) can be eliminated.

122

The second step in combining the two models is to substitute the appropriate9 portions of

Eq. (3.2) into Eq. (5.9).

Time ∝ TP × fsched (6.1)

∝ max

(
T1
P
,
ML

T P

)
·
d Br

BaP/Q
e ·BaP/Q

Br

(6.2)

∝ max

(
T1,

ML

T

)
·
⌈
QBr

BaP

⌉
· Ba

QBr

(6.3)

In this combined model, the asymptotic dependence on computational work is reflected by T1

and on memory accesses is reflected by ML/T . Both T1 and M are algorithm-specific, and

they will be expanded in the following section. Performance improvements due to increasing

P are reflected in the second term, in which the ceiling function reflects the impact of

processor occupancy.

6.2 Application of the Integrated Analytical Frame-

work

In this section, we pick a classic algorithm — dynamic programming via adjacency matrix

— for solving the all-pairs shortest paths problem, as a vehicle for empirically investigating

the extended performance model. We develop expressions for the work, T1, and the number

of memory transactions, M , as a function of the problem size. These are then substituted

into Eq. (6.3).

9Note that the algorithms we consider have sufficient parallelism so that the runtime is never limited by
the span; that is T∞ � T1/P for reasonable problem sizes. Thus, we will drop the span term in the extended
model.

123

Given a graph G = (V,E) with n vertices and m weighted edges, an all-pairs shortest

paths algorithm calculates the shortest weighted path from every vertex to every other

vertex. Here we consider the dynamic programming algorithm [42] that uses repeated matrix

multiplication. The graph is represented as an adjacency matrix A where Aij represents the

weight of edge (i, j). Al is a transitive matrix where Alij represents the shortest path from

vertex i to vertex j using at most l intermediate edges. A1 = A and A2 can be calculated

from A1 using squaring (similar to matrix multiplication):

A2
ij = min

0≤k<n
(A1

ij, A
1
ik + A1

kj). (6.4)

In order to calculate all pairs shortest paths, we simply calculate An−1 using repeated squar-

ing.

This algorithm was analyzed in Chapter 4. The work T1 = n3 lg n is the same as with

traditional PRAM analysis. The memory cost M is

M =
n3 lg n

SDC
. (6.5)

Substituting the above expressions for T1 and M into (6.3) yields the following:

Time ∝ max

(
n3 lg n,

n3 lg n · L
SDCT

)
·
⌈
QBr

BaP

⌉
· Ba

QBr

. (6.6)

There is an intrinsic relation between the sub-block10 dimension, SD, and the number of

requested thread blocks, Br, according to how the problem is partitioned and assigned by

10We use the term ’sub-blocks’ to refer to the partitioned data set, or working set, differentiating from
’block’ which we use exclusively for thread block.

124

the algorithm. There are (n/SD)2 total sub-blocks, each assigned to a single thread block,

Br = (n/SD)2, i.e. SD = n/
√
Br.

When configuring a kernel, the number of threads per thread block and the number of

requested thread blocks are the two direct variables that can be changed. Also, varying the

sub-block dimension effectively changes the total number of requested thread blocks. As a

result, we can unify two of the parameters in the expression above by substituting for SD

with n/
√
Br, which yields:

Time ∝ max

(
n3 lg n,

n2 lg n · L√Br

CT

)
·
⌈
QBr

BaP

⌉
· Ba

QBr

. (6.7)

The expression above is informative in a number of aspects.

1. When T > L/(SDC) (i.e., n > L
√
Br/(CT)), the latency to access memory is effec-

tively hidden. The first term in the max dominates, indicating that the performance

of the algorithm is bounded by computation:

Time ∝ n3 lg n ·
⌈
QBr

BaP

⌉
· Ba

QBr

. (6.8)

In this case, changing the kernel runtime configuration varying the number of threads,

T , will not have any impact on runtime.

2. When T < L/(SDC) (i.e. n < L
√
Br/CT), the latency is not well hidden, due to

either an insufficient number of threads or memory latency, L, being too large. Now,

the second term in the max is larger, denoting that the runtime of the algorithm is

125

dominated by memory behavior:

Time ∝ n2 lg n · L√Br

CT ·
⌈
QBr

BaP

⌉
· Ba

QBr

. (6.9)

In this case, the runtime is predicted to be linear with
√
Br/T . This means that

when performance is bounded by memory latency, enlarging the sub-block size, SD,

(i.e., effectively reducing the requested number of thread blocks, Br) or increasing the

average thread count per core, T , can reduce the runtime.11

3. Considering the impact of the second two terms of Eq. (6.3), note that the number of

active blocks, Ba, is determined by the scheduler according to register usage, shared

memory usage, and fixed device capability (recall Eq. (5.2) in Chapter 5). Performance

is maximized when the requested number of blocks, Br, is an integer multiple of the

product of Ba and P/Q, thereby balancing the number of blocks allocated to each mul-

tiprocessor and maintaining a high occupancy. According to Eq. (5.13), continuously

varying Br generates runtimes with a zigzag pattern as illustrated in Fig. 6.1. As can

be readily observed, the runtime is minimized at regular intervals when Br happens to

be a multiple of 15. As Br grows to larger values, the influence of Br on occupancy

diminishes.

6.3 Empirical Validation

In this section, we validate the predictions drawn from the analysis above through empirical

measurements. We use an NVIDIA GTX480 with 15 multiprocessors, each of which has

11Note that increasing average threads per core does not necessarily mean increasing the threads per block,
as sometimes reducing the threads per block enables the multiprocessor to schedule more thread blocks.

126

0 15 30 45 60 75 90 105
0

5

10

15

T
im

e

B
r

Figure 6.1: Execution time variation with requested number of blocks, Br. For this example,
Ba = 1, P/Q = 15 (e.g., as in an NVIDIA GTX480), and the max term in (6.3) is artificially
set to 1.

32 cores and supports up to 1536 threads sharing the same 48 KB shared memory. We

implement the dynamic programming algorithm via adjacency matrix multiplication for

solving the all-pairs shortest paths problem, and set up a test-bench with which we can vary

the following parameter settings: problem size, n, sub-block dimension, SD, requested blocks

Br, and threads per core, T . The relation between runtime and problem size n has been

well studied in Chapter 4 and 5 and will not be investigated here. Instead, we will focus on

verifying the effects of other parameters present in the model and of particular interest to

the new extensions to the model: SD, Br, and T .

Note that the values of some of the architecture parameters (e.g. Z and C) can be obtained

from the specification of the architecture being used. Generally for NVIDIA GPUs, C is 32

if reads of threads are grouped; Z can be configured either to 16 KB or 48 KB for Fermi and

later architectures. The value of architecture parameters, such as the memory latency L,

can not be quantitatively determined reasonably from device specifications; however, for a

127

given architecture, these parameters will not change. In Eq. (6.9), C and L only contribute

as a scale factor and can be represented by fixed coefficients as shown in Eq. (6.10).

6.3.1 Effect of
√
Br/T

According to Eq. (6.8) and Eq. (6.9), we infer that runtime should be linear with
√
Br/T

when memory bound and stay constant when compute bound. In Fig. 6.2, we fit a linear

curve to the measured execution time of several runs, varying the settings for Br and T as

follows:

Time = a1 ·
√
Br

T + a0 (6.10)

with a1 = 0.957, a0 = 53.9. The horizontal line represents the execution time when the

application is compute bound (the empirical support for which is all clustered near the

origin, it is plotted across the entire graph for easier visibility). For the curve fit of Eq. (6.10),

r2 = 0.9916, showing good linearity. The measured and predicted runtimes align with each

other quite well.

Given a fixed problem size n that is reasonable on a fixed machine (we solve a graph of

8192 vertices on a GTX480), reducing
√
Br/T will eventually transition the application per-

formance from being constrained by memory latency to being constrained by computation.

This observation is illustrated in Fig. 6.2. When we either choose a smaller Br indirectly by

increasing the sub-block dimension SD, or configure the kernel to run with more threads T ,

the runtime keeps dropping until a level where it turns flat. This is the point where transi-

tion happens, and after which the runtime is bounded by computation and independent of
√
Br/T .

128

0 200 400 600 800 1000
0

200

400

600

800

1000

√
Br/T

E
xe

cu
tio

n
 T

im
e
 (

s)

Measured Runtime
Predicted Runtime
Compute Time Bound

Figure 6.2: Runtime and model prediction in terms of
√
Br/T for all-pairs shortest paths problem

with 8192 vertices. Measurements are from various runtime configurations of (Br, T , SD), therefore
with different Ba. Specifically, Br = (n/SD)2, Ba is determined by Eq. (5.2).

6.3.2 Effect of T

Next, we move on to investigate the effects of T , the average threads per core, on runtime.

According to Eq. (6.8) and Eq. (6.9), runtime should be inversely related to T when T SD <

L/C and stay constant if T SD > L/C. Fig. 6.3 illustrates this relationship fairly clearly. At

small values of T , runtime drops drastically as we increase T . At the same time, the curves

with larger SD (smaller Br) are more steeply sloped and flatten out for a lower value of T .

Runtime for the trials using SD = 64, 32, and 16 converge to the same (flat) level at T = 8,

16, and 32, respectively. All these observations are consistent with and can be explained

by the model. In the range where T is low, latencies are not well hidden. When T gets

big enough so that latencies are completely hidden, further increases in T do not bring any

marginal benefits in terms of runtime. Larger SD enables a smaller value of T as it is the

product of both SD and T that matters for latency hiding purposes.

129

0 4 8 12 16 20 24 28 32 36 40 44 48
0

100

200

300

400

500

600

T

E
xe

cu
tio

n
 T

im
e

 (
s)

Measured (B
r
 = 16384, S

D
 = 64)

Predicted (B
r
 = 16384, S

D
 = 64)

Measured (B
r
 = 65536, S

D
 = 32)

Predicted (B
r
 = 65536, S

D
 = 32)

Measured (B
r
 = 262144, S

D
 = 16)

Predicted (B
r
 = 262144, S

D
 = 16)

Figure 6.3: Empirically measured and model predicted runtimes in terms of T for all-pairs short-
est paths problem with 8192 vertices. Measurements are from various runtime configurations of
(Br, T , SD), therefore with different Ba. Specifically, Br = (n/SD)2, Ba is determined by Eq. (5.2).

6.3.3 Effect of Br

We continue by examining the effects of Br on the application runtime. For a fixed value

of T , again, according to Eq. (6.8) and Eq. (6.9), runtime should increase with
√
Br when

limited by memory latency and stay constant when compute bound. Fig. 6.4 shows how

runtime changes with Br for several distinct values of T . Due to the sub-blocking mechanism,

integral division of the matrix restricts the dimension of sub-blocks, SD, to be processed per

kernel, therefore the value options for Br are limited. Nonetheless, we still see a reasonably

good alignment between the model’s predictions and the empirical measurements from the

implementation for the range of T attempted. Curves for the larger values of T , for example

T = 16 or 32, tend to converge to the flat level implied by sufficient latency hiding.

130

0 1 2 3

x 10
5

0

100

200

300

400

500

600

B
r

E
xe

cu
tio

n
 T

im
e

 (
s)

Measured (T = 1)

Predicted (T = 1)

Measured (T = 2)

Predicted (T = 2)

Measured (T = 4)

Predicted (T = 4)

Measured (T = 8)

Predicted (T = 8)

Measured (T = 16)

Predicted (T = 16)

Measured (T = 32)

Predicted (T = 32)

Figure 6.4: Empirically measured and model predicted runtimes in terms of Br for all-pairs shortest
paths problem with n = 8192 vertices. Measurements are from various runtime configurations of
(Br, T , SD), therefore with different Ba. Specifically, Br = (n/SD)2, Ba is determined by Eq. (5.2).

6.4 Discovering Unexpected Behavior

While the model predictions described above are not always perfect (see, for example, data

points in Fig. 6.4 for very small values of T), generally they do a very good job of explaining

how performance trends with various performance-impacting factors. We will next illustrate

the use of the model to discover an unexpected condition, in which the measured empirical

performance was substantially different than the model prediction, and how that exposes

additional uncertainty in realized performance of GPU applications in practical settings.

When launching a kernel on the GPU, the programmer specifies a configuration of that

kernel, which includes things such as count of thread blocks, threads per thread block, etc.

Other parameters, such as the number of active blocks, are automatically set as a function

of the explicitly provided configuration according to Eq. (5.2). For an specific example run

(n = 8192, SD = 32, Br = 65, 536, T = 4, Ba = 4), the measured execution time of 404 s

131

was 4 times longer than the predicted execution time of 105 s. As part of our investigation

into this anomaly, we artificially increased the shared memory requested by the application,

thereby coercing it to use a Ba of 1 instead of the automatically determined value of 4. When

we ran this altered version of the application (which we verified still provided the correct

result), the execution time was 108 s, much more in line with the model’s prediction.

The above anomaly occurred more often than just in this individual case. Fig. 6.5 shows

execution time vs. T for several cases of automatically determined numbers of active blocks

and artificially lowered numbers of active blocks (Ba = 1 or 2). In many cases, requesting

more memory than was truly needed resulted in substantial performance gains.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

100

200

300

400

500

600

T

E
xe

cu
tio

n
 T

im
e
 (

s)

Measured (B
a
 = 1)

Measured (B
a
 = 2)

Measured (B
a
 Determined by Scheduler)

Predicted (B
r
 = 65536, S

D
 = 32)

Figure 6.5: Empirical measures of all-pairs shortest paths runtime for scenarios when Ba = 1,
Ba = 2 and Ba is determined automatically by the scheduler. The APSP problem with 8192
vertices is divided into sub-blocks of dimension 32.

While we do not have a satisfactory explanation for the execution time realized when Ba

is at its default value, we do conclude that there is sufficient uncertainty inherent in the

performance achievable on modern GPUs that the use of well understood performance models

can at the very least help to identify circumstances where the application is not performing

132

as it should. The scheduler works in a way that the number of active blocks scheduled on

each multiprocessor cannot be directly controlled. Yet, as illustrated in Fig. 6.5, there are

circumstances where it is clearly beneficial to the application to be able to control the active

blocks scheduled. As illustrated by our experience, however, it can be indirectly changed by

altering the shared memory requested by each kernel.

Discrepancies between the model predictions and measured performance can draw the de-

veloper’s attention to these cases for focused investigation on the causal relation between

configuration requested and the performance achieved. This also indicates to GPU man-

ufacturers that allowing programmers to directly manipulate the number of active blocks

scheduled on multiprocessors may be warranted.

133

Chapter 7

Conclusion and Future Work

The thesis has presented two performance models that are well suited for highly-threaded

many-core machines, particularly GPUs, and bridged both together for performance analysis

of algorithms. The two models have different emphases: the TMM model for high-level

theoretical analysis of asymptotic performance on GPUs, particularly analyzing the compute

complexity and memory complexity such that whether the underlying algorithm is compute

bound or memory bound can be judged in terms of how well the memory latencies are

hidden by the massive threads; the second model for lower-level calibrated real execution

time analysis and prediction considering runtime configuration, caching, and scheduling. We

also develop an integrated analytical framework extending the two existing models, combine

them by modeling GPU scheduling mechanisms and incorporating both the computation

complexity and memory complexity as critical performance-impacting measures. By doing

so, our analytical framework is able to capture the parallelism, latency-hiding, and occupancy

together in one model, reflecting performance bottlenecks, reducing the configuration space

for kernel execution, and predicting achievable execution times as well as how execution time

will trend as the various parameters scale.

134

A large number of problems and classic algorithms, including four all-pairs shortest paths

algorithms, FFT, list ranking, string matching using suffix tree/array, merge sort, Bloom

filter, and DNA sequencing, are analyzed under this analytical framework with ample de-

tails. A parallel Bloom filters algorithm for BLASTN on GPUs is designed with 35-fold

speedup achieved. A synthetic micro-benchmark for hashing is also implemented allowing

flexible manipulation of hashing ranges and choice of on-chip/off-chip memory spaces for

investigation of the impact of various memory access patterns on performance.

With extensive experimental validation as well as data from other research literature on a

wide range of GPU machines, we compare the analytically predicted results with empiri-

cal results. This comparison indicates that our model is effective at explaining empirical

performance for highly-threaded many-core GPUs. In particular, the TMM model seems

to be effective at predicting the effect of scaling the problem size, overall thread count, the

machine characteristics like memory latency and local memory size on the trend of algorithm

performance; the calibrated model is accurate to reflect the effect of changing the sub-block

dimension, thread count per block, requested thread blocks, and local memory usage on the

real execution time of algorithms. In addition, the model points to at least one circum-

stance in which the occupancy decisions automatically made by the scheduler are clearly

sub-optimal.

There are several possible directions of future work:

First, more algorithms and benchmarks can be analyzed and developed. Most of the algo-

rithms analyzed in this thesis are relatively straightforward with ample parallelism. More

complex algorithms, which may incur frequent data dependency, branch divergence, and

possibly irregular remote memory accesses, can also be analyzed via this model. The model

135

is expected to indicate the unsuitability of such algorithms on GPUs, or guidance from the

model to re-design them so as to be adapted on GPU in a performance-oriented way.

Second, the TMM model only captures the performance of a single machine with a 2-level

memory hierarchy. While we assume that it is global memory vs. memory local to multipro-

cessors, in principle, it can be any two levels of fast and slow memory. The 2-level memory

hierarchy can be extended to multi-level hierarchies which are becoming increasingly com-

mon, for example considering algorithms running on systems containing more than one GPU

in a distributed environment.

Finally, more other highly-threaded many-core machines can be investigated, such as the

Yarc data machine/Cray XMT and AMD GPUs, as an extension to further validate the

applicability of the model in this thesis to a broader set of real machines.

136

References

[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical memory.
In Proc. of 19th ACM Symposium on Theory of Computing, pages 305–314, 1987.

[2] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Hierarchical memory with block
transfer. In Proc. of 28th Symposium on Foundations of Computer Science, pages
204–216, 1987.

[3] Alok Aggarwal and J Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988.

[4] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1974.

[5] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shubhabrata Sengupta,
Michael Mitzenmacher, John D. Owens, and Nina Amenta. Real-time parallel hashing
on the GPU. ACM Trans. on Graphics, 28(5), December 2009.

[6] Bowen Alpern and Larry Carter. Modeling parallel computers as memory hierarchies.
Massively Parallel Computers, 10598, 1993.

[7] Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The uniform memory
hierarchy model of computation. Algorithmica, 12(2/3):72–109, 1994.

[8] Bowen Alpern, Larry Carter, and Ted Selker. Visualizing computer memory architec-
tures. In Proc. of 1st Conf. on Visualization, pages 107–113, 1990.

[9] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215(3):403–410, October 1990.

[10] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porterfield,
and Burton Smith. The Tera computer system. In Proceedings of the 4th International
Conference on Supercomputing, ICS ’90, pages 1–6, New York, NY, USA, 1990. ACM.

[11] Lars Arge, Michael T. Goodrich, Michael Nelson, and Nodari Sitchinava. Fundamental
parallel algorithms for private-cache chip multiprocessors. In Proc. of 20th Symp. on
Parallelism in Algorithms and Architectures, pages 197–206, 2008.

137

[12] David A. Bader and Guojing Cong. Fast shared-memory algorithms for computing
the minimum spanning forest of sparse graphs. J. Parallel Distrib. Comput., 66(11),
November 2006.

[13] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and Wen-
Mei Hwu. An adaptive performance modeling tool for GPU architectures. In Proc. of
Symp. on Principles and Practice of Parallel Programming, pages 105–114, 2010.

[14] J. Barnat, P. Bauch, L. Brim, and M. Ceska. Computing strongly connected com-
ponents in parallel on CUDA. In IEEE International Parallel Distributed Processing
Symposium (IPDPS), pages 544–555, 2011.

[15] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–
May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314,
New York, NY, USA, 1968. ACM.

[16] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.

[17] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C. Kuszmaul.
Concurrent cache-oblivious b-trees. In Proc. of 17th ACM Symposium on Parallelism
in Algorithms and Architectures, pages 228–237, 2005.

[18] P. Bieganski, J. Riedl, J.V. Cartis, and E.F. Retzel. Generalized suffix trees for bio-
logical sequence data: applications and implementation. In Proc. of Twenty-Seventh
Hawaii International Conference on System Sciences, volume 5, pages 35–44, 1994.

[19] Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran,
Shimin Chen, and Michael Kozuch. Provably good multicore cache performance for
divide-and-conquer algorithms. In Proc. 19th ACM-SIAM Symp. Discrete Algorithms,
pages 501–510, 2008.

[20] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan
Simhadri. Scheduling irregular parallel computations on hierarchical caches. In Proc.
of 23rd ACM Symp. on Parallelism in Algorithms and Architectures, pages 355–366,
2011.

[21] B. Bloom. Space/time tradeoffs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[22] Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti, and Dennis
Shasha. Enhancing graph database indexing by suffix tree structure. In Proc. of
5th IAPR International Conference on Pattern Recognition in Bioinformatics, pages
195–203, 2010.

138

[23] Otakar Boruvka. O Jistém Problému Minimálńım (About a Certain Minimal Problem)
(in Czech, German summary). Práce Mor. Pŕırodoved. Spol. v Brne III, 3, 1926.

[24] K. Bratbergsengen. Hashing methods and relational algebra operations. In Proc. of
10th Int’l Conf. on Very Large Databases, pages 323–333, 1984.

[25] A. Broder and M. Mitzenmacher. Network applications of Bloom filters: A survey.
Internet Mathematics, 1(4):485–509, 2004.

[26] J.D. Buhler, J.M. Lancaster, A.C. Jacob, and R.D. Chamberlain. Mercury BLASTN:
Faster DNA sequence comparison using a streaming hardware architecture. In Proc.
of Reconfigurable Systems Summer Institute, June 2007.

[27] Jeremy D. Buhler, Kunal Agrawal, Peng Li, and Roger D. Chamberlain. Efficient
deadlock avoidance for streaming computation with filtering. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’12, pages 235–246, 2012.

[28] Aydın Buluç, John R. Gilbert, and Ceren Budak. Solving path problems on the GPU.
Parallel Comput., 36(5-6):241–253, June 2010.

[29] Daniel Cederman and Philippas Tsigas. GPU-Quicksort: A practical quicksort algo-
rithm for graphics processors. J. Exp. Algorithmics, 14:4:1.4–4:1.24, January 2010.

[30] Roger D. Chamberlain, Ron K. Cytron, Mark A. Franklin, and Ronald S. Indeck.
The Mercury system: exploiting truly fast hardware for data search. In Proc. of Int’l
Workshop on Storage Network Architecture and Parallel I/Os, pages 65–72, 2003.

[31] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and
Kevin Skadron. A performance study of general-purpose applications on graphics
processors using CUDA. J. Parallel Distrib. Comput., 68(10), October 2008.

[32] Wenlin Chen, Yixin Chen, and Kilian Q. Weinberger. Fast flux discriminant for large-
scale sparse nonlinear classification. In Proc. of 20th ACM SIGKDD Conf. on Knowl-
edge Discovery and Data Mining (KDD), 2014.

[33] Wenlin Chen, Kilian Q. Weinberger, and Yixin Chen. Maximum variance correc-
tion with application to a* search. In Proc. of 30th Intl. Conf. on Machine Learning
(ICML), 2013.

[34] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse
matrix-vector multiply on GPUs. In Proc. of 15th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming, 2010.

[35] Ka Wong Chong, Yijie Han, and Tak-Wah Lam. Concurrent threads and optimal
parallel minimum spanning trees algorithm. J. ACM, 48:297–323, 2001.

139

[36] Rezaul A. Chowdhury, Francesco Silvestri, Brandon Blakeley, and Vijaya Ramachan-
dran. Oblivious algorithms for multicores and network of processors. In Proc. of 24th
IEEE Int’l Parallel and Distributed Processing Symp., pages 1–12, April 2010.

[37] Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-oblivious dynamic pro-
gramming. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 591–600, New York, NY, USA, 2006. ACM.

[38] Rezaul Alam Chowdhury and Vijaya Ramachandran. The cache-oblivious Gaussian
elimination paradigm: Theoretical framework, parallelization and experimental evalu-
ation. In Proc. of 19th ACM Symp. on Parallel Algorithms and Architectures, pages
71–80, 2007.

[39] Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-efficient dynamic pro-
gramming algorithms for multicores. In Proc. of 20th Symp. on Parallelism in Algo-
rithms and Architectures, pages 207–216, 2008.

[40] Richard Cole, Philip N. Klein, and Robert E. Tarjan. Finding minimum spanning
forests in logarithmic time and linear work using random sampling. In Proceedings of
the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’96,
pages 243–250, New York, NY, USA, 1996. ACM.

[41] Richard Cole and Vijaya Ramachandran. Efficient resource oblivious algorithms for
multicores. CoRR, abs/1103.4071:v1, 2011.

[42] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-
troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[43] L.B. Costa, S. Al-Kiswany, and M. Ripeanu. GPU support for batch oriented work-
loads. In Proc. of 28th Int’l Performance Computing and Communications Conf., pages
231–238, Dec. 2009.

[44] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards a
realistic model of parallel computation. In Proc. of 4th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, 1993.

[45] S. Datta, P. Beeraka, and R. Sass. RC-BLASTn: Implementation and evaluation of the
BLASTn scan function. In Proc. of Symp. on Field Programmable Custom Computing
Machines, pages 88–95, 2009.

[46] Frank Dehne and Kumanan Yogaratnam. Exploring the limits of GPUs with parallel
graph algorithms. CoRR, abs/1002.4482, 2010.

140

[47] E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE
MATHEMATIK, 1(1):269–271, 1959.

[48] G. Encarnaijao, N. Sebastiao, and N. Roma. Advantages and GPU implementation of
high-performance indexed DNA search based on suffix arrays. In Proc. of Int’l Conf.
on High Performance Computing and Simulation, pages 49–55, 2011.

[49] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962.

[50] National Center for Biological Information. Growth of GenBank. http://www.ncbi.

nlm.nih.gov/genbank/genbankstats.html, February 2009.

[51] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proc. of
10th ACM Symp. on Theory of computing, 1978.

[52] M Frigo, C E Leiserson, H Prokop, and S Ramachandran. Cache-oblivious algorithms.
In Proc. of 40th Symposium on Foundations of Computer Science, pages 285–297, 1999.

[53] Matteo Frigo and Volker Strumpen. The cache complexity of multithreaded cache
oblivious algorithms. In Proceedings of the 18th Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’06, pages 271–280, 2006.

[54] Yong Fu, Mo Sha, Chengjie Wu, Andrew Kutta, Anna Leavey, Chenyang Lu, Hum-
berto Gonzalez, Weining Wang, Bill Drake, Yixin Chen, and Pratim Biswas. Thermal
modeling for a HVAC controlled real-life auditorium. In International Conference on
Distributed Computing Systems (ICDCS’14), July 2014.

[55] N. Fujimoto. Faster matrix-vector multiplication on GeForce 8800GTX. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS)., pages 1–8,
2008.

[56] Leslie M. Goldschlager. A universal interconnection pattern for parallel computers. J.
ACM, October 1982.

[57] X. Gong, W. Qian, Y. Yan, and A. Zhou. Bloom filter-based XML packets filtering
for millions of path queries. In 21st Int’l Conf. on Data Engineering, pages 890–901,
2005.

[58] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. GPUTeraSort:
high performance graphics co-processor sorting for large database management. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’06, pages 325–336, New York, NY, USA, 2006. ACM.

[59] Naga K. Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha. A memory
model for scientific algorithms on graphics processors. In Proc. of ACM/IEEE Conf.
on Supercomputing., 2006.

141

[60] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Man-
ferdelli. High performance discrete Fourier transforms on graphics processors. In Proc.
of ACM/IEEE Supercomputing Conf., 2008.

[61] Naga K. Govindaraju and Dinesh Manocha. Cache-efficient numerical algorithms using
graphics hardware. Parallel Comput., 33(10-11):663–684, November 2007.

[62] L.L. Gremillion. Designing a Bloom filter for differential file access. Communications
of the ACM, 25(9):600–604, September 1982.

[63] Jesse D. Hall, Nathan A. Carr, and John C. Hart. Cache and bandwidth aware ma-
trix multiplication on the GPU. Technical report, University of Illinois at Urbana-
Champaign, 2003.

[64] Sardar Anisul Haque, Marc Moreno Maza, and Ning Xie. A many-core machine model
for designing algorithms with minimum parallelism overheads. In Proc. of High Per-
formance Computing Symp., 2013.

[65] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU
using CUDA. In Proceedings of the 14th International Conference on High Performance
Computing, HiPC’07, pages 197–208, Berlin, Heidelberg, 2007. Springer-Verlag.

[66] Pawan Harish, Vibhav Vineet, and P. J. Narayanan. Large Graph Algorithms for Mas-
sively Multithreaded Architectures. Technical Report IIIT/TR/2009/74, International
Institute of Information Technology Hyderabad.

[67] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. Efficient gather
and scatter operations on graphics processors. In Proc. of ACM/IEEE Supercomputing
Conf., 2007.

[68] Dan He. Using suffix tree to discover complex repetitive patterns in DNA sequences.
In Proc. of 28th Int’l Conf. of the IEEE Engineering in Medicine and Biology Society,
pages 3474–3477, 2006.

[69] Zhengyu He and Bo Hong. Dynamically tuned push-relabel algorithm for the maxi-
mum flow problem on CPU-GPU-Hybrid platforms. In IEEE International Parallel
Distributed Processing Symposium (IPDPS), pages 1–10, 2010.

[70] M.C. Herbordt, J. Model, B. Sukhwani, Y. Gu, and T. VanCourt. Single pass streaming
BLAST on FPGAs. Parallel Computing, 33:741–756, 2007.

[71] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating
CUDA graph algorithms at maximum warp. In Proc. of 16th ACM Symp. on Principles
and Practice of Parallel Programming, 2011.

142

[72] Sungpack Hong, T. Oguntebi, and K. Olukotun. Efficient parallel graph exploration
on multi-core CPU and GPU. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 78–88, 2011.

[73] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In Proc. of 36th Int’l Symp. on
Computer Architecture, pages 152–163, 2009.

[74] Mohamed Hussein, Amitabh Varshney, and Larry Davis. On Implementing Graph
Cuts on CUDA. In Proc. of Workshop on General Purpose Processing on Graphics
Processing Units. (GPGPU 2008), 2008.

[75] Huynh Phung Huynh, Andrei Hagiescu, Weng-Fai Wong, and Rick Siow Mong Goh.
Scalable framework for mapping streaming applications onto multi-GPU systems. ACM
SIGPLAN Notices, 47(8):1–10, 2012.

[76] Changhao Jiang and M. Snir. Automatic tuning matrix multiplication performance
on graphics hardware. In 14th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 185–194, 2005.

[77] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J.
ACM, 24(1):1–13, January 1977.

[78] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. J. ACM, 42(2), March 1995.

[79] Richard M. Karp. A survey of parallel algorithms for shared-memory machines. Tech-
nical report, University of California at Berkeley, Berkeley, CA, USA, 1988.

[80] Richard M. Karp and Avi Wigderson. A fast parallel algorithm for the maximal
independent set problem. J. ACM, 32(4), October 1985.

[81] Gary J. Katz and Joseph T. Kider, Jr. All-pairs shortest-paths for large graphs on
the GPU. In Proc of 23rd ACM SIGGRAPH/EUROGRAPHICS Symp. on Graphics
Hardware, 2008.

[82] Yooseong Kim and Aviral Shrivastava. Cumapz: a tool to analyze memory access
patterns in CUDA. In Proceedings of the 48th Design Automation Conference, DAC
’11, pages 128–133, 2011.

[83] Peter Kipfer and Rüdiger Westermann. Improved GPU sorting. In Matt Pharr, editor,
GPU Gems 2, chapter 46. Addison Wesley, March 2005.

[84] J. Steven Kirtzic and Ovidiu Daescu. A parallel algorithm development model for
the GPU architecture. In Proc. of Int’l Conf. on Parallel and Distributed Processing
Techniques and Applications, 2012.

143

[85] Kishore Kothapalli, Rishabh Mukherjee, M. Suhail Rehman, Suryakant Patidar, P. J.
Narayanan, and Kannan Srinathan. A performance prediction model for the CUDA
GPGPU platform. In Proceedings of International Conference on High Performance
Computing (HiPC), pages 463–472, December 2009.

[86] Christian Kreibich and Jon Crowcroft. Honeycomb - creating intrusion detection sig-
natures using honeypots. In Proc. of the 2nd Workshop on Hot Topics in Networks,
2003.

[87] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, A. Jacob, and
J. Lancaster. Biosequence similarity search on the Mercury system. J. VLSI Signal
Processing, 49:101–121, October 2007.

[88] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, An-
thony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per
Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100X GPU vs.
CPU myth: an evaluation of throughput computing on CPU and GPU. In Proc. of
37th Int’l Symp. on Computer Architecture, pages 451–460, 2010.

[89] Jr. Lestor R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, USA, 1962.

[90] Peng Li, Kunal Agrawal, Jeremy Buhler, and Roger D Chamberlain. Deadlock avoid-
ance for streaming computations with filtering. In Proceedings of the 22nd ACM Sym-
posium on Parallelism in Algorithms and Architectures, pages 243–252. ACM, 2010.

[91] Cheng Ling, Khaled Benkrid, and Tsuyoshi Hamada. A parameterisable and scalable
Smith-Waterman algorithm implementation on CUDA-compatible GPUs. In Proceed-
ings of 7th IEEE Symposium on Application Specific Processors, SASP ’09, pages
94–100, 2009.

[92] Weiguo Liu, Wolfgang Muller-Wittig, and Bertil Schmidt. Performance predictions for
general-purpose computation on GPUs. In Proc. of Int’l Conf. on Parallel Processing,
2007.

[93] Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Muller-Wittig. Streaming
algorithms for biological sequence alignment on GPUs. IEEE Trans. Parallel Distrib.
Syst., pages 1270–1281, 2007.

[94] Yongchao Liu, Bertil Schmidt, and Douglas Maskell. DecGPU: distributed error cor-
rection on massively parallel graphics processing units using CUDA and MPI. BMC
Bioinformatics, 12(1):85, 2011.

144

[95] Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. CUDASW++2.0: Enhanced
Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT
and virtualized SIMD abstractions. BMC Research Notes, 3, 2010.

[96] M Luby. A simple parallel algorithm for the maximal independent set problem. In
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, STOC ’85,
pages 1–10, New York, NY, USA, 1985. ACM.

[97] Lijuan Luo, Martin Wong, and Wen-mei Hwu. An effective GPU implementation of
breadth-first search. In Proceedings of the 47th Design Automation Conference, DAC
’10, pages 52–55, New York, NY, USA, 2010. ACM.

[98] Agnieszka Lupinska. Parallel implematation of flow and matching algorithms. CoRR,
abs/1110.6231, 2011.

[99] Lin Ma, K. Agrawal, and R.D. Chamberlain. A memory access model for highly-
threaded many-core architectures. In Proc. of IEEE 18th Int’l Conf. on Parallel and
Distributed Systems (ICPADS), pages 339–347, 2012.

[100] Lin Ma, Kunal Agrawal, and Roger Chamberlain. Theoretical analysis of classic al-
gorithms on highly-threaded many-core GPUs. In Proc. of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 391–
392, 2014.

[101] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access model
for highly-threaded many-core architectures. Future Generation Computer Systems,
30:202–215, January 2014.

[102] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. Analysis of classic algorithms on
GPUs. In Proc. of the 12th ACM/IEEE Int’l Conf. on High Performance Computing
and Simulation (HPCS), pages 65–73, 2014.

[103] Lin Ma, Roger Chamberlain, and Kunal Agrawal. Performance modeling for highly-
threaded many-core GPUs. In Proc. of the 25th Int’l Conf. on Application-specific
Systems, Architectures and Processors, pages 84–91, 2014.

[104] Lin Ma and Roger D. Chamberlain. A performance model for memory bandwidth
constrained applications on graphics engines. In Proc. of Int’l Conf. on Application-
specific Systems, Architectures and Processors, pages 24–32, 2012.

[105] Lin Ma, Roger D. Chamberlain, Jeremy D. Buhler, and Mark A. Franklin. Bloom filter
performance on graphics engines. In Proc. of Int’l Conf. on Parallel Processing, pages
522–531, 2011.

145

[106] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
In Proc. of the ACM-SIAM Symp. on Discrete Algorithms, 1990.

[107] Pedro J. Mart́ın, Roberto Torres, and Antonio Gavilanes. CUDA solutions for the
SSSP problem. In Proceedings of the 9th International Conference on Computational
Science: Part I, ICCS ’09, pages 904–913, Berlin, Heidelberg, 2009. Springer-Verlag.

[108] Kazuya Matsumoto, Naohito Nakasato, and Stanislav G. Sedukhin. Blocked all-pairs
shortest paths algorithm for hybrid CPU-GPU system. In Proc. of IEEE Int’l Conf.
on High Performance Computing and Communications, pages 145–152, 2011.

[109] M.D. McIlroy. Development of a spelling list. IEEE Trans. on Communications,
30(1):91–99, 1982.

[110] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU implementation of
inclusion-based points-to analysis. In Proceedings of the 17th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’12, pages 107–116,
New York, NY, USA, 2012. ACM.

[111] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU graph traver-
sal. In Proc. of 17th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, pages 117–128, 2012.

[112] Paulius Micikevicius. General parallel computation on commodity graphics hardware:
Case study with the all-pairs shortest paths problem. In PDPTA, pages 1359–1365,
2004.

[113] Kenneth Moreland and Edward Angel. The FFT on a GPU. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS ’03, pages
112–119, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[114] S. Mu, X. Zhang, N. Zhang, J. Lu, Y.S. Deng, and S. Zhang. IP routing processing
with graphic processors. In Proc. of Conf. on Design, Automation and Test in Europe,
pages 93–98, 2010.

[115] J.K. Mullin and D.J. Margoliash. A tale of three spelling checkers. Software – Practice
and Experience, 20(6):625–630, 1990.

[116] Koji Nakano. The hierarchical memory machine model for GPUs. In Proc. of Int’l
Parallel and Distributed Processing Symp. Workshops & PhD Forum, 2013.

[117] Sadegh Nobari, Thanh-Tung Cao, Panagiotis Karras, and Stéphane Bressan. Scalable
parallel minimum spanning forest computation. In Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’12,
pages 205–214, New York, NY, USA, 2012. ACM.

146

[118] NVIDIA. CUDA Programming Guide 5.0. October 2012.

[119] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron
Lefohn, and Timothy J. Purcell. A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[120] A.K. Parakh, M. Balakrishnan, and K. Paul. Performance estimation of GPUs with
cache. In Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), pages 2384–2393, 2012.

[121] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai. Bloom filtering cache misses for
accurate data speculation and prefetching. In Proc. of 16th Int’l Conf. on Supercom-
puting, pages 189–198, 2002.

[122] Seth Pettie and Vijaya Ramachandran. A randomized time-work optimal parallel
algorithm for finding a minimum spanning forest. SIAM J. Comput., 31(6), June
2002.

[123] Benjarath Phoophakdee and Mohammed J. Zaki. Genome-scale disk-based suffix tree
indexing. In Proc. of ACM SIGMOD Int’l Conference on Management of Data, pages
833–844, 2007.

[124] Chung Keung Poon and Vijaya Ramachandran. A randomized linear work EREW
PRAM algorithm to find a minimum spanning forest. In Proceedings of 8th Interna-
tional Symposium on Algorithms and Computation (ISAAC), pages 212–222, 1997.

[125] R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technology Journal, 36:1389–1401, 1957.

[126] Harald Prokop. Cache-oblivious algorithms, 1999. Master’s thesis, MIT.

[127] M.O. Rabin. Probabilistic algorithms. Algorithms and Complexity, pages 21–39, 1976.

[128] M.V. Ramakrishna, E. Fu, and E. Bahcekapili. Efficient hardware hashing functions
for high performance computers. IEEE Trans. on Computers, 46(12):1378–1381, De-
cember 1997.

[129] F. Rasheed, M. Alshalalfa, and R. Alhajj. Efficient periodicity mining in time se-
ries databases using suffix trees. IEEE Trans. on Knowledge and Data Engineering,
23(1):79–94, 2011.

[130] M. Suhail Rehman, Kishore Kothapalli, and P. J. Narayanan. Fast and scalable list
ranking on the GPU. In Proceedings of the 23rd International Conference on Super-
computing, ICS ’09, pages 235–243, New York, NY, USA, 2009. ACM.

147

[131] Mohammed S. Rehman. Exploring irregular memory access applications on the GPU.
Master’s thesis, International Institute of Information Technology, Hyderabad, India,
2010.

[132] Scott Rostrup, Shweta Srivastava, and Kishore Singhal. Fast and memory-efficient
minimum spanning tree on the GPU. Int. J. Comput. Sci. Eng., 8(1):21–33, February
2013.

[133] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-Zee
Ueng, John A. Stratton, and Wen-Mei Hwu. Program optimization space pruning for
a multithreaded GPU. In Proc. of 6th IEEE/ACM Int’l Symp. on Code Generation
and Optimization, pages 195–204, 2008.

[134] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for many-
core GPUs. In Proc. of IEEE Int’l Parallel and Distributed Processing Symp., pages
1–10, 2009.

[135] Olaf Schenk, Matthias Christen, and Helmar Burkhart. Algorithmic performance stud-
ies on graphics processing units. J. Parallel Distrib. Comput., 68(10), October 2008.

[136] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives
for GPU computing. In Proc. of 22nd ACM SIGGRAPH/EUROGRAPHICS Symp.
on Graphics Hardware, pages 97–106, 2007.

[137] H. Shi, B. Schmidt, W. Liu, and W. Muller-Wittig. Accelerating error correction
in high-throughput short-read DNA sequencing data with CUDA. In Proc. of Int’l
Parallel and Distributed Processing Symp., 2009.

[138] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc. A perfor-
mance analysis framework for identifying potential benefits in GPGPU applications. In
Proceedings of 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 11–22, 2012.

[139] Erik Sintorn and Ulf Assarsson. Fast parallel GPU-sorting using a hybrid algorithm.
Journal of Parallel and Distributed Computing, 68(10):1381 – 1388, 2008.

[140] S. Solomon, P. Thulasiraman, and R.K. Thulasiram. Exploiting Parallelism in Iter-
ative Irregular Maxflow Computations on GPU Accelerators. In Proceedings of 12th
IEEE International Conference on High Performance Computing and Communications
(HPCC), pages 297–304, 2010.

[141] Robert Solovay and Volker Strassen. A fast Monte-Carlo test for primality. SIAM J.
Comput., 6(1):84–85, 1977.

148

[142] J. Soman, K. Kishore, and P. J. Narayanan. A fast GPU algorithm for graph connectiv-
ity. In Proceedings of IEEE International Parallel Distributed Processing Symposium,
Workshops and Phd Forum (IPDPSW), pages 1–8, 2010.

[143] Jyothish Soman, Kishore Kothapalli, and P. J. Narayanan. Some GPU algorithms for
graph connected components and spanning tree. Parallel Processing Letters, 20(4):325–
339, 2010.

[144] Henrik Stranneheim, Max Käller, Tobias Allander, Björn Andersson, Lars Arvestad,
and Joakim Lundeberg. Classification of DNA sequences using Bloom filters. Bioin-
formatics, 26:1595–1600, July 2010.

[145] I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. Data layout transformation
exploiting memory-level parallelism in structured grid many-core applications. In Pro-
ceedings of the 19th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT ’10, pages 513–522, 2010.

[146] P. Valdurez and G. Gardarin. Join and semijoin algorithms for a multiprocessor
database machine. ACM Trans. on Database Systems, 9(1):133–161, 1984.

[147] Leslie G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, August 1990.

[148] Leslie G. Valiant. A bridging model for multi-core computing. Journal of Computer
and System Sciences, 77(1), January 2011.

[149] V. Vineet and P. J. Narayanan. CUDA cuts: Fast graph cuts on the GPU. In Proceed-
ings of IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pages 1–8, 2008.

[150] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J. Narayanan. Fast minimum
spanning tree for large graphs on the GPU. In Proceedings of the Conference on High
Performance Graphics 2009, HPG ’09, pages 167–171, New York, NY, USA, 2009.
ACM.

[151] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J. Narayanan. Fast minimum
spanning tree for large graphs on the GPU. In Proc. of Conf. on High Performance
Graphics, pages 167–171, 2009.

[152] Uzi Vishkin, George C. Caragea, and Bryant Lee. Models for advancing PRAM and
other algorithms into parallel programs for a PRAM-On-Chip platform. In Handbook
of Parallel Computing: Models, Algorithms and Applications. CRC Press, 2007.

[153] Jeffrey Scott Vitter and Mark H. Nodine. Large-scale sorting in uniform memory
hierarchies. J. Parallel Distrib. Comput., 17(1-2):107–114, January 1993.

149

[154] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory II:
Hierarchical multilevel memories. Algorithmica, 12:148–169, 1993.

[155] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory I:
Two-level memories. Algorithmica, 12:110–147, 1994.

[156] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proc. of ACM/IEEE Conf. on Supercomputing, 2008.

[157] Min-Feng Wang, Yen-Ching Wu, and Meng-Feng Tsai. Exploiting frequent episodes in
weighted suffix tree to improve intrusion detection system. In Proc. of 22nd Int’l Conf.
on Advanced Information Networking and Applications - Workshops, pages 1246–1252,
2008.

[158] W. Wang, S. Guo, F. Yang, and J. Chen. GPU-based fast minimum spanning tree using
data parallel primitives. In Information Engineering and Computer Science (ICIECS),
2010 2nd International Conference on, page 14. IEEE.

[159] W. Wang, Y. Huang, and S. Guo. Design and implementation of GPU-based
Prim’s algorithm. International Journal of Modern Education and Computer Science
(IJMECS), 3(4):55, 2011.

[160] Stephen Warshall. A theorem on Boolean matrices. J. ACM, 9(1):11–12, January
1962.

[161] Chengjie Wu, Mo Sha, Dolvara Gunatilaka, Abusayeed Saifullah, Chenyang Lu, and
Yixin Chen. Analysis of EDF scheduling for wireless sensor-actuator networks. In
IEEE/ACM Symposium on Quality of Service (IWQoS’14), May 2014.

[162] Chengjie Wu, You Xu, Yixin Chen, and Chenyang Lu. Submodular game for dis-
tributed application allocation in shared sensor networks. In The 31st IEEE Interna-
tional Conference on Computer Communications (INFOCOM’12), March 2012.

[163] James C. Wyllie. The Complexity of Parallel Computations. PhD thesis, Cornell
University, Ithaca, NY, USA, 1979.

[164] Zhixiang Xu, Olivier Chapelle, and Kilian Q. Weinberger. The greedy miser: Learn-
ing under test-time budgets. In Proceedings of the 29th International Conference on
Machine Learning (ICML-12), pages 1175–1182, 2012.

[165] Zhixiang Xu, Matt Kusner, Kilian Q. Weinberger, and Minmin Chen. Cost-sensitive
tree of classifiers. In Proceedings of The 30th International Conference on Machine
Learning, pages 133–141, 2013.

150

[166] Zhixiang Eddie Xu, Matt J Kusner, Kilian Q. Weinberger, Minmin Chen, and Olivier
Chapelle. Classifier cascades and trees for minimizing feature evaluation cost. Journal
of Machine Learning Research, 15:2113–2144, 2014.

[167] Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, and P. Ienne. High performance
comparison-based sorting algorithm on many-core GPUs. In Proceedings of IEEE
International Parallel Distributed Processing Symposium (IPDPS), pages 1–10, 2010.

[168] Dell Zhang and Wee Sun Lee. Extracting key-substring-group features for text classifi-
cation. In Proc. of 12th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, pages 474–483, 2006.

[169] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on the GPU.
In Proc. of 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2010.

[170] Yao Zhang and J.D. Owens. A quantitative performance analysis model for GPU archi-
tectures. In Proc. of IEEE Int’l Symp. on High Performance Computer Architecture,
pages 382–393, February 2011.

[171] Yixin Zhuang, Ming Zou, Nathan Carr, and Tao Ju. A general and efficient method
for finding cycles in 3D curve networks. ACM Trans. Graph., 32(6), November 2013.

[172] Ming Zou, Tao Ju, and Nathan Carr. An algorithm for triangulating multiple 3D
polygons. Computer Graphics Forum, 32(5):157–166, 2013.

151

Vita

Lin Ma

Degrees Ph.D. Washington Univ. in St.Louis, Computer Science, Dec. 2014

M.S. Washington Univ. in St.Louis, Computer Science, May 2014

M.E. Beijing Univ. of Posts & Telecom., Computer Eng., Mar. 2008

B.S. North China Electric Power Univ., Electrical Eng., Jun. 2005

B.A. North China Electric Power Univ., English L & L, Jun. 2005

Publications Lin Ma, Roger D. Chamberlain, Jeremy D. Buhler, Mark A. Franklin

(2011). Bloom Filter Performance on Graphics Engines, Proc. of the

40th Int’l Conf. on Parallel Processing (ICPP) : 522–531.

Lin Ma, Kunal Agrawal, and Roger D. Chamberlain (2012). A Mem-

ory Access Model for Highly-threaded Many-core Architectures, Proc.

of IEEE 18th Int’l Conf. on Parallel and Distributed Systems (IC-

PADS) : 339–347.

Lin Ma, and Roger D. Chamberlain (2012). A Performance Model

for Memory Bandwidth Constrained Applications on Graphics En-

gines, Proc. of the 23th Int’l Conf. on Application-specific Systems,

Architectures and Processors (ASAP) : 24–31.

Lin Ma, Kunal Agrawal, and Roger D. Chamberlain (2014). A Mem-

ory Access Model for Highly-threaded Many-core Architectures, Fu-

ture Generation Computer Systems (FGCS). 30: 202–215. [Impact

Factor: 2.639].

Lin Ma, Kunal Agrawal, and Roger D. Chamberlain (2014). Theo-

retical Analysis of Classic Algorithms on Highly-threaded Many-core

GPUs, Proc. of the 19th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP) : 391–392.

Lin Ma, Roger D. Chamberlain, and Kunal Agrawal (2014). Perfor-

mance Modeling for Highly-threaded Many-core GPUs, Proc. of the

152

25th Int’l Conf. on Application-specific Systems, Architectures and

Processors (ASAP) : 84–91.

Lin Ma, Kunal Agrawal, and Roger D. Chamberlain (2014). Analysis

of Classic Algorithms on GPUs, Proc. of the 12th ACM/IEEE Int’l

Conf. on High Performance Computing and Simulation (HPCS) : 65–

73. [Outstanding Paper Award Runner-up].

December 2014

153

	Modeling Algorithm Performance on Highly-threaded Many-core Architectures
	Recommended Citation

	tmp.1425484445.pdf.3rbz6

