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The Advanced Particle-astrophysics Telescope (APT) and its preliminary iteration the Antarc-

tic Demonstrator for APT (ADAPT) are highly collaborative projects that seek to capture

gamma-ray emissions. Along with dark matter and ultra-heavy cosmic ray nuclei measure-

ments, APT will provide sub-degree localization and polarization measurements for gamma-

ray transients. This will allow for devices on Earth to point to the direction from which

the gamma-ray transients originated in order to collect additional data. The data collec-

tion process is as follows. A scintillation occurs and is detected by the wavelength-shifting

fibers. This signal is then read by an ASIC and stored in an ADC buffer. This buffer is

then formatted as a data packet with a meaningful header and stored in memory that is

accessible by an FPGA. This is where the data must be preprocessed before being sent on

to the CPU for the localization algorithms. This preprocessing includes capacitive memory

pedestal subtraction and taking four trigger-relative time integrals per channel. There are

16 channels per ASIC. The HLS implementation of this FPGA data preprocessing seeks to

answer the following questions. How well can HLS map this näıve C preprocessing model to

an FPGA image? What HLS optimizations are most useful for this application? What are

the reported latencies of these optimized models? How much chip area is consumed by each

of these designs? How many ASICs can be processed by one FPGA?
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Chapter 1

Introduction

The Advanced Particle-astrophysics Telescope (APT) and its preliminary iteration the Antarc-

tic Demonstrator for APT (ADAPT) are highly collaborative projects that seek to capture

gamma-ray emissions. Along with dark matter and ultra-heavy cosmic ray nuclei measure-

ments, APT will provide sub-degree localization and polarization measurements for gamma-

ray transients. This will allow for devices on Earth to point to the direction from which the

gamma-ray transients originated in order to collect additional data. A version of the flight

instrument and its three detection modes is shown in Figure 1.1 [2]. The focus for this thesis

is the preprocessing for the gamma-ray detection and localization computational pipeline.

Descriptions of the overall computational pipeline are provided in [15, 16]. This thesis has

its focus on the processing prior to this, essentially the data preprocessing steps prior to the

centroiding stage.

Here, we will explore the development of the data preprocessing using High-Level Synthesis

(HLS), which holds the promise of decreasing development effort for FPGA designs [5, 12],

but is fraught with issues of non-performing applications [13]. The HLS implementation of

this FPGA data preprocessing seeks to answer the following questions.

• How well can HLS map this näıve C preprocessing model to an FPGA image?

• What HLS optimizations are most useful for this application?

• What are the reported latencies of these optimized models?

• How much chip area is consumed by each of these designs?

• How many ASICs can be processed by one FPGA?

1



Figure 1.1: Top: APT in Falcon-9 faring. Bottom: Detection modes. [2]

2



1.1 Computational Context and Requirements

The APT data collection process is as follows. A scintillation occurs and is detected by the

wavelength-shifting fibers. This signal is then read by an ALPHA ASIC and stored in an

ADC buffer. This buffer is then formatted as a data packet with a meaningful header and

stored in memory that is accessible by an FPGA. This is where the data must be preprocessed

before being sent on to the CPU for the localization algorithms. The APT hardware pipeline

used for the data collection described above is shown in Figure 1.2.

Figure 1.2: APT hardware pipeline.

Within the APT software pipeline that is used for testing purposes, there is a set of C

functions that generates input data for the FPGA. These generation files were originally

developed by Gary Varner and his team at The University of Hawai’i and have since been

modified by Marion Sudvarg from Washington University in St. Louis to include the most

recent expected input signal models developed by Leonardo Di Venere and their team at

National Institute for Nuclear Physics - Bari [1].

The full input generation system is shown in Figure 1.3 with the inputs to the FPGA

(peds.dat and EventStream.dat) circled and the pre-existing FPGA emulation crossed out

since it is being replaced by the work described in this thesis.

The EventStream.dat file is a space-delineated bit stream that requires the corresponding

packet definition shown in Figure 1.4 in order to be properly interpreted. We have highlighted

the fields within this packet definition that are most relevant to our work:

• Bank ID: Specifies which ADC buffer bank (A or B) the packet originated from. Having

two banks allows for one bank to be filled while the other is being read out.

• FineTime: The sample number when the trigger arrives. The trigger occurs once the

event is detected.

3



Figure 1.3: The software model used to generate input data for the FPGA.

• N samples to be read: How many samples within the ADC buffer were valid / relevant.

• Starting sample number: The sample number when the first component of the event

arrives.

• Samples: The samples for each of the 16 channels collected every 10 ns.

Figure 1.4: The packet format used to communicate a single sampling window to the FPGA.

The main components of the current data preprocessing scheme that is being implemented

on the FPGA are as follows: pedestal subtraction and performing four trigger-relative time
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integrals for each channel. There are 16 channels per ALPHA ASIC. A pedestal is an

intentional offset that is added to our signal in order to be able to detect signals of very

small magnitudes. This offset is unique and known for each of the ADC buffer slots. Pedestal

subtraction removes these offsets after they have served their purpose in generating a signal

large enough to create a trigger. An integral over time provides us with the total energy

produced by an event over a given time period. There are currently four different integral

types of interest: pre-signal noise, main signal, tail of the signal, and whole sampling window.

These four integral types are shown on a fake input signal in Figure 1.5.

Figure 1.5: A sampling window showing the four different integral types: 1) blue: pre-signal
noise, 2) purple: main signal, 3) green: tail, 4) red: whole window.

1.2 Contributions and Thesis Outline

This thesis makes the following contributions to the ADAPT mission:

• A software testing infrastructure to interface with the existing input generation system

and the new data preprocessing functions.

• Software implementations of the data preprocessing functions that are used to verify

functional correctness.
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• Vitis Host and Kernel files to map the software implementation to an FPGA image.

• Reports on how well HLS can map the naive C preprocessing model to an FPGA image.

• Clocking frequency, latency, area, and power measurements of several HLS optimization

iterations.

• Estimates for how many ASICs an FPGA can support based on area statistics.

• A hardware implementation of the data preprocessing functions that is ready for further

HLS optimizations.

• Suggestions on which HLS optimizations to try next.

The outline of the remainder of the thesis is as follows. Chapter 2 provides background and

related work. Chapter 3 describes the algorithms that are accelerated on the FPGA. Chap-

ter 4 gives the HLS implementations, and Chapter 5 has conclusions and a brief description

of future work.

6



Chapter 2

Background and Related Work

2.1 Background

The first concept that needs to be discussed is the two main FPGA design approaches.

The traditional approach for designing an FPGA image involves using hardware description

languages (HDLs) such as Verilog or VHDL. The main issues with this approach are that

there is a steep learning curve for using these HDLs, this approach is prone to user error,

and it is also very difficult to debug [8]. The main way to debug HDL implementations is

waveform analysis, where every relevant signal is examined relative to the system clock(s).

The second, newly available approach to FPGA design is High-Level Synthesis (HLS). This

approach allows software engineers to produce FPGA images using software languages such

as C, C++, and OpenCL C.

There are two major FPGA suppliers, each with their own set of HLS tools: Xilinx and

Intel. We are focusing on Xilinx devices and are thus using their Vitis toolset for HLS. Vitis

HLS implementations are divided into two components: the Host and the Kernel. The Host

is responsible for creating an OpenCL environment, initializing the inputs to the kernel as

memory buffers, initiating the Kernel, and reading and processing its outputs. This is where

the software interface functions described in Chapter 3 are implemented. The Kernel is the

equivalent of a FPGA module where the preprocessing algorithms (pedestal subtraction and

integration) are implemented. The Host and Kernel communicate over a specified interface.

The default interface is AXI, which is a standard ARM bus-protocol.

Another important topic to discuss for HLS optimization is loop type. There are three types

of loops: imperfect, semi-perfect, and perfect. For HLS optimizations, a semi-perfect or

perfect loop is preferred [18]. An imperfect loop is characterized by having variable loop

bounds and operations outside of the innermost loop, as shown in Figure 2.1. A semi-perfect
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loop has all of its operations inside the innermost loop and has variable bounds only on its

outermost loop, as shown in Figure 2.2. A perfect loop has all of its operations inside the

innermost loop and has constant bounds for all loops, as shown in Figure 2.3. It is important

to note that perfect loops may require conditional execution within the innermost loop if

the given operation should not be performed every iteration. Semi-perfect and perfect loops

have similar performance metrics and so whichever type is more applicable for the use-case

should be used.

Figure 2.1: Characterizations of an imperfect loop.

Figure 2.2: Characterizations of a semi-perfect loop.
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Figure 2.3: Characterizations of a perfect loop.

2.2 Related Work

While the tools and methods to use HLS are still being developed, there has been a study that

compares the design productivity of HLS compared to HDL where they report an average

productivity gain of 2.3x, which breaks down into an average gain in design time of 4.4x and

an average loss in quality of 1.9x [12].

A common theme across the HLS research space is that direct porting of a design from a

different platform is nowhere near enough to achieve similar performance [4, 11, 13, 20, 21].

Several optimizations must be applied and even then, the HLS solution may perform worse

than the mature software solution or exhibit variable performance depending on the input

size while the software solution has uniform performance across all inputs [11].

There are two main optimization styles for HLS: Multiple Work Item (MWI) and Single

Work Item (SWI). MWI refers to acting on wide vectorized data whereas SWI refers to

creating a deeply pipelined solution. While there has been work investigating MWI versus

SWI styles [3, 11], this thesis stays with the SWI style as recommended by Xilinx [18].

In order to familiarize ourselves with the current HLS optimization techniques, we watched

a lecture given by Johannes de Fine Licht covering the material from their survey paper. In

the lecture, several concepts and techniques were discussed, such as the data flow pipeline,

initiation intervals, the depth and width of an operation, loop unrolling, and potential fanout

issues that can limit resource utilization [6].
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The major barrier for using HLS is the knowledge and skill of proper pragma placement.

To this end, there has been a fair amount of work attempting to set pragmas automati-

cally [14, 17]. One of these papers has taken a bottleneck-centric optimization approach and

has been able to provide performance-comparable solutions with a 26.38x pragma reduction

compared to manually optimized HLS solutions [14]. The other has has chosen a Deep Cor-

related Gaussian Process (DCGP) optimization model [17]. Along with pragma placement

automation, there has also been work towards automated debugging based on the functional

equivalence of software and hardware implementations that allows for error localization and

correction [8].

While there have been several papers documenting best practices when it comes to HLS,

there is still an ongoing issue of being able to predict performance at compile time [7].

Some of these failed optimization attempts have been documented by our group to provide

areas for improvement for the toolchain development, along with a recommendation for the

continuation of making parts of the HLS toolchain open-source [7].
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Chapter 3

Accelerated Algorithms

Two sets of algorithms are necessary to interact with the Vitis infrastructure. The first set

is implemented in the Host component and contains the software interface functions that are

needed to connect the hardware functions to the larger software pipeline model. The second

set is implemented in the Kernel component and contains the hardware functions that per-

form the main data preprocessing. The Host functions are solely used as test infrastructure,

while the Kernel functions will actually be deployed on the flight instrument. The following

sections dive into more detail about both sets of algorithms.

3.1 Software Interface Functions

The software interface functions serve to connect the hardware model of the data preprocess-

ing functions to the larger software pipeline model for event localization. These functions

are for testing purposes only and will not be deployed on the flight instrument. The data

flow of inputs and outputs for the software interface functions are shown in Figure 3.1. The

generation of the EventStream.dat and peds.dat files is discussed in Chapter 1 and shown

in Figure 1.3.

3.1.1 data packet dat to struct

The first function that will be discussed is data packet dat to struct. As the name would

imply and as is shown in Figure 3.1, this function takes the EventStream.dat file as an input

and produces a usable struct representation of that data. The EventStream.dat file is a

space-delineated bit file, which is difficult to interpret at a glance, as shown in Figure 3.2.

11



Figure 3.1: Software interface functions data flow diagram.

The resulting output of this function is much easier to work with and interprets the bit file

as the data packet described in Figure 1.4 but with each component mapped to its own field

in a C struct type. The struct definition used is shown in Figure 3.3.

3.1.2 peds dat to arrays

Similar to data packet dat to struct, peds dat to arrays takes a .dat file as an input and

provides a more useful C configuration as an output. In this case, that output is a 3D array

containing all of the pedestal values for both ADC buffer banks. The input file peds.dat

is more readable than the EventStream.dat file due to its configuration. Each row in the

file starts with a piece of metadata that specifies the sample number. This metadata is

then followed by the 16 channel values for that sample. Along with this helpful metadata,

all values are reported in decimal format as opposed to bit format, which again helps with

readability. A snippet of the peds.dat file is shown in Figure 3.4. The full data structure of

the file is shown in Figure 3.5 where A and B represent the two ADC buffer banks. From this

structure it is simple to see the appropriate mapping to the 3D array shown in Figure 3.6.

12



Figure 3.2: Part of the EventStream.dat input file.

Figure 3.3: SW Data Packet C struct definition.
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Figure 3.4: Part of the peds.dat input file.

Figure 3.5: The data structure of the peds.dat file.

Figure 3.6: The 3D array representation of the pedestal values.
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3.1.3 write output

The write output function takes the data packet header information, the specified integral

bounds, and the 4 integrals for each of the 16 channels produced by the hardware model

to produce an output.txt file that contains all of the aforementioned information. This

function has two sub-functions: write header and write integrals to handle writing the two

sets of information to the output file since they require different formatting. An example

output file is shown in Figure 3.7.

Figure 3.7: An example output.txt file with fabricated integral bounds.

3.1.4 struct to json

The struct to json function takes the SW Data Packet struct instance as an input and pro-

duces a JSON output file. Similar to write output, this function has two corresponding

sub-functions: add to json and add samples to json. This function set is mainly used to de-

bug the parsing of EventStream.dat but can also be used to provide a data dump of the data

packet prior to preprocessing. The JSON format was chosen here because it is a standard

data interchange format that is human-readable and uses attribute-value pairs and arrays.

A snippet of the packet.json output file is shown in Figure 3.8.

15



Figure 3.8: A snippet of the packet.json file that is used for debugging and data dumps.

3.2 Hardware Functions

The hardware functions are implemented in the Kernel and are the main focus of the acceler-

ation and optimization efforts. These functions will persist beyond the software pipeline and

its corresponding interface functions and be deployed on the flight instrument. The current

FPGA data preprocessing effort has two operations: pedestal subtraction and integration.

Both of these functions are described in detail below.

3.2.1 ped subtract

The ped subtract function is used to remove the pedestal offsets from all of the input samples.

This operation is performed on all 256 samples for all 16 channels. The pedestal offsets are

specific to each ADC buffer slot. Due to the fact that an event can occur at any time,

the starting sample of an event will not necessarily line up with the first ADC buffer slot.

And so, special care is needed while indexing the pedestal array in order to subtract the

appropriate offset. This is accomplished by starting the sample index at 0 and the pedestal

index at the starting sample number, that specifies which ADC buffer slot that sample was

stored in. From there, the indices move along their respective arrays, with the pedestal index

potentially needing to wrap around once it has reached the end of its array. This indexing

scheme and larger operation are depicted in Figure 3.9 and the pseudocode is provided in

Figure 3.10.
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Figure 3.9: Visual representation of the ped subtract function.

idx = starting sample number;

for i from 0 to number of samples read {

for j from 0 to NUM_CHANNELS-1 {

results[i][j] = samples[i][j] - pedestals[bank][idx][j]

}

idx += 1;

if idx == NUM_SAMPLES {

idx = 0;

}

}

Figure 3.10: Software ped subtract pseudocode.
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3.2.2 integral

The integral function sums over the results of the pedestal subtraction for each of the 16

channels within the specified trigger-relative bounds. The only potential complication within

this function is if a specified set of bounds wraps around the data array, in which case special

consideration is needed. On further investigation, this wraparound behaviour is not expected

since the array being summed over starts with the first sample of the given event and so there

will be no earlier samples available. Thus, there will be no need to loop around the ends

of the array with our current specified integral types. However, if a new integral type that

summed both the pre-signal noise as well as the tail behavior or some similar configuration

was deemed to be useful, then this wraparound logic would become relevant once more. The

behavior of the two integral configurations–linear and wraparound–are shown in Figure 3.11

and the pseudocode is provided in Figure 3.12.

Figure 3.11: Visual representation of the two integral function configurations: linear and
wraparound.
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int32_t integral;

if (end >= start) {

for i from 0 to NUM_CHANNELS-1 {

integral = 0;

for j from start to end {

integral = integral + samples after ped_subtract[j][i];

}

integrals[integral number][i] = integral;

}

}

else {

for i from 0 to NUM_CHANNELS-1 {

integral = 0;

for j from start to NUM_SAMPLES-1 {

integral = integral + samples after ped_subtract[j][i];

}

for k from 0 to end {

integral = integral + samples after ped_subtract[k][i];

}

integrals[integral number][i] = integral;

}

}

Figure 3.12: Software integral pseudocode.
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Chapter 4

HLS Implementation

In order to use HLS to generate an FPGA image, one must first take the software data pre-

processing model and split it into Vitis Host and Kernel components. The Host is responsible

for creating an OpenCL environment, initializing the inputs to the kernel as memory buffers,

running the Kernel, and reading and processing its outputs. This is where the software in-

terface functions described in Chapter 3 are implemented. The Kernel is the equivalent of

an FPGA module where the preprocessing algorithms (pedestal subtraction and integration)

are implemented. The Host and Kernel communicate over a specified interface. The default

interface is AXI, which is a standard ARM bus-protocol.

There are three different types of compilations that can be performed in Vitis: sw emu,

hw emu, and hw. These are abbreviations for software emulation, hardware emulation, and

hardware, respectively. Software emulation is mainly used to verify the functional correct-

ness of the application and typically takes about a minute to compile and run. Hardware

emulation provides cycle-accurate results and typically takes about a half hour to compile

and run. And finally, a hardware run only compiles the model and produces three files that

can then be ran on an appropriate FPGA. These files are app.exe, preprocess.xclbin, and

xrt.ini. The generation of these files takes around three hours to complete. All three methods

provide compile and link summaries that can be examined using the Vitis Analyzer tool. In

the interest of time, most optimization iterations were only compiled and ran using sw emu

and hw emu. Unless otherwise stated, all reported measurements were taken from hw emu

runs.

The performance goals for this and many other hardware designs are as follows: increase

clocking frequency, decrease latency, decrease area, and decrease average power consumption.

In this project, we have a set of more specific goals as well. We are aiming for a latency of

2.56 µs, which is the time that it takes to collect 256 10 ns samples. We also want to be able
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to support 12 ALPHA ASICs with one FPGA board, which would allow us to process all of

either the x or y axis for one of the layers in our detector.

With these performance goals in mind, here are the statistics that we have collected. We are

reporting the target and estimated clocking frequencies, which are 300 MHz and 411 MHz,

respectively for all emulation runs. We are reporting the worst case latency values in both

cycles and seconds. We are reporting the area information in terms of resource usage.

The resources that are available to the FPGA are FFs, LUTs, BRAM, DSP, and URAM.

We are not currently using the last two resource types. The resource usage is reported

in three ways: counts, percent utilization, and an optimistic ASIC count based on the

highest percent utilization. Finally, for the hardware runs we are reporting the average

power consumption. All of the previously mentioned statistics are reported for the Kernel

and not for the combination of the Host and the Kernel.

Before we can discuss the various optimization iterations, a handful of disclaimers. These

experiments were conducted on the CloudLab U280 board [9, 10], which is an UltraScale

FPGA. The FPGA that we are considering using in the instrument itself is the XC7K325T-

2FFG900C part, which is a Kintex-7 FPGA. The decision to compile and run all builds

on the U280 was made because that was the part that was supported by Vitis and readily

accessible to run on. While the experiments were run on the Ultrascale FPGA, the percent

utilization numbers were calculated relative to the Kintex-7 FPGA. Another thing to note

is that both the data packets and pedestals are stored in external memory (HBM). Previous

discussions have considered placing the pedestals in local memory (BRAM) instead since

they are relatively constant. This is still a possibility and would not shift the resource

bottleneck onto the BRAM.

4.1 Naive Approach

To implement the naive approach, I started with a Vitis tutorial setup and began modify-

ing it for my use-case [19]. While transforming the combined software model of the data

preprocessing into separate Host and Kernel files, we learned a handful of things about the

Vitis compiler, specifically what it does and does not understand. One such attribute was a

double pointer. We were attempting to transfer an array of char * elements through a char

**, but Vitis would not compile our files while also not clearly stating what the issue was.
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Another potential issue was packing all functions within a C extern statement. Only the

main kernel function (preprocess here) should have this wrapper. The last major issue when

developing the naive approach was understanding what memory could be initialized by the

Host and communicated to the Kernel. These memory buffers need to be created and then

initialized directly using their pointers. The top-level Kernel function preprocess has three

inputs and one output. These connections between the Host and the Kernel are shown in

Figure 4.1.

Figure 4.1: Connections between the Vitis Host and Kernel components.

Here we include the naive ped subtract and integral function implementations so that vari-

ations may more easily be discussed. Figures 4.2 and 4.3 show the source code for the naive

implementations.

The main data structures within ped subtract are the SW Data Packet struct pointed to

by data packet, the uint16 t 3D array that is pointed to by all peds, and the int16 t 2D

array ped sub results, which is a global array stored in local memory. The definition of

the SW Data Packet struct is shown in Figure 3.3. The functionality of the ped subtract

function is described in Chapter 3.

The main data structures within integral are the SW Data Packet struct pointed to by

data packet, the integer values rel start, rel end, and integral num, as well as the output

int32 t array pointed to by integrals. The first several lines of this function take the trigger-

relative bounds and convert them into the proper indices relative to the starting sample

number. The function then conditionally performs either a linear operation or a wraparound

operation, depending on whether the calculated start index is less than or greater than the

calculated end index. More details on the integral function can be found in Chapter 3.

We performed all three compilation types on the Naive Approach and made several discov-

eries. First, we discovered a handful of warning messages stating that there was memory
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int ped_subtract(struct SW_Data_Packet * data_packet, uint16_t *all_peds) {

int ped_sample_idx = data_packet->starting_sample_number;

for (int i = 0; i < data_packet->samples_to_be_read + 1; i++) {

for (int j = 0; j < NUM_CHANNELS; j++) {

ped_sub_results[i][j] = data_packet->samples[i][j] -

*(((all_peds + (data_packet->bank)*(NUM_SAMPLES*NUM_CHANNELS)) +

ped_sample_idx*NUM_CHANNELS) + j);

}

ped_sample_idx += 1;

if (ped_sample_idx == NUM_SAMPLES) {

ped_sample_idx = 0;

}

}

return 0;

}

Figure 4.2: Naive ped subtract source code.

port contention in ped subtract and that the integral loop could not be flattened. Another

major discovery we made was that because both ped subtract and integral were imperfect

loops, we were unable to obtain any latency estimates from the emulation runs. We were,

however, able to obtain an expected layout and resource usage. The expected layout is shown

in Figure 4.4 where the dark blue component represents the footprint of the Kernel. The

resource usage is reported in Table 4.1.

Table 4.1: Naive hardware emulation area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
14853 3.644 39600 12.14 66 0.4120 8

In order to obtain worst-case latency numbers for the emulation of the Naive Attempt,

we added the HLS loop tripcount pragma that allows you to specify the minimum, av-

erage, and maximum number of iterations through a loop. We set the maximum to 256

(NUM SAMPLES) in order to evaluate the worst-case performance. These latency numbers

are reported in Table 4.2.

When we ran the naive approach on a U280 board through the CloudLab, we recorded

several important parameters from the run summary. The clocking frequency was reported

as 286 MHz which is significantly slower than both our targeted and estimated frequencies.
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int integral(

struct SW_Data_Packet * data_packet,

int rel_start,

int rel_end,

int integral_num,

int32_t * integrals) {

int start = data_packet->trigger_number + rel_start -

data_packet->starting_sample_number;

if (start < 0) {

start = start + data_packet->samples_to_be_read;

}

int end = data_packet->trigger_number + rel_end -

data_packet->starting_sample_number;

if (end >= data_packet->samples_to_be_read) {

end = end - data_packet->samples_to_be_read;

}

int32_t integral;

if (end >= start) {

for (int i = 0; i < NUM_CHANNELS; i++) {

integral = 0;

for (int j = start; j <= end; j++) {

integral = integral + ped_sub_results[j][i];

}

integrals[integral_num*NUM_CHANNELS+i] = integral;

}

}

else {

for (int i = 0; i < NUM_CHANNELS; i++) {

integral = 0;

for (int j = start; j < NUM_SAMPLES; j++) {

integral = integral + ped_sub_results[j][i];

}

for (int k = 0; k <= end; k ++) {

integral = integral + ped_sub_results[k][i];

}

integrals[integral_num*NUM_CHANNELS+i] = integral;

}

}

return 0;

}

Figure 4.3: Naive integral source code.
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Figure 4.4: The footprint of the U280 with the naive approach. The dark blue highlighted
section represents the footprint of the Kernel.

The average power consumption was 10.591 W. The area information is reported in Table 4.3

and the latency information is reported in Table 4.4. As a general trend, the hardware runs

produced worse latency but better area statistics than the hardware emulation runs.

4.2 ped subtract Optimizations

Once we had a fully functional naive approach, we moved on to applying the HLS techniques

that we had learned to the ped subtract function first. Our main focus was to resolve the

memory access issue. We then transformed the function into a semi-perfect and perfect loop.
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Table 4.2: Naive hardware emulation latency statistics.

Cycles Time Times Slower Than Goal
40533 0.135 ms 53

Table 4.3: Naive hardware run area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
21416 5.254 10309 3.161 25 0.1561 19

Table 4.4: Naive hardware run latency statistics.

Cycles Time Times Slower Than Goal
84370 0.295 ms 115

In an attempt to fix the memory access issue, we reduced the data packet field accesses by

reading the constant values once and storing them to local variables. This did not resolve

the memory warnings and the statistics from hardware emulation remained the same. This

implies that the compiler had already seen this opportunity for improvement.

To make ped subtract into a semi-perfect loop, we moved the pedestal indexing logic into

the innermost loop. This modified version is shown in Figure 4.5. For a more complete

understanding of the transformation, compare Figures 4.2 and 4.5.

This reconfiguration resolved the memory warnings and produced better area numbers than

the naive approach. The area information is reported in Table 4.5 and the latency information

is reported in Table 4.6.

Table 4.5: ped subtract with semi-perfect loop area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
10278 2.522 22753 6.978 52 0.3246 14

In order to verify that semi-perfect and perfect loops have similar performance, we also

implemented a perfect loop version of ped subtract. In doing so, we made an assumption

that we will always read the full memory buffer (all 256 samples). This approach also gives

us more accurate latency numbers since we are no longer relying on the HLS loop tripcount

pragma. We found that, indeed, the worst-case latency numbers were the same. However,

there was a slight change in the area statistics, which are shown in Table 4.7.
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int ped_subtract(struct SW_Data_Packet * data_packet, uint16_t *all_peds) {

int ped_sample_idx = data_packet->starting_sample_number;

uint8_t samples_to_be_read = data_packet->samples_to_be_read;

uint8_t bank = data_packet->bank;

for (int i = 0; i < samples_to_be_read + 1; i++) {

#pragma HLS loop_tripcount min=1 max=256

for (int j = 0; j < NUM_CHANNELS; j++) {

ped_sub_results[i][j] = data_packet->samples[i][j] -

all_peds[bank*NUM_SAMPLES*NUM_CHANNELS +

ped_sample_idx*NUM_CHANNELS + j];

if (j==NUM_CHANNELS-1) {

ped_sample_idx += 1;

if (ped_sample_idx == NUM_SAMPLES) {

ped_sample_idx = 0;

}

}

}

}

return 0;

}

Figure 4.5: Semi-perfect ped subtract source code.

Table 4.6: ped subtract with semi-perfect and perfect loop latency statistics.

Cycles Time Times Slower Than Goal
42582 0.142 ms 55

4.3 integral Optimizations

Before diving into the integral optimizations, a disclaimer. Here the integrals are assumed

to have variable bounds. If these bounds are found to be constant or it is acceptable to

recompile and re-image the FPGA when these bounds change, then a different optimization

approach would be taken.

The first optimization iteration involved forcing integral into a perfect loop. By forcing, we

mean that as few changes were made as possible while still conforming the requirements of

a perfect loop. This forced perfect loop had terrible performance. The iteration interval,

which is the number of iterations before a new input can be taken, went from 1 (desired) to
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Table 4.7: ped subtract with perfect loop area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
10261 2.517 22737 6.973 52 0.3246 14

137. This led to a huge increase in latency. There were also memory warnings for the integral

ports. On the bright side, the area footprint decreased significantly. These observations are

reported in Tables 4.8 and 4.9.

Table 4.8: integral with forced perfect loop area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
4648 1.140 7097 2.176 24 0.1498 45

Table 4.9: integral with forced perfect loop latency statistics.

Cycles Time Times Slower Than Goal
2331359 7.770 ms 3035

Our next approach to improving the performance of the integral function involved combining

all of the various conditional statements into one condition. This simplification of the logic

structure did not affect latency, but did provide a slight decrease in area, as shown in

Table 4.10.

Table 4.10: integral with combined logic area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
4517 1.108 6965 2.136 24 0.1498 46

Once again trying to simplify the logic inside of the integral loop, we replaced the com-

bined logic statements with ternary operators. This approach is shown in Figure 4.6. The

trigger number field was replaced by fine time because we realized that fine time was the

appropriate metric for the sample where the trigger occurred whereas trigger number spec-

ified the number of triggers that had occurred previously. This approach did provide slight

improvements to both latency and area. These results are reported in Tables 4.11 and 4.12.

After realizing that simplifying the innermost loop was not going to resolve the memory warn-

ing or improve performance much further, we switched tactics to remove a WAR dependency

within the function. We used the HLS DEPENDENCE pragma to tell the compiler that
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int integral(

struct SW_Data_Packet * data_packet,

int rel_start,

int rel_end,

int integral_num,

int32_t * integrals) {

int start = data_packet->fine_time + rel_start -

data_packet->starting_sample_number;

if (start < 0) {

start = start + NUM_SAMPLES - 1;

}

int end = data_packet->fine_time + rel_end -

data_packet->starting_sample_number;

if (end >= NUM_SAMPLES - 1) {

end = end - (NUM_SAMPLES - 1);

}

int linear = 0;

if (end >= start) {

linear = 1;

}

for (int i = 0; i < NUM_SAMPLES; i++) {

for (int j = 0; j < NUM_CHANNELS; j++) {

int32_t current_integral = integrals[integral_num*NUM_CHANNELS+j];

integrals[integral_num*NUM_CHANNELS+j] = (i == 0) ? 0 :

current_integral;

integrals[integral_num*NUM_CHANNELS+j] = ((i >= start) &&

(i <= end)) || (!linear && ((i >= start) || (i <= end))) ?

current_integral + ped_sub_results[i][j] : current_integral;

}

}

return 0;

}

Figure 4.6: Ternary operators version of integral source code.
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Table 4.11: integral with ternary operators area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
4468 1.096 6987 2.143 24 0.1498 46

Table 4.12: integral with ternary operators latency statistics.

Cycles Time Times Slower Than Goal
2314699 7.715 ms 3014

the WAR dependence was a false dependence. Unfortunately, on the first iteration of this

approach, we had not successfully resolved the dependence, and so our output was incorrect.

This iteration did resolve the memory warnings and provided a significant improvement to

latency. The statistics for this functionally incorrect run are shown in Tables 4.13 and 4.14.

Table 4.13: integral with incorrect dependency resolution area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
7140 1.752 6432 1.973 24 0.1498 50

Table 4.14: integral with incorrect dependency resolution latency statistics.

Cycles Time Times Slower Than Goal
21499 71.656 µs 28

When we resolved the WAR dependence by adding both a temporary variable and a local

memory buffer that is written to the output at the end of execution, functional correctness

was restored. Latency was slightly affected while area took a big hit. These results are

showed in Tablse 4.15 and 4.16.

Table 4.15: Current approach hardware emulation area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
8242 2.022 18821 5.772 52 0.3246 17

Table 4.16: Current approach hardware emulation latency statistics.

Cycles Time Times Slower Than Goal
21382 71.266 µs 28

30



Since removing the WAR dependence was the last optimization iteration we performed, we

also ran that iteration on the U280 board through the CloudLabs. We recorded several im-

portant parameters from the run summary. The clocking frequency was reported as 280 MHz

which is significantly slower than both our targeted and estimated frequencies. The average

power consumption was 8.639 W. The area information is reported in Table 4.17 and the la-

tency information is reported in Table 4.18. As a general trend, the hardware runs produced

worse latency but better area statistics than the hardware emulation runs.

Table 4.17: Current approach hardware run area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
14058 3.449 6817 2.091 22 0.1373 28

Table 4.18: Current approach hardware run latency statistics.

Cycles Time Times Slower Than Goal
87640 0.313 ms 122

As a final experiment, we separated the ped subtract logic from the integral logic by simply

commenting out the respective function calls. This allowed us to see the area requirements

of each function, which are shown in Tables 4.19 and 4.20.

Table 4.19: Current approach hardware run ped subtract area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
1115 0.2735 926 0.2840 0 0 352

Table 4.20: Current approach hardware run integral area statistics.

FFs FFs % Util LUTs LUTs % Util BRAM BRAM % Util ASICs
4239 1.040 2145 0.6578 8 0.04994 96

In summary, the area numbers that we are seeing look promising, providing us with the

ability to optimistically support double the number of ASICs that we had set out to support

with the current approach. However, the latency numbers that we are seeing show that

further optimizations are needed in order to improve the speed of our Kernel.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The most important conclusions for this thesis are the comparison of the naive and current

approaches for HLS implementation and the learnings that were gained throughout this

process.

5.1.1 Comparison of Naive and Current Approach

In order to examine the progress of the HLS optimization iterations, here we compare the

performance metrics from the naive and current approaches. The naive approach had the

number of iterations of the integral loop dependent on the integral bounds. Due to the fact

that the naive approach had fewer iterations of the integral loop, the kernel also experienced a

lower latency value than the current approach. Though the current approach did experience

a higher latency value, the increase relative to the naive approach is not as severe as would

be expected from the increase to 256 iterations. While the naive approach outperformed the

current approach in terms of latency, the area and power numbers were much better for the

current approach. In fact, the area results imply one of the following two options: (1) with

additional optimizations, described below, the design can trade additional area for improved

latency, or (2) there will be additional area on the FPGA for functions such as centroiding,

etc.
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5.1.2 Learnings

The first major learning was that the näıve approach took a fair amount of re-arranging

to get something Vitis-compatible and functionally correct. This implies that one must be

familiar with the Vitis structure and how the Host and Kernel components interact in order

to successfully map a software design into an HLS implementation.

The second major learning was that applying HLS optimizations is not straightforward.

Throughout the optimization process, the most common issue we encountered was memory

port contention. Another issue we encountered was the proper application of HLS pragmas

that essentially outsmart the compiler. The user must be extremely careful while applying

such pragmas and verify that their proposed solution is still functionally correct with the

pragma in place. And finally, another issue with HLS optimization was the trade-off between

area and latency. If a technique improved one metric, it generally impaired the other.

The third major learning was that the current approach, with perfect loops for both func-

tions, is just the starting point for HLS optimization. But, all of the above experiments

and steps were necessary to produce a design that is configured in such a way that HLS

optimizations and pragmas can easily be applied.

5.2 Future Work

The current approach allows for 2.3x the desired number of 12 ASICs to be optimistically

supported on a single FPGA. However, the current reported latency is 122x slower than our

goal of 2.56 µs. And so, in order to improve the latency / throughput of our design, we must

opt for a wider (as opposed to deeper) implementation by parallelizing operations wherever

possible. This parallelization will decrease latency by using more computational units and

thus more area. And so, the trade-off between latency and area must be explored until there

is a satisfactory balance between the depth and width of the design.

The width of the design can be altered using the HLS pragma unroll with various unrolling

factors. The unroll factor specifies how many copies of the loop body are desired, which

should typically be a power of 2. To implement a fully wide design, the loop would have to

be fully unrolled, which can be specified by not setting the factor field in the HLS pragma
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unroll command. To implement a design that is less wide, a smaller unroll factor would be

used.

The ped subtract function is trivially parallelizable whereas the integral function could be

redesigned as a single progressive sum.

Additional approaches to increased parallelism include vector data types and replicated

instances of the Kernel(s). With the exception of the progressive sum (which is an algorithmic

improvement) each of the above approaches trades off area for improved speed, so it will be

a challenge to fully meet both the area and speed targets simultaneously with the current

FPGA. Three options include: (1) a larger FPGA part (e.g., the XC7K480, also in the

Kintex-7 family, is 1.5x larger); (2) allotting fewer than 12 ASICs to each FPGA and using

a larger number of FPGAs; and/or (3) relaxing the latency requirements.

With the above discussion in mind, below is a list of the future work that we recommend for

this project:

• Introduce vector data types of size NUM CHANNELS or an integral divisor of

NUM CHANNELS.

• Create custom variable types to get more accurate area numbers. Some fields do not

require a full 8, 16, 32, etc. bits.

• Combine the pedestal subtraction and integration into one operation.

• Apply bitmasks on both the samples and pedestal values to operate only on the val-

ues that are within the integral bounds. This will eliminate the need for conditional

execution.

• Transition to a dataflow pipeline, connecting different functions through FIFO buffers

to increase throughput.

• Implement memory burst accesses to decrease I/O overhead.

• Investigate whether the OpenCL progressive sum function is possible in a Vitis Kernel.

• Use the HLS unroll pragma to explicitly parallelize functions by creating multiple

instances of the module. Experiment with different amounts of unrolling to see the

tradeoffs between area and latency.
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• Add other algorithms to the FPGA:

– Centroiding

– Zero suppression

– Multi-event detection

– Data compression

• Use Vitis HLS to create an IP that can be treated as a black box and ported to the

target Kintex-7 board.

This thesis has provided an initial investigation into the latency, area, and power required for

the preprocessing of gamma-ray transients detected by the Advanced Particle-astrophysics

Telescope using HLS.
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