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ABSTRACT OF THE THESIS

Measuring the Effectiveness of Light Concentration with the Catoptric Surface
by

Samatha Kodali
Master of Science in Computer Engineering
Washington University in St. Louis, 2022

Professor Roger Chamberlain, Chair

The Catoptric Surface is an array of mirrors arranged on the interior of a large window

which serves to manipulate the effects of natural lighting inside the room. The framework

for moving the mirrors uses an interface which connects various Raspberry Pis and Arduino

Unos to move stepper motors that connect to each mirror and move them as desired by the

user. This kind of light manipulation allows the atmosphere of the room to be modified

using natural lighting rather than artificial lighting and can be useful for varying the way

people interact with a space. The intensity at which various configurations of the mirrors

vary the lighting in the room becomes important for the user/controller of the Catoptric

Surface to know in order to manipulate the mirrors in a fashion that will deliver the desired

effect. Thus, in order to provide light concentration information to the user/controller, we

have conducted a study in which we use a light sensor to gather the light concentration

information (in lux) in the room with the mirrors in different configurations and discuss the

implications of such measurements for future use of the Catoptric Surface.
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Chapter 1

Controlling the Natural Lighting of

Environments

1.1 The Importance of Natural Light in our Environ-

ments

The natural light emitted from the Sun is commonly utilized to illuminate buildings. The

illumination of an environment with natural light provides tangible health benefits, economic

benefits, and energy benefits [3, 4, 6, 7, 8, 9, 10, 12, 13, 14]. By exposing individuals to

more natural light, they have lower levels of cortisol as well as higher levels of melatonin at

10pm, both of which result in lower levels of depressive symptoms and an increased quality

of sleep [9]. Furthermore, the use of natural light can alter one’s spatial perception in

the environment [4]. The beneficial effects of natural light supplies designers with another

mechanism of control through which to alter the experience of occupants in a particular

environment.

In the context of this discussion/thesis, the environment in which we observe natural light

consists of an atrium with glass windows comprising the north-facing and south-facing walls

and no windows on the east-facing and west-facing walls. Furthermore the ceiling of our

environment does not contain any windows/glass through which natural light could enter.

Thus, the natural light that enters through the north-facing and south-facing walls of the

room combines to create the natural light for the context of our environment.
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1.2 Challenges of Controlling the Natural Light in Our

Environment

Currently, the presence of natural light in a room primarily depends on static features of

buildings such as the quantity and location of windows as well as the quantity, location, and

material of doors [4]. Orienting buildings east-to-west, using lighter colors on interior spaces,

and allowing natural light from higher up to enter the building from multiple sides constitute

other features that manipulate natural lighting inside rooms [12]. Unfortunately, changing

these types of features involves altering fundamental aspects of the building which tend to be

non-trivial and costly [11]. In addition to these features being expensive to modify, the time

frame of their modifications can be quite long. Due to factors that affect the positioning and

intensity of the Sun, such as date, time, and weather, the amount of natural light present

in a room changes at a faster rate than it takes to modify the position of a window or the

orientation of a building. Thus, in order to effectively possess the ability to manipulate the

natural lighting in a room, smart, dynamic structures, such as automated blinds can be

considered [11].

Dynamic structures are built into/on top of the existing building to provide a way to manip-

ulate natural light in a room with the current building infrastructure intact. These dynamic

structures must be intelligent enough to account for the factors of date, time, and weather

that modify the positioning and intensity of the Sun. In addition, the system must be user-

friendly enough to allow for a user to easily manipulate the natural light in a room as they

desire.

Overall, manipulating natural lighting in a room by changing more fundamental features of

the building such as window location and building orientation becomes too costly and slow to

be useful. Therefore, we turn to dynamic structures to be able to modify the natural lighting

while preserving the building’s fundamental features. However, we have to be cognizant of the

challenges of creating a dynamic structure that possesses enough intelligence to accurately

and usefully manipulate natural light despite the factors that often change Sun positioning

and intensity.
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1.3 Current Approaches to Control the Natural Light-

ing in Environments

There are currently various methods of attempting to control the natural light within an

environment. Two broad categories of natural light manipulation methods are:

(1) Systems that have shade in order to block direct sunlight and diffuse light.

(2) Systems that don’t contain shading and instead redirect sunlight [11].

Four such examples are: manually controlled blinds/window shades, light shelves,, prismatic

panels, and dynamically controlled mirrors.

1.3.1 Manually Controlled Blinds/Window Shades

Manually controlled blinds/window shades, as seen in Figure 1.1, consist of human-controlled,

interior window-coverings whose movement will not be automated. They fall into the first

category of methods for natural light manipulation because they contain shading to block

natural light rather than allowing natural light in the room and then redirecting it. The

horizontal slats of blinds/window shades on styles such as Venetian blinds provide the best

utilization of natural light, however since humans control their movement, they can be left in

a non-optimal position for long stretches of time [5, 11]. Therefore, an improvement to this

system would be making it automated via a cyber-physical system so that the responsibility

of shade/window blind movement no longer falls completely on the human.

1.3.2 Light Shelves

Light shelves, as seen in Figure 1.2, are horizontal panels that sit on the side of buildings (typ-

ically parallel to the ground) and work to reflect natural light deeper into the building/room

for the windows above their top surface, and provide shade and/or glare reduction for the

windows below their bottom surface. Since they contain shading to block natural light, they

fall into the first category of methods for natural light manipulation. While light shelves
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Figure 1.1: Manually controlled window blinds.

work well to protect from harmful/overly-harsh direct sunlight in lower latitude locations,

they are not very effective in high latitude countries as they do not provide enough shad-

ing [11]. Additionally, their construction and use may be expensive and/or time-consuming

depending on their materials and installation location and technique. An improvement for

this system would involve researching the optimal size of the light shelf based on the latitude

of the location in which they will be placed. An additional improvement would be creating

a cyber-physical system to modify the angle/shape of the light shelves as needed.

1.3.3 Prismatic Panels

Prismatic panels, as seen in Figure 1.3, are panels that are shaped to redirect natural light.

Since they do not contain shading, but instead redirect natural light, they fall into the second

category of methods for natural light manipulation. Though in sunny and clear conditions
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Figure 1.2: Light shelves.

prismatic panels allow for uniform natural light distribution, in cloudy conditions they do

not have much of an effect, thereby reducing their practicality [11]. They also involve altering

the structure of the building, and thus are not a simple or easy solution to implement.

Figure 1.3: Prismatic panels.
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1.3.4 Dynamically Controlled Mirrors

Dynamically controlled mirrors are a set of mirrors that can be moved which are used to

reflect natural light in different patterns into an environment. The mirrors have a system

through which their positioning can be controlled in order to change the amount and pattern

of natural light entering the environment. These systems are effective because they can be

added onto a building rather than needing to alter the structure of the building in order to

be implemented.

An example installation with dynamically controlled mirrors is shown in Figure 1.4. This is

the experimental system that is the subject of this thesis.

Figure 1.4: Example of dynamically controlled mirrors [1].

1.4 Contributions and Thesis Outline

The contributions of the thesis include the following:

• Maintenance of C++ Catoptric Surface code base

• Documentation, UML diagramming, and communication of the C++ Catoptric Surface

code base

6



• Set up data collection framework for longer-term light sensor collection experiments

• Illuminance measurements with the Catoptric Surface mirrors in different configura-

tions

This thesis covers current types of light manipulation systems to modify the natural lighting

in a room in Chapter 1. It then discusses the light manipulation system we built, the

Catoptric Surface, in Chapter 2. The experiment we ran to obtain light sensor measurements

in order to assess the effectiveness of the Catoptric Surface at redirecting natural light is

discussed in Chapter 3. In Chapter 4 we discuss the potential future work and conclusions

of the thesis.
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Chapter 2

The Catoptric Surface

In order to experiment with and observe the manipulation of natural light in an environment,

we created our own dynamic structure for controlling natural light called the Catoptric

Surface [1, 2]. The Catoptric Surface is composed of just under 650 round mirrors arranged

in an array with 16 rows and 49 columns. Each mirror has 2 stepper motors to allow for

movement. The motors can be controlled by a human via an arrangement of Arduino Unos

and Raspberry Pis. The mirrors were placed on the interior of a south-facing glass wall

of the Steinberg atrium and their positioning redirected the natural light that entered the

Steinberg atrium.

2.1 Physical Structure

The physical structure of the Catoptric Surface is housed in Steinberg Hall. The mirrors are

set up in an array alongside the South wall. Each row of mirrors is held up using wires and

each mirror has two motors on it. The motors for each mirror are pan and tilt, allowing the

mirrors two degrees of freedom. Each row of mirrors has an Arduino to control the mirrors

in that particular row. Both the eastside section of the wall and the westside section of

the wall have a Raspberry Pi to communicate to the Arduinos. These microcontrollers are

housed in boxes mounted next to the Catoptric Surface.

2.2 Embedded System Structure

A vital part of the cyber-physical system we created was the software used to allow users to

move the mirrors. The code that controlled the Catoptric Surface’s stepper motors in order
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to change the positioning of the mirrors were on the Raspberry Pis and Arduino Unos of

the system. The Raspberry Pis had C++ code on them to take user-input. The user-input

that the Raspberry Pis took were files with four comma-separated integer values (CSV files)

or a string that represents one of the commands in the set that the system has outlined as

acceptable. Those four values were used to identify which mirror to move, which direction to

move the mirror in, and how much to move it. This user-input is parsed by the C++ code

and communicated from the Raspberry Pis to the corresponding Arduino Uno for the mirror

for which movement is desired. The communication from the Raspberry Pi to the Arduino

Uno happens over Universal Serial Bus (USB) and has its own Finite State Machine (FSM)

associated with it which outlines its process.

2.2.1 C++ Code Structure

There are four main pairs of header/source files in the C++ code:

(1) CatoptricController.hpp and CatoptricController.cpp,

(2) CatoptricSurface.hpp and CatoptricSurface.cpp,

(3) CatoptricRow.hpp and CatoptricRow.cpp, and

(4) SerialFSM.hpp and SerialFSM.cpp.

Overall, these groups of files contain the following classes/structs which allow for control in

the system: CatoptricController, CatoptricSurface, CatoptricRow, SurfaceDimensions,

SerialPortDict, SerialPort, MotorState, Message, SerialFSM, and SerialComp. The re-

lationship between these classes and structs can be seen in the UML diagram in Figure 2.1

below.

The CatoptricController contains a CatoptricSurface which it is in charge of controlling.

The CatoptricSurface contains x CatoptricRow objects where x is the number of rows of

mirrors in the system. Since the Catoptric Surface in Steinberg contains 16 rows, there are 16

CatoptricRow objects contained in the CatoptricSurface object. The CatoptricSurface

object also contains a SurfaceDimensions object in order to have the length of each row

appropriately outlined and saved. The UML diagram for SurfaceDimensions can be seen in

9



Figure 2.1: UML diagram with class/struct relationships.

Figure 2.7. Additionally, the CatoptricSurface class contains a SerialPort object for each

row in the Catoptric Surface and a single SerialPortDict object. A SerialPort object can

be used to represent the Arduino with which the Raspberry Pi is communicating by holding

identifying information such as the serial number of the Arduino, the symlink through which

it is available, and the row on the Catoptric Surface that the Arduino is associated with.

The UML diagram for SerialPort can be seen in Figure 2.9. The SerialPortDict object

consists of a vector of SerialPort objects in order to hold information about all the Arduino

Unos with which the Raspberry Pis communicate. The UML diagram for SerialPortDict

can be seen in Figure 2.8.

CatoptricController Files

The CatoptricController.hpp and CatoptricController.cpp files outline the structure

and actions of the CatoptricController class. The CatoptricController has the respon-

sibility of ensuring that the user can interface with the CatoptricSurface object. Its UML

diagram can be seen in Figure 2.2 below.

10



Figure 2.2: Catoptric controller.

The member variables present in the CatoptricController class are a CatoptricSurface

object and a vector of strings called newCSVs. The CatoptricSurface object member vari-

able is what the CatoptricController is in charge of interfacing with. The newCSVs vector

of strings holds the names of any updated CSV files that the user has provided as input into

the system.

The CatoptricController.cpp file contains the main() method where the control flow

path starts for the system. Its main() function calls its run() member function on a

CatoptricController object. This run() function continually (in an infinite while() loop)

prints out the options that the user has for commands to enter, checks if there are any new

CSV files with its checkForNewCSV() function, polls for which command the user enters,

and calls any other needed methods in the program according to the user input provided.

The user input can take the form of a CSV file or of the following commands entered through

the command line: reset, test, check, and quit. Additionally, if there are new CSV files

detected in the file system, then the user can also enter the command run followed by the

11



name of an available CSV file to have the mirrors go through the movements configured in

that named CSV file.

Since the CatoptricController has the responsibility of interfacing between the user and

the CatoptricSurface, and because one of the forms of user input is CSV files that hold

information on how the motors should be moved in order to manipulate the mirrors, the

CatoptricController needs to be able to detect CSV files, determine which ones have

not yet been used, and parse them so that the mirrors can be moved as the user de-

sires. In order to do this, the CatoptricController needs to implement certain file fea-

tures to detect and track the CSV files. To keep track of this information about the

CSVs, the CatoptricController.hpp file specifies two important file paths. The first is

“csv/archive” which it saves as the #define ARCHIVE DIR. This is where CSVs that have

already been executed are stored. The second path that the CatoptricController keeps

track of is “csv/new” which it saves as #define NEW CSV DIR. This directory serves as the

location where the user of the system can deposit new CSV files that they want to execute.

If the user input is through the form of a CSV file, then the CSV file must be in the form

of four, comma-separated integer values per line. The first of these four integers represents

the row number which is targeted. The second represents the column number of the mirror

which we are targeting. The third of these integers represents the motor number that we

would like to move for that mirror (this determines whether the mirror motion will be pan

or tile). The fourth number in each row of a user-generated CSV will represent the number

which we want to move the stepper motor.

When the user enters the run command followed by a filename which represents a CSV that

they added to the system, the first thing that the CatoptricController does is ensure that

the CSV name that they enter actually exists on the system. This is done by calling the

CatoptricController’s findCSV() function. The findCSV() function cycles through the

vector of CSV files that reside on the system but have not yet been run. These files have

been saved on the newCSVs member variable every time that checkForNewCSV() function

was called.

After ensuring that the CSV exists on the system as a file that has not yet been run, the sys-

tem constructs a C++ string with the file path for the CSV, uses this string to erase the CSV

filename from the newCSVs vector member variable, and uses the CatoptricController’s

CatoptricSurfacemember variable to call the CatoptricSurface class’s updateByCSV()’s

12



function. Once the CatoptricSurface’s updateByCSV() has been called, the

CatoptricController’s archiveCSV() function is called. The CatoptricController’s

archiveCSV() function renames the CSV based on how many other files have already been

archived, and moves the file into the ARCHIVE DIR directory. This software functionality of

interacting with new CSV files plays a crucial role in the design of the system because it en-

sures that the system can properly receive user configurations without repeating movements

or accidentally trying to use an invalid CSV input.

When the user enters the string quit as a command for the system, the CatoptricController’s

CatoptricSurfacemember variable is used to call the CatoptricSurface class’s cleanup()

function. This functionality is important to ensure that the user has a way of closing out of

the system.

When the user enters the string check as a command for the system, the CatoptricController’s

updateByCSV() function is called to see if any newer CSV files have been added to the sys-

tem since the last call. This functionality gives the user of the system more control over

when the system can discover the new CSV files that they have added, which then allows

them more control over when they can run new CSV file configurations with the mirrors.

Without this command, the user has to wait for the checkNewCSV() function to be called in

the CatoptricController’s run() function, something that is automatically handled by

the C++ code on the system and thus the user doesn’t posses any explicit control over.

When the user enters the reset command, the CatoptricController’s CatoptricSurface

member variable is used to call the CatoptricSurface class’s reset() function with the

REGULAR RESET parameter. This allows the system to be reset to its default position. In

addition to it being a useful benefit to the users of the system to have a default reset

positioning for the system, it also plays a vital role in the correct functioning of the system.

Currently, there is no way for the user to know the positioning of the mirrors on the system.

Since the movement of the mirrors is directed based on how many steps the stepper motor

should take rather than a coordinate system that specifies absolute positioning, the initial

positioning of the mirror impacts the commands that the user should be entering into the

Catoptric Surface. By giving the user the option to use a reset command to move the

mirrors to a default position, we allow the user to know the initial positioning of the mirrors,

thereby allowing the user to know which commands they should use for running the motors

to get the system into the desired position.
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When the user enters the test command, the CatoptricController’s CatoptricSurface

member variable is used to call the CatoptricSurface class’s reset() function with the

TEST RESET parameter. This allows the system to go through a particular sequence of move-

ments which allows it to test all of its motors. This feature allows the user the ability to

debug motor problems that could occur with the Catoptric Surface.

CatoptricSurface Files

The CatoptricSurface.hpp and CatoptricSurface.cpp files outline the structure and

actions of the CatoptricSurface class. The CatoptricSurface class represents the array

of mirrors (and their accompanying motors) as well as the serial ports which are used to

communicate with the Arduinos. The UML class diagram for the CatoptricSurface can

be seen in Figure 2.3.

As seen from the UML class diagram of the CatoptricSurface class in Figure 2.3, the

CatoptricSurface contains the following member variables: an int called numRowsConnected,

a SerialPortDict object called serialPortOrder, a SurfaceDimensions object called di-

mensions, a vector of CatoptricRow objects called rowInterfaces, a vector of SerialPort

objects called serialPorts, a vector of strings that holds the CSV file data called csvData,

and a string called SERIAL INFO PREFIX.

In order to run commands from a CSV file, after the run command and its accompanying CSV

filename is parsed out by the CatoptricController, control goes to CatoptricSurface’s

updateByCSV() function. The first thing the updateByCSV() function does is read in data

from the CSV using the CatoptricSurface’s getCSV() function which clears everything

from the old read, reads data from a CSV line by line, and then adds all the input reads

to the csvData vector. Next, the serial buffer is reset for each of the CatoptricRows

in the rowInterfaces member variable, each line of the CSV is parsed, and a message

object is constructed to represent the desired movement in each line. The UML dia-

gram for Message is seen in Figure 2.4. Then the rows stored in rowInterfaces are it-

erated through, and the message is sent to the correct row by calling the CatoptricRow’s

reorientMirrorAxis() on the CatoptricRow with the message object as a parameter. If

the appropriate row is found, the CatoptricSurface class’s run() function can be called.

The CatoptricSurface’s run() function handles tracking information for each row’s FSM
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Figure 2.3: Catoptric surface.

and calls the CatoptricRow’s update() function on each of the CatoptricRow objects in

the rowInterface member variable.

If the user issues the quit command, control ends up at the CatoptricSurface class’s

cleanup() function. The CatoptricSurface class’s cleanup() function calls the

CatoptricRow class’s cleanup() function on each of the CatoptricRow objects in the

rowInterface member variable.

If the user issues the reset command, control ends up at the CatoptricSurface class’s

reset() function. The CatoptricSurface class’s reset() function calls the CatoptricRow

class’s reset() function on each of the CatoptricRow objects in the rowInterface member

variable and then calls the CatoptricSurface class’s run() function which handles the

15



Figure 2.4: Message UML diagram.

process of keeping track of the FSM used for communicating with the Arduinos and calls

update() for each of the CatoptricRow objects.

If the user issues the test command, the same actions occur in the CatoptricSurface

class, but the reset() function is called with a different parameter that represents that the

command entered was test rather than reset.

CatoptricRow Files

The CatoptricRow.hpp and CatoptricRow.cpp files outline the structure and actions of the

CatoptricRow class. The CatoptricRow class represents a row of mirrors in the Catoptric

Surface (and their accompanying motors) as well as the serialFSM that it uses to com-

municate with its Arduino. The UML class diagram for the CatoptricRow can be seen in

Figure 2.5.

As seen from the UML class diagram of the CatoptricRow class in Figure 2.5, the CatoptricRow

contains the following member variables: an int called serial fd to represent the file de-

scriptor of the serial port written to for the row’s Arduino, an int called rowNumber to

represent the row number which the current CatoptricRow object corresponds to, an int

called numMirrors which represents the number of columns/mirrors in the CatoptricRow

object’s row, a vector of MotorState objects called motorStates (whose UML diagram can

be seen in Figure 2.6), a vector of Message objects called a commandQueue which represents
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Figure 2.5: CatoptricRow UML diagram.

a list of the movements that the mirrors need to use, and a serialFSM object called fsm

which represents the finite state machine used for communicating between the Raspberry Pi

and this CatoptricRow’s Arduino Uno.

In order to run commands from a CSV file, after the run command and its accompanying

CSV filename is parsed out, control ends up in the CatoptricRow’s reorientMirrorAxis()

function where it updates some bookkeeping information about the current motor state and

calls the stepMotor() function, where the command is pushed onto the commandQueue. The

commandQueue has Message objects popped off and sent to the row’s corresponding Arduino

every time the CatoptricRow’s update() function is called. Since the system loops through

the rows and calls update() for every CatoptricRow whenever the CatoptricSurface runs,

update() is able to execute those messages and move the mirrors. After sending the message

to the Arduino, the CatoptricRow’s update() function then waits to receive information
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Figure 2.6: MotorState UML diagram.

Figure 2.7: SurfaceDimensions UML diagram.

back from the Arduino so that it can update the row’s FSM by calling Execute() on the

fsm member variable.

When the user issues the quit command, control eventually ends up at the CatoptricRow

class’s cleanup() function. Here, the system calls resetSerialBuffer() to ensure that

the serial buffer between the Raspberry Pi and the Arduino for which the particular row

corresponds is clear for next time. The system also closes the serial fd file descriptor and

calls clearMsg() on the fsm member variable. This part of the system is vital for ensuring

that things are always closed out smoothly so that old data will not cause issues in future

runs of the system.

After issuing the reset command, control eventually ends up at the CatopricRow class’s

reset() function. The CatoptricRow reset() method calls stepMotor() with the appro-

priate parameters to move the mirror to a pre-programmed, default position. The reset()

method takes a bool parameter whose value is dependent upon whether the user input the

command reset or the command test into the system. This parameter is used to appropriately

determine the default configuration that the program should be set to.
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Figure 2.8: SerialPortDict UML diagram.

Figure 2.9: SerialPort UML diagram.

2.2.2 Arduino Communication

SerialFSM Files

In order for the Raspberry Pi to communicate with the Arduino, a Finite State Machine was

implemented in order to track at which point in the process the Raspberry Pi is at sending

and receiving the data. This Finite State Machine is comprised of the states: GET MAGIC NUM,

GET KEY, GET NUM CHAR HIGH, GET NUM CHAR LOW, GET CHAR, GET ACK KEY, GET ACK X,

GET ACK Y, GET ACK M, and GET NACK KEY. These states can be seen in the Finite State

Machine diagram in Figure 2.10. The system moves between these states depending on if it

gets certain pieces of data that compose the magic number, the key, and specific chars that

tell the Raspberry Pi code to switch states.

The Arduino C code for each row in the Catoptric Surface was then responsible for receiving

the messages sent by the Raspberry Pi about how to tell the mirrors to move. After receiving
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the data, it parses out the information it needs about moving the mirrors, and sends back

information to the Raspberry Pi so that the Raspberry Pi can update the Serial FSM as

needed. The Arduinos were wired up to the stepper motors to move them appropriately.

Figure 2.10: FSM diagram for the Catoptric Surface.

2.3 Working with a 2 x 2 Array of Mirrors

In order to get the C++ code on the Raspberry Pis working, we ran it on a test setup of

4 mirrors (see Figure 2.11). The 4 mirrors were in a 2 by 2 configuration with 2 Arduinos

total (1 per row) and with 1 Raspberry Pi communicating to the Arduinos. In order to

get the system working on the 2 by 2, a delay had to be added in between the Message

objects that the Raspberry Pi sent to the Arduinos. This delay had to be added because

without it, the first Message object would be sent and successfully move the first mirror, but
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all the subsequent Message objects were not properly being received. Since the subsequent

Message objects were not being received, only the first mirror was moving and the rest of

the commands that the user requested were not being acted upon. From looking at the serial

communication between the Raspberry Pi and the Arduinos with an oscilloscope, we saw that

there was an issue with the messages being sent too close to each other, and so the second

message onwards was not able to be properly processed. To remedy this, a for-loop style delay

was added before the Message object is sent to the Arduino in the CatoptricRow’s update()

function. While this delay caused a noticeable wait time between mirror movements, it

allowed for all the movements issued by the user to be sent and successfully move the mirrors

on the 2 by 2 test setup.

Figure 2.11: 2 x 2 test setup.
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Chapter 3

Experimental Setup and Results

3.1 Experimental Setup

To measure the illuminance from the Catoptric Surface, we took light sensor measurements

in Steinberg with the mirrors of the Catoptric Surface in different configurations. In this

experiment, the primary independent variable was the configuration of the mirrors, and the

dependent variable of interest was the illuminance measurements from the light sensor. The

measurements were taken on Friday, November 18th between 11 am and 12:30 pm. The

weather during the time period of the experiment was partly cloudy which gave off enough

natural light to carry out the experiment. During the actual measurements recorded below,

the sun was not occluded at all (full sun, no clouds). This time of day was chosen because

around noon is when the Sun is highest above the local meridian.

The light sensor used was the TSL2561 as seen in Figure 3.1. This was connected to a

SparkFun ESP32 Thing Plus microcontroller in order to be able to read and log light sensor

measurements periodically. The ESP32 was chosen due to several of its features that made

it beneficial for this experiment. One of these features was the Qwiic connect system, a

way of easily wiring the SparkFun ESP32 Thing Plus to sensors without having to solder

the pins on the ESP32 board itself. Another benefit of choosing the ESP32 is that its code

can be written in Arduino C, which makes it simple to program. The SparkFunTSL2561.h

header file was added to the Arduino C file to allow the ESP32 to smoothly interface with

the TSL2561 sensor.

In order to save the light sensor measurement data, the information was printed to the Serial

Monitor in the Arduino IDE. Then, the application CoolTerm was used to listen at the serial

port that was used to connect the ESP32 and obtain the data that was going to be printed

to the Serial Monitor. Since CoolTerm uses the serial port to obtain this data, the ESP32
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Figure 3.1: ESP32 and TSL2561.

needs to be plugged into the computer on which CoolTerm is running to be able to obtain the

information. The settings in CoolTerm were also used to prepend the date and timestamp

to the light sensor data in order to know when the light sensor measurements were taken

with an increased level of precision. In order to save the data and its associated timestamps

once it was available in CoolTerm, it was written to a text file.

While this setup was sufficient for the purposes of the experiment carried out, another data

collection system was designed for a longer term experiment in which data collection could

take place over a period of several days or weeks. For this setup, the application Node-Red

was installed onto a Raspberry Pi. Node-Red is a web-browser application that the user can

configure to allow the device on which it’s running to perform different actions. In this setup,

we configured Node-Red to be able to receive POST requests from the ESP32. Since the

ESP32 has Bluetooth and WiFi capabilities, it is able to send POST requests. The POST

requests that the ESP32 sends to the Raspberry Pi contain the timestamp and light sensor

measurement information. Node-Red on the Raspberry Pi can then be used to automatically

23



write the received data to a text file so that it can be saved long-term. Since our experiment

took light sensor measurements for approximately an hour and a half long timeframe, we

were able to monitor the light sensor during the duration of the measurements and thus

it did not warrant using this longer-term setup. However, an experiment performed in the

future over an extended period of time where humans cannot monitor the setup during the

entire duration of measurement can consider this approach.

3.2 Mirror Configurations

In order to move the mirrors, a group of individuals changed the positioning of the mirrors

by hand because the code moving the mirrors on the 2 by 2 test-setup does not yet move

the mirrors on the full Catoptric Surface in Steinberg. When running the actual experiment,

illuminance measurements were taken with the light sensor when individuals were in the

process of moving mirrors to a particular position, as well as once a particular configuration

was set up. This allows us to capture not only a particular configuration’s illuminance, but

also to see how light changes as parts of the Catoptric Surface are transitioning.

The light sensor was placed on a table in the middle of the atrium in Steinberg (the building

where the Catoptric Surface resides). It is important to note that disturbances to the light

pattern may have occurred during portions of the experiment, such as the occasional cloud

coverage or a person walking by the sensor and casting a shadow.

The configurations which we moved the mirrors to and took measurements at are as follows:

• All of the mirrors pointing upwards to try and concentrate the lights on a particular

spot on the ceiling directly above the light sensor (Ceiling Config.). When in this

configuration, the image of the ceiling of Steinberg is shown in Figure 3.2.

• All of the mirrors pointing downwards (Floor Config.). When in this configuration,

the image of the ceiling of Steinberg is shown in Figure 3.3.
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Figure 3.2: The Steinberg ceiling with the mirrors facing upwards.

Figure 3.3: The Steinberg ceiling with the mirrors facing downwards.
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3.3 Results

Tables 3.1 through 3.6 and Figures 3.4 through 3.7 give the numerical measurement results

of the experiment.

Table 3.1: Average Light Measurements for Various Configurations

Mirror Configuration Average Illuminance Data (lux)
Ceiling Config. 3828.669 ± 8.395
Floor Config. 3131.178 ± 23.371

Table 3.2: Mode of Light Measurements for Various Configurations

Mirror Configuration Mode of Illuminance Data (lux)
Ceiling Config. 3938.64
Floor Config. 3220.03

Table 3.3: Median of Light Measurements for Various Configurations

Mirror Configuration Median of Illuminance Data (lux)
Ceiling Config. 3829.27
Floor Config. 3210.32

Table 3.4: Range of Light Measurements for Various Configurations

Mirror Configuration Range of Illuminance Data (lux)
Ceiling Config. 417.92
Floor Config. 1209.92

Table 3.5: Variance of Light Measurements for Various Configurations

Mirror Configuration Variance of Illuminance Data (lux2)
Ceiling Config. 4766.3572
Floor Config. 36939.0284

Table 3.6: Standard Deviation of Light Measurements for Various Configurations

Mirror Configuration Standard Deviation
Ceiling Config. 69.0388
Floor Config. 192.195
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Figure 3.4: Average illuminance for the configurations.

Figure 3.5: Median illuminance for the configurations.
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Figure 3.6: Mode illuminance for the configurations.

Figure 3.7: Illuminance when transitioning configurations.
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3.4 Discussion of Results

The illuminance measurements from the time period in which the mirror configuration was

being manually changed from its original position to the position in which the mirrors were

pointed upwards to concentrate light at one spot on the ceiling demonstrated that as we

moved more mirrors upwards the illuminance increased. This can be seen from the data in

Figure 3.7.

The average illuminance has a higher value in the mirror configuration where all the mirrors

are pointed to one spot on the ceiling above the light sensor than it does with the config-

uration where the mirrors are pointed towards the ground. It is important to note that

disturbances to the light pattern may have occurred during portions of the experiment, such

as the occasional cloud coverage or a person walking by the sensor and casting a shadow. In

order to account for this we found the margin of error for the average illuminance from the

Student’s t distribution. This margin of error can be seen from the error bars in Figure 3.4.

The median, which is graphed in Figure 3.5, confirms this result as the median light sensor

measurement for the configuration of mirrors pointed at the ceiling is higher than the median

light sensor measurement for the configuration of mirrors pointed at the ground. The results

of the mode for each configuration can be seen in Figure 3.6.

From looking at the standard deviation and variance for each of the configurations, we see

that the standard deviation and variance for the configuration in which the mirrors are

pointed at the ground is higher than it is for the configuration in which the mirrors are

pointed upwards to concentrate light at one point on the ceiling. This demonstrates that

there was more variability with the light sensor measurements for the configuration in which

the mirrors are pointed at the ground. This increased variability could be caused by factors

such as cloud coverage changing the amount of natural light entering Steinberg or people

walking around the light sensor and casting a shadow. This higher variability results in a

larger range for the configuration in which the mirrors are pointed at the ground. Overall,

we see that the mirrors on the Catoptric Surface play an effective role in redirecting natural

light to modify the illuminance of a space because the mirrors had a higher illuminance

measurement when concentrated at one spot on the ceiling then when compared to being in

a configuration in which all the mirrors are pointed at the ground.
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Chapter 4

Conclusions and Future Work

Overall, throughout the lifetime of this project, we looked at an environment that we wanted

to redirect light in and assessed which system we wanted to test out based on knowledge

of existing light redirection systems as well as the requirements we had for manipulating

light in the Steinberg atrium. We then built the Catoptric Surface to achieve these goals.

Then, we developed C++ code, Arduino C code, and a system of communicating between

those two microcontrollers to move the mirrors. This code facilitated breaking down the

system into distinct parts. For example the CatoptricController was used for managing the

relationship between the use and the system, the CatoptricSurface class was responsible for

representing the Catoptric Surface as a whole, and the CatopricRow class was responsible

for representing a single row on the Catoptric Surface.

We used this code to get a working 2 by 2 testing setup of 4 mirrors in the lab. This

demonstrated that the Raspberry Pi and Arduino setup could be successful for controlling

the mirrors on the Catoptric Surface. Then, we tested the effectiveness of the mirrors on

the system at redirecting light by putting the mirrors on the CatoptricSurface in different

configurations and measuring the resulting illuminance from the configurations as well as

during the transitions to/from specific configurations. These measurements demonstrated

that the mirrors on the Catoptric Surface were able to be positioned to redirect light as

desired to increase illuminance in the desired environment.

Future work for the system as a whole could entail modifying the code on Raspberry Pis for

the full Catoptric Surface to see if the delay added on the 2 x 2 has an impact on moving the

Catoptric Surface in Steinberg. Additionally light sensor measurements could be taken over

a longer period of time to obtain more data. Light sensor measurement over a longer period

of time would also allow us to measure different variables such as the effects that varying

weather patterns, different times of day, and different times of year have on illuminance. In

order to obtain longer term light sensor measurements that require a measurement system
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to be running without human presence, the data collection system that uses Node-Red as

outlined in Chapter 3 can be utilized.
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