
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Fall 12-14-2024

Modeling the Performance and Resource Requirements for Modeling the Performance and Resource Requirements for

Gamma-Ray Telescope Signal Processing Gamma-Ray Telescope Signal Processing

Shijing Liang
Washington University – McKelvey School of Engineering

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Liang, Shijing, "Modeling the Performance and Resource Requirements for Gamma-Ray Telescope Signal
Processing" (2024). McKelvey School of Engineering Theses & Dissertations. 1099.
https://openscholarship.wustl.edu/eng_etds/1099

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/1099?utm_source=openscholarship.wustl.edu%2Feng_etds%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Electrical & Systems Engineering

Thesis Examination Committee:
Roger D. Chamberlain, Chair

James H. Buckley
Chuan Wang

Modeling the Performance and Resource Requirements
for Gamma-Ray Telescope Signal Processing

by
Shijing Liang

A thesis presented to
the McKelvey School of Engineering

of Washington University in
partial fulfillment of the

requirements for the degree
of Master of Science

December 2024
St. Louis, Missouri

© 2024, Shijing Liang

Table of Contents

List of Figures . iv

Acknowledgments . vi

Abstract . viii

Chapter 1: Introduction . 1
1.1 APT . 1
1.2 ADAPT . 1

1.2.1 Basic Information . 1
1.2.2 Hardware Design Overview . 2
1.2.3 Motivation . 3

1.3 Thesis Structure and Contributions . 4

Chapter 2: Background and Related Work 6
2.1 Data Pipeline . 6
2.2 Data Process . 7
2.3 Considering Buffering Questions . 8
2.4 Related Work . 9

Chapter 3: Simulator Design . 11
3.1 Simulator Module Simplified . 11
3.2 Simulation Code Design . 13

3.2.1 Process . 14
3.2.2 Network Interface . 15
3.2.3 Data Generator . 16
3.2.4 Parameter Setting . 17
3.2.5 Chip-to-chip Channel . 18
3.2.6 Simulator . 19

3.3 Initial Testing Results . 20
3.3.1 Basic Code Running Result . 20
3.3.2 Buffer Occupancy Code Running Result 21

Chapter 4: Results . 22

ii

4.1 Fixed Input and Output Rates . 22
4.2 Varying Input Data Rate . 23
4.3 Varying Output Rate . 24
4.4 Varying Execution Time . 26
4.5 Switching Clock to 200 MHz . 27
4.6 Tracking Network Buffer Occupancy with Time 28
4.7 Comparing Network Buffer Occupancy with Time (Fixed & Poisson) 32
4.8 Varying the Chip-to-chip Data Rate . 32
4.9 Summary . 37

Chapter 5: Conclusions and Future Work . 38
5.1 Conclusions . 38
5.2 Future Work . 39

References . 41

iii

List of Figures

Figure 1.1: Advanced Particle-astrophysics Telescope (APT) 2

Figure 1.2: Hardware design of Antarctic Demonstrator for APT (ADAPT) 3

Figure 2.1: Computational pipeline for APT and ADAPT 6

Figure 2.2: Dataflow architecture in detail . 7

Figure 3.1: Computational pipeline for all four detector layers. 12

Figure 3.2: Simplified computational pipeline. 12

Figure 3.3: Simplified computational pipeline including chip-to-chip interface. 13

Figure 3.4: Processing procedure definition. 15

Figure 3.5: Network interface definition. 16

Figure 3.6: Data generator definition. 17

Figure 3.7: Initial parameter settings. 18

Figure 3.8: Chip-to-chip definition. 18

Figure 3.9: Simulator design. 19

Figure 3.10: Testing results samples. 20

Figure 3.11: Buffer occupancy with time frame. 21

Figure 4.1: Simplified data pipeline with fixed input and output. 23

Figure 4.2: Simplified data pipeline with fixed output. 24

iv

Figure 4.3: Buffer occupancy with ranging input rate (setting output rate to be
80 Mbps). 24

Figure 4.4: Simplified data pipeline with fixed input. 25

Figure 4.5: Buffer occupancy with ranging output rate (setting input rate to be 250
Mbps). 25

Figure 4.6: Ranging maximum occupancy with different running time (fixed output
rate). 27

Figure 4.7: Ranging maximum occupancy with different running time (fixed input
rate). 28

Figure 4.8: Buffer occupancy with a 200 MHz clock. 29

Figure 4.9: Network buffer occupancy increasing with time. 30

Figure 4.10: Network buffer occupancy with different input rates. 31

Figure 4.11: Network buffer occupancy with different input rates. Inputs are from
Poisson distribution. 33

Figure 4.12: Data pipeline with changing C2C rate. 34

Figure 4.13: C2C buffer occupancy with varying C2C data rates. 34

Figure 4.14: Ranging chip-to-chip rate with different input rates (output rate is 80 Mbps). 35

Figure 4.15: Ranging chip-to-chip rates with different output rates (input rate is 250
Mbps). 36

v

Acknowledgments

Throughout the process of completing this thesis, I received invaluable help and support

from many people, to whom I am profoundly grateful.

First and foremost, I would like to express my deep appreciation to my advisor, Professor

Chamberlain, whose unwavering guidance and support were pivotal throughout every stage

of my research. From topic selection to the final write-up, he offered patient advice and

encouragement, answering my questions with care and helping to calm my nerves during

stressful moments. His guidance has been invaluable, and his support was as reassuring as

family. I would also like to extend my heartfelt thanks to my PhD mentor, Marion Sudvarg,

whose consistent and enthusiastic responses were an immense support. Marion always pro-

vided me with the information I needed, offering insightful feedback to my questions and

guiding me toward new ideas when I felt stuck. Without the assistance of these two mentors,

completing this thesis would not have been possible.

Additionally, I am grateful to my friends both in China and in the US. Every research journey

has its highs and lows, and during the more challenging times, their encouragement and ad-

vice helped me regain my confidence. In the midst of writing pressures, their companionship

brought me warmth and happiness.

I also want to thank my family, who have supported me steadfastly in the background, giving

me their utmost encouragement and understanding. In moments of difficulty, they always

believed I would make it to the end and complete this demanding task.

Finally, I am grateful to my university and lab for providing an excellent environment and

ample resources that facilitated the successful completion of my research.

Once again, I extend my heartfelt thanks to everyone who has supported me along the way.

This thesis is a testament to your wisdom and kindness. I hope my work can contribute,

even modestly, to the realization of APT.

vi

This work was supported by NASA award 80NSSC21K1741.

Shijing Liang

Washington University in St. Louis

December 2024

vii

ABSTRACT OF THE THESIS

Modeling the Performance and Resource Requirements

for Gamma-Ray Telescope Signal Processing

by

Shijing Liang

Master of Science in Electrical Engineering

Washington University in St. Louis, 2024

Professor Roger D. Chamberlain, Chair

This thesis investigates the buffering requirements of the data pipeline for the Advanced

Particle-astrophysics Telescope gamma-ray telescope. Given the importance and stochastic

arrivals of astronomical signals, it is crucial to ensure that each gamma-ray signal is fully

buffered to prevent data loss. To achieve this, FIFOs are inserted into the data processing

pipeline to prevent bottlenecks during data packet processing.

Buffers play a critical role in regulating data flow, preventing data loss, and ensuring efficient

data processing. They act as temporary storage areas, absorbing data surges and releasing it

steadily, thus maintaining the pipeline’s optimal performance. In general, buffer integration

significantly enhances the stability and reliability of a data processing system.

The use of buffers ensures the integrity and timeliness of critical astronomical signals, pro-

viding reliable data support for subsequent investigation. This thesis uses discrete-event

simulation models to assess the buffering requirements for a prototype gamma-ray telescope

computational pipeline, ADAPT, the Antarctic Demonstrator for the Advanced Particle-

astrophysics Telescope.

viii

Chapter 1

Introduction

1.1 APT

The Advanced Particle-astrophysics Telescope (APT) is a planned space-based observatory

designed for MeV to TeV gamma-ray astrophysics and cosmic-ray physics. APT’s multimes-

senger capability relies on its ability to localize MeV transients in real time using on-board

computational hardware. APT will combine a pair tracker and Compton telescope in a sin-

gle monolithic design to include multiple layers of scintillating-fiber tracker hodoscopes and

sodium-doped CsI scintillators. The CsI tiles are coupled with crossed planes of wavelength-

shifting (WLS) fibers to localize energy deposition to ∼mm accuracy, as well as silicon

photomultiplier (SiPM) based edge detectors to improve light collection and calorimetry.

The mission concept [1] (see Figure 1.1), initial instrument simulations [2], and first version

of the real-time gamma ray burst (GRB) reconstruction and localization algorithms [3] were

presented at ICRC 2021.

1.2 ADAPT

1.2.1 Basic Information

The Antarctic Demonstrator for APT (ADAPT) is a prototype high-altitude balloon mis-

sion set to launch during the 2025–26 season. ADAPT aims to demonstrate APT’s pair

and Compton detection capabilities and serve as a proof of concept for prompt Compton

reconstruction and localization, with the capability to send GRB positional alerts in real

time. To evaluate ADAPT’s performance, the team has developed a simulated model of the

1

Figure 1.1: Advanced Particle-astrophysics Telescope (APT) [1].

instrument that includes the optical properties of its CsI tiles, measurements of WLS signal

attenuation, and characterizations of the SiPMs and preamplifier boards [4]. The model also

accounts for additional uncertainties caused by the temporal effects of signal integration,

including tail loss and event pileup.

1.2.2 Hardware Design Overview

The ADAPT instrument (illustrated in Figure 1.2(a)) has 4 primary detector layers, each

comprised of an imaging CsI Calorimeter (ICC) and scintillating fiber tracker. Each ICC

consists of a 3×3 arrangement of 5 mm thick, 15×15 cm sodium-doped CsI scintillating

crystal tiles. Optical photons produced by energy deposits in the crystals are captured

by perpendicular arrays of 2 mm wavelength-shifting (WLS) optical fibers running across

the top and bottom surfaces of the CsI tiles and terminated at one end with 3×3 mm

SiPMs; these allow precise localization of interactions in the crystals. To improve light

detection and energy estimates, a detector that multiplexes 36 SiPMs is placed over each of

the 6 tile edges on the adjacent ICC sides opposite the WLS fiber SiPMs. Below the ICC

layers are 4 closely-spaced tail counters, which are identical to the ICCs but lack WLS fiber

arrays, making them useful only for calorimetry. WLS fiber SiPM outputs are combined

across a tile-width span (3-fiber multiplexing) into a SMART shaping preamplifier ASIC

channel [5]. SMART outputs are sampled and digitized by a 16-channel ALPHA ASIC, a

2

successor to the TARGET series [6]. The signals from all 36 SiPMs in an edge detector

array are passively combined into both low- and high-gain preamplifier stages, each of which

are also sampled by a dedicated ALPHA channel. The ALPHA ASIC captures 256× 10 ns

samples per channel in dual-banked analog memory, allowing simultaneous sampling and

readout when triggered. Values are digitized and sent to an FPGA over a shared bus. With

225 WLS fibers running along each axis of an ICC layer, 5 ALPHA ASICs are sufficient to

capture a single layer-axis. A sixth ALPHA will capture edge detector signals, with channels

remaining open for other uses (e.g., capturing edge detectors from tail counter layers). A

single Kintex-7 FPGA handles communication from the 6 ALPHAs for a layer-axis, then

performs pedestal subtraction, signal integration, zero-suppression, and island detection.

Both FPGAs send integrals to a third FPGA for each layer that performs centroiding and

event building. Centroids are then sent to a CPU for backend data analysis, including

Compton reconstruction and GRB localization [7].

(a) Hardware model (b) Functional principle

Figure 1.2: Hardware design of Antarctic Demonstrator for APT (ADAPT) [8].

1.2.3 Motivation

The FPGAs that perform the front-end data processing (described in [9]) have limited on-

chip memory, and there is concern on the part of the design team whether or not the on-chip

memory will be sufficient for buffering of signals that come off the ALPHA chips, during

processing, and prior to delivery to the downstream CPU.

3

This thesis investigates that concern through the use of discrete-event simulation models.

The computational pipeline that executes on the FPGAs is modeled, with a focus primarily

on the buffering requirements between computational stages.

We are able to both demonstrate the sufficiency of the on-chip memory for current buffering

requirements as well as indicate the circumstances under which additional buffering will be

required (e.g., higher ingest rates associated with the full APT instrument).

1.3 Thesis Structure and Contributions

Chapter 1: Introduction – Provide a concise overview of the project, outlining its primary

objectives and significance. Describe the hardware design architecture for both the APT and

ADAPT projects, detailing key components and configurations. Offer a brief summary of

the thesis structure, explaining the organization of the chapters.

Chapter 2: Project Background – Present the background and context of the project,

including a discussion of the data pipeline and its associated processes. Introduce the neces-

sity of buffering within the pipeline, highlighting its role in maintaining data flow efficiency.

Provide a brief literature review of relevant buffering techniques and research, setting the

stage for further exploration.

Chapter 3: Methodology – Detail the research approach to studying buffering within

the pipeline, including the step-by-step breakdown of the processes involved. Elaborate on

the development of a simulation tool specifically designed to investigate buffering strate-

gies within the pipeline. Discuss the parameters and conditions set within the simulation

environment to ensure accurate and reliable results.

Chapter 4: Experimental Analysis – Present a comprehensive analysis of the experi-

mental results obtained from various controlled studies using the simulator. Compare and

contrast the outcomes under different conditions, highlighting the impact of varying buffer-

ing strategies on the overall system performance. Provide a detailed interpretation of the

results, linking them to the initial research questions and hypotheses.

Chapter 5: Conclusion and Future Work – Summarize the key findings and conclusions

drawn from the research, emphasizing the contributions to the field. Discuss the challenges

4

encountered during the research process and their implications on the results. Offer insights

into the potential future developments of the project, including suggestions for further re-

search and possible applications of the findings.

5

Chapter 2

Background and Related Work

2.1 Data Pipeline

While ADAPT captures gamma rays, the signals it collects appear as peaks or“bumps” in

the electrical signals from the SiPMs. To make these raw signals usable for further physical

analysis, they must undergo several processing steps within a structured framework known as

the data pipeline or the computational pipeline. This chapter focuses on data transmission

and how the data is processed by different stages of the pipeline. Below is a simplified

diagram illustrating the entire front-end design.

Figure 2.1: Computational pipeline for APT and ADAPT [8].

A single ALPHA data packet consists of an 8-word header, 4096 digitized sample words (16

channels × 256 samples), then a stop word. Of particular significance to the algorithms

described below, the header includes (among other data) the following fields:

• Bank: Which of the two analog memory banks were read out.

• Fine time: The sample number (current write position in the ring buffer) when the

trigger arrives.

• Starting sample: The number of the first sample listed in the output data packet.

6

In the current planned configuration (Figure 2.1), a single FPGA will perform pedestal

subtraction, signal integration, zero-suppression and island detection across outputs from

the 5 ALPHAs for a single layer-axis (labeled X-FPGA and Y-FPGA in the figure). Another

FPGA (labeled Centroid-FPGA) will perform centroiding and event building across an entire

layer, requiring a total of 12 FPGAs for ADAPT.

2.2 Data Process

The Compton computational pipeline is crafted to handle sensor data for astrophysical ob-

servations with high efficiency. It comprises a sequence of computational tasks that are

executed by the FPGA-based front-end electronics, integral to preprocessing the sensor data

into scientifically valuable information. The pipeline’s key stages are illustrated in Figure 2.2.

Figure 2.2: Dataflow architecture in detail [9].

There are seven stages for the FPGA data processing pipeline:

1. Read Data: The read process involves accessing raw data from multiple channels and

samples, reading the values, and performing a pedestal subtraction to remove baseline

noise.

2. Pedestal Subtraction: This step in the pipeline involves removing the baseline noise

from the data, known as pedestal subtraction. This process is critical for isolating

the true signal from the background noise inherent in the analog memory cells of the

waveform 8 digitizers (ALPHA ASICs). The pedestal values are subtracted from the

digitized readouts to obtain the actual signal values.

7

3. Signal Integration: Following pedestal subtraction, the signal integration stage sums up

the signal over a specified window to quantify the energy captured by each pixel. This

process involves integrating the waveform samples to infer the total number of photons

detected, which is fundamental for determining the characteristics of the observed

cosmic events.

4. Zero Suppression: To optimize data handling and storage, zero suppression is applied,

which sets negligible signal values to zero. This stage reduces the volume of data

that needs to be processed and transmitted, focusing on significant signal values that

indicate actual astrophysical events.

5. Merge Integrals: The merge-integrals process combines the integrated outputs from

multiple data sources, aggregates them, and centralizes the data for further processing.

This ensures that the integrals from different data streams are merged into a single,

unified dataset for subsequent steps.

6. Island Detection: The processed signals are then analyzed to identify clusters of ad-

jacent pixels with non-zero values, termed islands. These islands represent potential

astrophysical events or interactions within the detector. The identification of these

islands is a crucial step in mapping the spatial distribution of the detected events.

7. Centroiding: The final stage in the FPGA pipeline is centroiding, where the center of

gravity of the signal distribution within an island is calculated. This step provides a

precise localization of the events, which is essential for reconstructing the direction and

energy of the incident cosmic rays or gamma rays.

2.3 Considering Buffering Questions

Signals from the calorimeter fibers, edge-detectors, tail counters, and tracker fibers are con-

tinuously saved as an analog waveform on a series of switched-capacitor sample-and-hold

circuits that operate as a ring buffer. Storing the signal in analog form requires dramatically

less power than converting it to a digital signal. Upon receipt of a trigger, the triggered

channel(s) undergo analog-to digital conversion (with 12-bit resolution) and communication

to FPGAs for signal analysis. This technique has previously been deployed in terrestrial

telescopes using the TARGET ASIC [6] and in particle physics experiments using the DRS4

8

ASIC chip [10]. For ADAPT, an ALPHA ASIC chip that performs buffering and A/D conver-

sion is planned. The ALPHA supports 16 signal channels per chip. Given that the ALPHA

chip is a new design, currently undergoing testing, we need a backup plan in the event that

ALPHAs are not available in time for instrument fabrication. Alternative chips that will

be considered should the ALPHA not be ready include the above-mentioned TARGET chip

and its derivative HDSoC ASIC chip [11].

2.4 Related Work

Buffer occupancy is a critical concept in the design and optimization of data pipelines,

particularly in systems with sequential data processing where different processors operate

at varying speeds. Efficient buffer management is essential for preventing bottlenecks and

ensuring smooth data flow between processors. This section reviews related work on buffer

occupancy, discussing theoretical frameworks and real-world examples in various fields.

One of the key applications of buffer occupancy management is in network routers, where

data packets must be queued before processing and forwarding. To prevent buffer overflow

caused by varying input rates, techniques like Active Queue Management (AQM) [12], par-

ticularly Random Early Detection (RED) [13, 14], are employed. RED proactively drops

packets before buffers fill up, reducing congestion and preventing data loss. This adaptive

approach improves network performance by adjusting to fluctuating traffic, helping main-

tain smooth data transmission. Widely implemented in modern routers, RED and similar

methods demonstrate the importance of managing buffer occupancy to minimize latency and

ensure optimal system efficiency.

Additionally, in multicore processors, data is processed in parallel across cores with varying

workloads and speeds, which can lead to bottlenecks if one core becomes overloaded. Buffers

are used to temporarily store data between cores to prevent slow cores from stalling the entire

processing pipeline. Research has shown that buffer occupancy is closely tied to workload

distribution, and dynamic buffer management strategies have been developed to address this.

For instance, Jiang et al. [15] demonstrated that by adjusting buffer sizes in real-time based

on workload and processing speed, systems can optimize data flow and minimize delays.

This approach is particularly useful in high-performance computing, where efficient data

processing is crucial for maintaining maximum throughput.

9

Close to this thesis, in high-level synthesis (HLS)-based dataflow architectures, such as those

used in FPGA implementations of graph neural networks (GNNs), buffer occupancy plays a

critical role in managing task-level parallelism. The HLPerf framework, introduced by Zhao

et al. [16], demonstrates how First In, First Out (FIFO) buffers act as temporary storage be-

tween processing stages, ensuring smooth data flow. The framework simulates GNN models

and graph datasets to assess how buffer sizes impact system throughput. Small buffers can

cause data stalls, while oversized buffers may waste resources without performance gains.

HLPerf shows that optimal buffer sizes depend on the specific GNN model and dataset, high-

lighting the importance of buffer management in optimizing performance in FPGA-based

dataflow systems. Similarly, Faber and Chamberlain [17] model the BLAST [18, 19] compu-

tational biology application with both simulation techniques and network calculus [20, 21].

Simulation modeling has been widely used in the literature to assess buffering requirements

and the performance of pipelined systems. Kleinrock’s work on queueing theory established

early models for analyzing buffer occupancy in systems with variable processing times [22].

Jiang et al. introduced dynamic buffer resizing in multicore processors, optimizing real-time

data flow between cores [15]. Additionally, El Meligy et al. applied simulation-based methods

in adaptive bitrate streaming to optimize video quality by managing buffer occupancy based

on fluctuating network conditions [23]. Similarly, HLPerf by Zhao et al. used simulation to

evaluate the performance of dataflow architectures in FPGA-based systems, focusing on the

impact of buffer sizes in Graph Neural Networks (GNNs) [16]. These studies underscore the

importance of simulation in optimizing buffer management for enhanced system performance.

More broadly, simulation (in particular, discrete-event simulation) has been used to model

a wide variety of systems [24, 25, 26].

10

Chapter 3

Simulator Design

To determine how buffer occupancy impacts the effectiveness of our data pipeline, we de-

signed a discrete-event simulator to model the data flow through all of the pipeline stages.

This chapter outlines the construction of this simulator.

3.1 Simulator Module Simplified

The pipeline involves five ALPHA ASICs for detection, each group delivering data to an

FPGA for x-axis or y-axis processing, as well as an FPGA for centroiding. As discussed in

Chapter 2, each group of five ALPHA ASICs sequentially transfers data to both the X-FPGA

and Y-FPGA. Following zero suppression, a merging step occurs. This necessitates a loop in

the X-FPGA to perform the initial three steps: pedestal subtraction, signal integration, and

zero suppression. The Y-FPGA follows the same procedure. For simplicity in the simulator

design, we model the data flow as a single loop through the pipeline. Once this single loop

is functioning correctly, we incorporate the remaining four loops into the simulator. The

resulting pipeline, with buffers positioned between each processing stage, is illustrated in

Figure 3.1.

A raw data packet containing 65,680 bits is read and transferred to the Pedestal Subtraction

stage. The size remains unchanged until it passes through Compute Integrals, reducing to

2,192 bits. After Merging Integrals, the package size increases to 10,960 bits, and further to

11,600 bits after the Island Detection processor. Ultimately, at the end of the pipeline, the

data package size reaches 17,360 bits, which is the final size for export from the processing

procedure to the network interface. The packet sizes are illustrated in Figure 3.2. Note

that these packet sizes, and the subsequent initiation intervals discussed next, are those

11

Figure 3.1: Computational pipeline for all four detector layers.

documented in Sudvarg et al. [9] and are straightforward to alter within the simulation

model.

In the overall processing workflow, there are different processing initiation intervals for each

pipeline stage. The processing cycles for the seven processors are as follows: reading data

requires 267 clock cycles, pedestal subtraction requires 258 clock cycles, computing integrals

requires 273 clock cycles, zero suppression requires 6 clock cycles, merging integrals requires

22 clock cycles, island detection requires 105 clock cycles, and computing centroid requires

137 clock cycles [9].

Figure 3.2: Simplified computational pipeline.

12

The initial analysis in [9] neglected the chip-to-chip interface (labeled C2C in Figure 3.1)

between the X and Y FPGAs and the Centroid FPGA (i.e., the analysis corresponded

to the diagram of Figure 3.2). While our initial discrete-event simulation model followed

this practice, we subsequently expanded the simulator to explicitly include the chip-to-chip

interface, as illustrated in Figure 3.3.

In the transition from Figure 3.2 to Figure 3.3, the Chip-to-Chip (C2C) Channel is intro-

duced, providing a critical enhancement in data transfer between distinct processing units.

This channel enables efficient inter-chip communication, improving the accuracy of the pro-

cessing pipeline model. Specifically, after the island detection phase, data is transmitted

across chips via the C2C channel at a rate of approximately 50 Mbps. This addition fa-

cilitates the separation of computational tasks across different hardware modules, allowing

for better load distribution and parallelism, and more closely models the actual hardware

design. In the following chapter, we will investigate the implications of varying data rates

in the chip-to-chip channel.

Figure 3.3: Simplified computational pipeline including chip-to-chip interface.

3.2 Simulation Code Design

In designing the overall simulator, we first established the most basic pipeline structure.

During this design process, we retained only the initiation intervals of each processor. Other

fundamental parameters, such as input rate, clock cycle, and output rate, were intentionally

disregarded to ensure that the simulator could handle data packets in parallel processing

mode. This approach prevents the pipeline from operating in a serial mode, where the

next data packet would only be processed after the current one has fully traversed all seven

13

processors. This section outlines the construction and execution of a data pipeline simulation

using the SimPy library [27]. The simulation models a series of processors and buffers to

evaluate the performance and efficiency of data processing workflows. It is authored in the

process style [26], supported by SimPy, as opposed to the event-driven style. This allows

individual modeled elements to be expressed separately from one another, and the simulation

execution to proceed as a set of co-routines.

3.2.1 Process

The process method in this code simulates the flow of data batches through a processing

stage within a data pipeline. This method (shown in Figure 3.4) continuously processes

incoming data batches in a loop. Each data batch is retrieved from an input buffer, and

the current simulation time and data batch details are recorded when it enters the processing

stage. The state of the corresponding output buffer, identified by the last character of the

processor’s name, is also recorded, showing the number of packets it contains.

The method then simulates the processing time by pausing the execution for a specified

duration (self.processing time). After this period, the data batch exits the processing

stage, and a record is printed indicating this event along with the current simulation time.

The data batch is then transferred to the output buffer, and the updated state of this buffer

is recorded. This process repeats indefinitely, simulating a continuous data flow through the

pipeline.

14

Figure 3.4: Processing procedure definition.

3.2.2 Network Interface

The transmit function (Figure 3.5) models the transmission of data batches between buffers

in the pipeline that are data rate-limited (e.g., the network link from the FPGA to the

CPU). Operating in a continuous loop, it retrieves a data batch from the input buffer and

calculates the transmission time based on the data size and output rate. The function waits

for the calculated transmission time to simulate the transfer process. Afterward, it logs the

departure of the data batch from the processor and, if an output buffer is available, places the

data batch into it, logging the buffer’s occupancy. This function ensures accurate modeling

of data transmission times and buffer management within the pipeline simulation.

15

Figure 3.5: Network interface definition.

3.2.3 Data Generator

The data generator function (Figure 3.6) simulates the creation and introduction of data

batches into the processing pipeline at random intervals. Each data batch is uniquely identi-

fied by an incrementing data batch id. Within the function, a data batch is generated and

labeled as DataBatch {data batch id}, and then placed into the input buffer of the first

processor. This insertion is followed by log statements that record the current simulation

time and the status of the buffer, providing insight into the data flow through the pipeline.

The function continuously generates data batches, with each batch entering the first proces-

sor’s input buffer. The yield env.timeout(200) statement introduces a fixed delay of 200

simulation time units between the generation of consecutive data batches, simulating a de-

terministic input data rate. This is altered in some experiments to a Poisson arrival process

(exponentially distributed interarrival times). The random interval ensures variability in the

arrival of data batches, which better mimics real-world data processing scenarios and tests

the pipeline’s ability to handle data under fluctuating conditions.

16

Figure 3.6: Data generator definition.

3.2.4 Parameter Setting

The code in Figure 3.7 initializes a simulation environment to model a data pipeline, focusing

on processing times and data flow. The environment is set up using SimPy, with processing

times defined for each stage in clock cycles. Key parameters include a clock frequency of 250

MHz, input data rate of 250 Mbps, output rate of 66 Mbps, and data sizes for input and

output. The interval for data packet generation is calculated based on the input data size

and rate. Buffers are created to store data between stages, and processors are instantiated

with their respective processing times and clock period. This setup simulates the parallel

processing of data packets through multiple stages, allowing for the analysis of pipeline

performance and efficiency.

17

Figure 3.7: Initial parameter settings.

3.2.5 Chip-to-chip Channel

The chip-to-chip code of Figure 3.8 initializes a simulation environment to model a data

pipeline, focusing on processing times and data flow. The interval for data packet generation

is calculated based on the input data size and rate, similar to the network model.

Figure 3.8: Chip-to-chip definition.

18

3.2.6 Simulator

The code of Figure 3.9 stitches the above elements together and simulates a hardware or

network communication system using SimPy, a discrete-event simulation library. It models

multiple processors, buffers, and communication channels interacting within the environment

(env). Buffers are represented by simPy.Store objects, where each processor is associated

with a buffer for queuing data during processing. Seven processors are initialized with varying

processing times, simulating a realistic processing system.

The simulation also models communication between processors through a Chip-To-Chip

Channel and a Network Interface, which facilitate data transfers between components. Pro-

cesses for each processor, the chip-to-chip transfer, and the network interface are activated,

allowing for a detailed simulation of the system’s behavior over time.

Figure 3.9: Simulator design.

19

3.3 Initial Testing Results

3.3.1 Basic Code Running Result

While running the basic pipeline code, we get the results shown in Figure 3.10.

(a)Testing Result(1) (b)Testing Result(2)

Figure 3.10: Testing results samples.

From the output results, we can tell when a data package is generated, when does it enter

the data pipeline, and also for the exact time when it enters and exits from a buffer. We

named the buffer with its order in the pipeline, and adding a buffer 0 in the very front of

the pipeline to see if there is any data package being clogged even before it is input to the

pipeline.

This test gives us some confidence that the pipeline is working with data packages in parallel.

In this case, we can continue by adding parameters: input rate, output rate, and clock.

20

3.3.2 Buffer Occupancy Code Running Result

To make sure that the data package is not stuck inside the pipeline, we added a buffer after

the network interface buffer. This is set to represent how many data packages are successfully

exported from the pipeline. Figure 3.11 is an example of the output results. We can tell

from the output file there is an exact timetable of the status of each data package.

Figure 3.11: Buffer occupancy with time frame.

21

Chapter 4

Results

We developed the discrete-event simulator for the pipeline not only to determine the critical

point at which buffering is necessary but also to understand the buffer capacity required

within the pipeline. It is crucial to note that while the buffer capacity can be adjusted, it is

not infinite and cannot be modified arbitrarily during data processing. Therefore, we must

establish a specific buffer capacity value before the pipeline operation begins. This raises a

critical question: how can we determine the maximum buffer size needed, referred to as the

maximum occupancy?

During the execution of the basic simulation code, we observed that regardless of the vari-

ations in input and output rates, the buffer occupancy within the pipeline remained empty,

except for the buffer at the end of the pipeline, right before the network interface, which we

refer to as the network buffer. This buffer exhibited a transition from empty to occupied

as data completed processing and was exported to the network interface. Consequently, our

initial study shifts focus from analyzing all buffers within the pipeline to specifically investi-

gating the occupancy of the network buffer. This forms the initial objective of this chapter.

It is still important to retain the preceding buffers to maintain the pipeline’s integrity and we

subsequently investigate occupancy in intermediate buffers that will arise due to parameter

variations from those initially considered.

4.1 Fixed Input and Output Rates

Based on the maximum data rate supported by the ALPHA chips, data enters the compu-

tational pipeline at an input rate of approximately 250 Mbps. Considering the operational

status of the network interface, we have estimated the output rate to be 80 Mbps for initial

simulation modeling. The simulation is illustrated in Figure 4.1 and the simulation results

22

are shown in Figure 3.11. As can be seen, during the data transmission process, the time

interval between incoming data packets is significantly longer than the time it takes for a

packet to traverse the entire pipeline. Consequently, there is no need for buffers during the

system’s operation other than a single latch for continuity. Regardless of the number of data

packets transmitted, the buffer occupancy between any two processors remains zero. This is

because the processed data packet can immediately proceed to the next processor without

waiting in the buffer.

Figure 4.1: Simplified data pipeline with fixed input and output.

Given these conditions, we are reassured that, under the specified parameters, the data

transmission process remains smooth, preventing pipeline congestion as long as the processors

handle data efficiently. This insight leads us to the next line of inquiry: by adjusting one or

more of the parameters, can we identify a circumstance or set of circumstances were buffering

is required? At this point, the presence of buffers would become significant for temporarily

storing unprocessed data packets.

4.2 Varying Input Data Rate

To identify a critical point for the input data rate, we set the output rate to a constant

80 Mbps, the clock to 250 MHz, the runtime to 20 seconds, and varied the input data rate.

Through continuous adjustments, we discovered that with a fixed output rate of 80 Mbps,

the input rate could be increased to approximately 300 Mbps without increasing the buffer

occupancy. To better visualize the buffer occupancy at various input rates, we can refer to

Figure 4.2.

Figure 4.3 plots the input rate on the x-axis and buffer occupancy on the y-axis. It reveals

that when the input rate is less than or equal to 302 Mbps, the network buffer consistently

shows zero occupancy, indicating that no data packets are retained and the pipeline remains

unimpeded. However, once the input rate exceeds 303 Mbps, the network buffer begins to

23

Figure 4.2: Simplified data pipeline with fixed output.

accumulate data packets. Thus, under these conditions, 302 Mbps is identified as the critical

(threshold) input rate.

Figure 4.3: Buffer occupancy with ranging input rate (setting output rate to be 80 Mbps).

4.3 Varying Output Rate

We seek to identify another critical point: with the input rate fixed at 250 Mbps, and

maintaining the clock at 250 MHz and the runtime at 20 seconds, we will observe the

corresponding impact of varying the output data rate. By systematically analyzing the

behavior of the system under these conditions, we aim to determine the minimum output

rate needed to avoid buffer occupancy and ensure smooth data flow through the pipeline.

24

This analysis will provide further insights into the relationship between input and output

rates and help optimize the system’s performance.

This experiment is illustrated in Figure 4.4 and the simulation results (showing the buffer

occupancy of the network interface buffer at various output rates) are plotted in Figure 4.5.

Figure 4.4: Simplified data pipeline with fixed input.

Figure 4.5: Buffer occupancy with ranging output rate (setting input rate to be 250 Mbps).

Given the fact that the regularity of execution times in the pipeline implies that significant

buffering only happens in the network buffer, it is not surprising that the ratio of input data

rate to output data rate is the same at the critical point for both Figures 4.3 and 4.5.

25

4.4 Varying Execution Time

After completing the control variable study of input and output rates, we found that the

pipeline’s runtime also affects the network interface buffer’s occupancy. This is understand-

able because when the output rate is significantly lower than the input rate, the network

interface buffer’s occupancy gradually increases over time. The larger the difference between

input and output rates, the faster the occupancy of the buffer increases.

By plotting curves for different runtimes and input rates, while keeping the output rate

fixed at 80 Mbps, we observe that when the input rate is controlled at or below 302 Mbps,

the buffer occupancy remains zero regardless of the runtime. This is because the input

and output rates are balanced under these conditions. When the input rate increases to

303 Mbps, the network interface buffer shows non-zero occupancy, but the increase is not

significant enough to impact the pipeline’s operation severely, allowing us to maintain buffer

capacity within a fixed range to ensure smooth pipeline operation.

However, as the input rate continues to rise, the buffer’s occupancy varies significantly with

different runtimes, which can severely disrupt the pipeline’s normal operation, leading to

either data loss or severe data flow congestion. Therefore, through simulation testing using

this simulator, we can determine input and output rates that are feasible and conducive to

maintaining a stable and efficient pipeline.

These results are illustrated in Figure 4.6, which plots network interface buffer occupancy

as a function of input rate for a variety of runtimes. As expected, above the input rate

of ∼302 Mbps, the occupancy increases linearly with runtime. Below this input rate, the

network buffer stays empty.

Similarly, assuming we fix the input rate at a constant 250 Mbps and adjust the output rate

and runtime, we will obtain similar results. These results are illustrated in Figure 4.7. Again,

the network buffer occupancy increases linearly with runtime when buffering is present.

26

Figure 4.6: Ranging maximum occupancy with different running time (fixed output rate).

4.5 Switching Clock to 200 MHz

In designing the simulator, we focused primarily on input rate, output rate, clock speed,

and runtime because the initiation interval of each processor is generally fixed. Previously,

we discussed the impact of different input and outputs rates on buffer occupancy and the

influence of runtime. Next, we will briefly examine the effect of clock frequency on the

buffer’s maximum occupancy.

Our pipeline model supports two clock frequencies: 200 MHz and 250 MHz. Therefore,

we will discuss the additional case of 200 MHz in comparison to 250 MHz. As shown in

Figure 4.8, the impact of clock frequency changes on buffer size is not significantly different

between 200 MHz and 250 MHz (compare Figure 4.8(a) to Figure 4.3 and compare Fig-

ure 4.8(b) to Figure 4.5). The slight variation in clock speed does not substantially affect

the buffer’s performance, suggesting that the buffer capacity requirements remain consistent

across these frequencies. Consequently, we will not conduct additional simulation testing for

different runtimes under varying clock frequencies, as the current data sufficiently demon-

strates that clock frequency has a minimal impact on the needed buffer size.

27

Figure 4.7: Ranging maximum occupancy with different running time (fixed input rate).

4.6 Tracking Network Buffer Occupancy with Time

To more closely observe the buffer occupancy near the breakpoint (where buffering occurs),

we plotted the curve showing how occupancy changes over time. From Figure 4.3 above,

we can see that for a fixed output rate, the threshold input rate is 302 Mbps. When the

input rate is slightly increased to 302.673 Mbps, we observe (in Figure 4.9(a)) that during

the simulation the network buffer is almost never occupied, with only a few instances where

a single data packet is present. However, when the input rate is further increased to 302.68

Mbps and the simulation is run for 30 seconds (see Figure 4.9(b)), the buffer occupancy

continues to rise steadily.

Building on this, we combine the curves for comparison in Figure 4.10. It is evident that all

of the curves with greater than 302.67 Mbps show a relatively modest upward trend as the

simulation time extends.

28

(a) Ranging input rate with a clock of 200 MHz.

(b) Ranging output rate with a clock of 200 MHz.

Figure 4.8: Buffer occupancy with a 200 MHz clock.

29

(a) Tracking occupancy with input rate 302.673 Mbps.

(b) Tracking occupancy with input rate 302.68 Mbps.

Figure 4.9: Network buffer occupancy increasing with time.

30

(a) 3 different input rates.

(b) 4 different input rates.

Figure 4.10: Network buffer occupancy with different input rates.

31

4.7 Comparing Network Buffer Occupancy with Time

(Fixed & Poisson)

There is no substantive difference in the buffering performance between fixed interval inputs

(representing the maximum rate that the ALPHA chips can provide data) and Poisson

distributed inputs (for an alternative input mechanism with a higher peak rate that then

reflects the physical Poisson arrival process of gamma rays) in all of the earlier presented

results. However, the trace data presented in Figures 4.9 and 4.10 don’t have this property.

Input arrivals that are distributed via a Poisson arrival process will not look the same in

their trace data as deterministic arrivals.

Figure 4.11 shows two plots tracing the network buffer occupancy over time with the input

interarrival times being exponentially distributed (i.e., coming from a Poisson distribution).

In this case, the input arrival rate is the mean arrival rate. Figure 4.11(a) can be compared

to Figure 4.9 and Figure 4.11(b) can be compared to Figure 4.10.

While the detailed specifics of each plot are different, as is to be expected, the general

conclusion is very much the same. Right at the same input arrival rate (whether it be

deterministic or a mean value) there is a transition from a negligible buffer occupancy to a

slowly building buffer occupancy in the part of the network interface buffer.

4.8 Varying the Chip-to-chip Data Rate

Up to now, the discussion has not included the chip-to-chip (C2C) channel (it is assumed

to not be a limiting factor). We now introduce the C2C channel and analyze the impact

of different C2C rates. The inclusion of the C2C channel has minimal effect on the buffer

occupancy within the centroiding FPGA. Therefore, we focus on the occupancy of the buffer

immediately preceding the C2C channel, which we will refer to as the “C2C buffer” (see

Figure 4.12).

Figure 4.13 shows how the buffer occupancy of the C2C buffer varies with the C2C data rate.

Above 45 Mbps, we are essentially in the same state as the models earlier in the chapter, in

which the chip-to-chip link doesn’t impact the performance of the pipeline. At 44 Mbps and

32

(a) 3 different input rates.

(b) 4 different input rates.

Figure 4.11: Network buffer occupancy with different input rates. Inputs are from Poisson
distribution.

33

Figure 4.12: Data pipeline with changing C2C rate.

lower, we clearly get buffering in the C2C buffer. As is the case for the network interface

buffer, lower C2C data rates result in increased buffer occupancy.

Figure 4.13: C2C buffer occupancy with varying C2C data rates.

The above limitation (when the C2C link becomes a bottleneck) is clearly also a function

of the input data rate. We explore this circumstance next. Figure 4.14 plots C2C buffer

occupancy against input data rate for a set of different C2C link rates. Here, we see the

transition from non-limiting performance to limiting performance happen at different input

data rates.

At this point, we have explored two variables—the input rate and the C2C rate. From

the graph, it can be observed that with the same input rate, different C2C rates affect the

34

Figure 4.14: Ranging chip-to-chip rate with different input rates (output rate is 80 Mbps).

occupancy threshold of the C2C buffer. Increasing both the input rate and the C2C rate

simultaneously has a relatively smaller impact on buffer occupancy.

When we switch the second variable from input rate to output rate, the input rate is set

to the initial reference value of 250 Mbps. From the previous experiments, we know that

when the input rate is 250 Mbps, changes in the C2C rate do not affect the occupancy

of the C2C buffer. Therefore, our focus shifts back to the network buffer. As shown in

Figure 4.15(a), we observe that the smaller the chip-to-chip rate, the lighter the load on the

network buffer, and the lower the threshold for the output rate triggering non-empty buffers.

In Figure 4.15(b), we find that no matter how much the C2C rate increases, the curve remains

unchanged. This curve becomes identical to that of Figure 4.5. This is because, with the

fixed initiation intervals (II) of each processing element, increasing the C2C rate no longer

introduces resistance and can even be regarded as non-existent (i.e., ignored in the model),

leading to this result.

35

(a) C2C buffer occupancy with different chip-to-chip rates.

(b) Ranging chip-to-chip rates over 45 Mbps.

Figure 4.15: Ranging chip-to-chip rates with different output rates (input rate is 250 Mbps).

36

4.9 Summary

The take-home message from this work is that the buffering requirements in the compu-

tational pipeline are acting effectively as if both the input arrival process and the service

processes are all deterministic. This is true even when the actual arrival process is not

deterministic, but rather is Poisson.

The implications of the above observation are that for each individual potential bottleneck,

there is a sharp transition between “fast enough,” in which there is limited to no buffering

required and “too slow,” in which the buffer occupancy grows without bound.

37

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis simulates and discusses the performance of the ADAPT telescope’s data pipeline.

By evaluating the impact of different data transmission rates (including input rate, output

rate, and chip-to-chip rate) on the pipeline’s performance, we aim to determine the maximum

input rate and minimum output rate that the pipeline can sustain to prevent packet loss or

pipeline congestion.

During the simulations, we estimated an average input rate based on the frequency of gamma-

ray generation and emission in the universe, as limited by the input rate sustainable by the

front-end electronics. This rate served as a reference for adjusting the output rate (i.e., the

network interface transfer rate) to assess its impact on the overall pipeline. Similarly, we

fixed an initial network interface transfer rate and explored the effect of adjusting the input

rate on pipeline performance. Following the same approach, when discussing the chip-to-chip

rate, we kept the input and output rates constant as control variables. To prevent packet

loss and congestion, we introduced an infinitely large buffer after each data processor and

monitored buffer occupancy to determine the extreme sustainable rates for the pipeline.

The simulations revealed that, due to the fixed initiation interval (II) of each processing

element, the first three processors had similar and significantly larger IIs compared to the

latter ones. As a result, the buffers between processors remained largely unoccupied, while

the buffer before the network interface consistently showed occupancy (a similar phenomenon

was observed in the buffer before the chip-to-chip channel when it was included in the

analysis). Therefore, our focus shifted to the buffers at these critical junctions.

38

Through several rounds of simulation, we determined the boundary or threshold values for

different transmission rates. At the same time, we extended the simulation duration to

model the buffer occupancy during prolonged data reception, aiming to find the maximum

occupancy and thus confirm the minimum buffer capacity required to avoid affecting pipeline

performance. Because in these cases we had exceeded the data movement capacity of the

pipeline stage, regardless of how long the simulation was extended, buffer occupancy con-

tinued to grow linearly, preventing us from obtaining a bounded curve. Consequently, the

system effectively operates as a pipeline with deterministic service times and a deterministic

arrival process, even when the actual arrival process is Poisson.

5.2 Future Work

Building on the findings from this study, there are several avenues for future research to

further enhance the understanding and performance of the ADAPT telescope’s data pipeline:

1. Dynamic Buffer Sizing and Adaptive Rate Control: One of the key limitations encoun-

tered was the linear growth of buffer occupancy over time, suggesting that current

fixed buffer strategies may be insufficient for long-term operations. Future work could

explore dynamic buffer sizing techniques, where buffer capacity adjusts in real-time

based on current data flow conditions. Additionally, implementing adaptive rate con-

trol algorithms may help optimize the input, output, and chip-to-chip transmission

rates to reduce occupancy and prevent pipeline congestion.

2. Advanced Load Balancing Techniques: Since the last buffer before the network inter-

face and chip-to-chip channel is where the occupancy issues manifest themselves, future

work could explore more sophisticated load balancing strategies between processors.

By distributing the data load more evenly, especially across critical junctions, it may

be possible to mitigate the bottlenecks observed in the current pipeline configuration.

3. Long-Term Pipeline Behavior Modeling: While this study primarily focused on short-

term simulation, extending the analysis to model long-term pipeline behavior more

accurately is essential. Future work could involve advanced mathematical modeling

techniques or machine learning approaches to predict buffer occupancy over extended

39

periods, helping identify potential long-term performance boundaries and avoiding lin-

ear occupancy growth.

4. Exploration of Alternative Processing Architectures: Given that the initiation intervals

(II) of the first few processors are significantly larger than the latter ones, alternative

processing architectures or task scheduling methods could be explored. Future re-

search might focus on optimizing processor intervals to create a more balanced data

flow throughout the pipeline, reducing the burden on buffers and improving overall

performance.

5. Integration of Real-World Data and Feedback: This study relied on simulated data

based on gamma-ray frequencies and other cosmic events. Future work could focus on

integrating real-world observational data into the simulation to more accurately reflect

the performance requirements of the ADAPT telescope. Additionally, incorporating

feedback mechanisms from the system in real-time could further refine the pipeline’s

adaptability to changing data conditions.

6. Boundary and Threshold Refinement: While we determined initial boundary and

threshold values for transmission rates, future research could focus on refining these

thresholds through more granular simulations or by applying optimization techniques

to define more precise limits for various pipeline parameters. This would enable a

clearer understanding of the maximum sustainable rates without risking packet loss or

system congestion.

By addressing these areas, future research can provide a more robust and scalable pipeline

solution for the ADAPT telescope, ensuring it can handle varying data rates and conditions

without performance degradation.

40

References

[1] James Buckley et al. The Advanced Particle-astrophysics Telescope (APT) Project
Status. In Proc. of 37th Int’l Cosmic Ray Conference, volume 395, pages 655:1–655:9.
Sissa Medialab, July 2021.

[2] Wenlei Chen et al. The Advanced Particle-astrophysics Telescope: Simulation of the
Instrument Performance for Gamma-Ray Detection. In Proc. of 37th Int’l Cosmic Ray
Conference, volume 395, pages 590:1–590:9. Sissa Medialab, 2021.

[3] Marion Sudvarg et al. A Fast GRB Source Localization Pipeline for the Advanced
Particle-astrophysics Telescope. In Proc. of 37th Int’l Cosmic Ray Conference, volume
395, pages 588:1–588:9. Sissa Medialab, July 2021.

[4] Wenlei Chen, James Buckley, et al. Simulation of the instrument performance of the
Antarctic Demonstrator for the Advanced Particle-astrophysics Telescope in the pres-
ence of the MeV background. In Proc. of 38th Int’l Cosmic Ray Conference, volume
444, pages 841:1–841:9. Sissa Medialab, July 2023.

[5] C. Aramo, E. Bissaldi, M. Bitossi, et al. A SiPM multichannel ASIC for high Resolu-
tion Cherenkov Telescopes (SMART) developed for the pSCT camera telescope. Nucl.
Instrum. Methods Phys. Res. A, 1047:167839, 2023.

[6] K. Bechtol, S. Funk, A. Okumura, L.L. Ruckman, A. Simons, H. Tajima, J. Vanden-
broucke, and G.S. Varner. TARGET: A multi-channel digitizer chip for very-high-energy
gamma-ray telescopes. Astroparticle Physics, 36(1):156–165, 2012.

[7] Ye Htet, Marion Sudvarg, Jeremy Buhler, Roger D. Chamberlain, and James H. Buckley.
Localization of gamma-ray bursts in a balloon-borne telescope. In Proc. of Workshops
of the International Conference on High Performance Computing, Network, Storage,
and Analysis (SC-W), pages 395–398. ACM, November 2023.

[8] James H. Buckley, Jeremy Buhler, and Roger D. Chamberlain. The advanced particle-
astrophysics telescope (APT): Computation in space. In Proc. of 21st International
Conference on Computing Frontiers Workshops and Special Sessions. ACM, May 2024.

[9] Marion Sudvarg, Chenfeng Zhao, Ye Htet, Meagan Konst, Thomas Lang, Nick Song,
Roger D. Chamberlain, Jeremy Buhler, and James H. Buckley. HLS taking flight:
Toward using high-level synthesis techniques in a space-borne instrument. In Proc. of
21st International Conference on Computing Frontiers. ACM, May 2024.

[10] Stefan Ritt. Design and performance of the 6 GHz waveform digitizing chip DRS4. In
IEEE Nuclear Science Symposium Conference Record, pages 1512–1515. IEEE, 2008.

41

[11] M. Mishra, K. Flood, K. Lauritzen, L. Macchiarulo, I. Mostafanezhad, B. Rotter, G. Ue-
hara, and G. Varner. Application of high density digitizer system-on-chip (HDSoC)
prototype for acquiring fast silicon photomultiplier signals. In Proc. of Nuclear Science
Symposium and Medical Imaging Conference. IEEE, 2022.

[12] Richelle Adams. Active queue management: A survey. IEEE Communications Surveys
& Tutorials, 15(3):1425–1476, 2012.

[13] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[14] Dong Lin and Robert Morris. Dynamics of random early detection. In Proc. of ACM
SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 127–137, 1997.

[15] H. Jiang, J. Guan, J. Chen, and L. Wang. Adaptive buffer resizing for high-performance
multicore systems. In Proc. of ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2012.

[16] Chenfeng Zhao, Clayton J. Faber, Roger D. Chamberlain, and Xuan Zhang. HLPerf:
Demystifying the performance of HLS-based graph neural networks with dataflow ar-
chitectures. ACM Transactions on Reconfigurable Technology and Systems, 2024.

[17] Clayton J. Faber and Roger D. Chamberlain. Application of network calculus models
to heterogeneous streaming applications. In Proc. of IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 198–201, May 2024.

[18] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[19] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J.
Lipman. Gapped BLAST and PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Research, 25:3389–402, 1997.

[20] R.L. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE Trans.
Inf. Theory, 37(1):114–131, 1991.

[21] R.L. Cruz. A calculus for network delay. II. Network analysis. IEEE Trans. Inf. Theory,
37(1):132–141, 1991.

[22] Leonard Kleinrock. Queueing Systems, Volume I: Theory. John Wiley, New York, NY,
USA, 1975.

[23] Ahmed O. El Meligy, Mohamed S. Hassan, and Taha Landolsi. A buffer-based rate
adaptation approach for video streaming over HTTP. In Proc. of Wireless Telecommu-
nications Symposium (WTS). IEEE, 2020.

42

[24] Jerry Banks. Handbook of Simulation: Principles, Methodology, Advances, Applications,
and Practice. John Wiley & Sons, New York, NY, USA, 1998.

[25] George S. Fishman. Discrete-Event Simulation: Modeling, Programming, and Analysis.
Springer, New York, NY, USA, 2001.

[26] A. Law and D. Kelton. Simulation Modelling and Analysis. McGraw Hill, New York,
NY, USA, 1991.

[27] SimPy Team. SimPy: Discrete event simulation for Python. https://simpy.

readthedocs.io, 2023. Accessed Aug. 2023.

43

https://simpy.readthedocs.io
https://simpy.readthedocs.io

	Modeling the Performance and Resource Requirements for Gamma-Ray Telescope Signal Processing
	Recommended Citation

	List of Figures
	Acknowledgments
	Abstract
	Chapter Introduction
	APT
	ADAPT
	Basic Information
	Hardware Design Overview
	Motivation

	Thesis Structure and Contributions

	Chapter Background and Related Work
	Data Pipeline
	Data Process
	Considering Buffering Questions
	Related Work

	Chapter Simulator Design
	Simulator Module Simplified
	Simulation Code Design
	Process
	Network Interface
	Data Generator
	Parameter Setting
	Chip-to-chip Channel
	Simulator

	Initial Testing Results
	Basic Code Running Result
	Buffer Occupancy Code Running Result

	Chapter Results
	Fixed Input and Output Rates
	Varying Input Data Rate
	Varying Output Rate
	Varying Execution Time
	Switching Clock to 200 MHz
	Tracking Network Buffer Occupancy with Time
	Comparing Network Buffer Occupancy with Time (Fixed & Poisson)
	Varying the Chip-to-chip Data Rate
	Summary

	Chapter Conclusions and Future Work
	Conclusions
	Future Work

	References

