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The matrix, a rectangular array of numbers, expressions, or symbols, has become ubiquitous

across many genres of science, industry, and business. It is fundamental to mathematics,

physics, computer science, and engineering disciplines including cyber-physical systems in

which precise simulation and control of safety-critical physical behavior must be managed

computationally. By delineating data sets into neatly arranged rows and columns, these

arrays can be manipulated to identify and exploit underlying relationships and correspon-

dences between elements. For example, the structure provided by a matrix allows one to

perform one of the most fundamental matrix operations: multiplication.

The form, function, and behavior of matrix multiplication has been studied consistently over

the years and its properties are well-known. However, the standard matrix multiplication

computation performed on modern computer system runs in cubic time O(n3). As modern

data sets become ever larger, matrix multiplication becomes ever more time-consuming.

Therefore, with each new central processor unit (CPU) or graphics processing unit (GPU),

ix



and with the introduction of accelerators such as Field Programmable Gate Arrays (FPGAs),

researchers continue to investigate new optimizations to improve the performance of matrix

multiplication on modern hardware.

Many optimizations are moving beyond the scope of general-purpose CPUs in order to

target emerging architectures. To support this effort, the Khronos Group, a non-profit tech-

nology consortium, has developed an open framework called the Open Computing Language

(OpenCL). OpenCL allows rapid development of programs, typically called kernels, that can

execute across a wide range of heterogeneous platforms including but not limited to CPUs,

GPUs, and FPGAs.

In the last few decades, CPU speeds have rapidly diverged from projections given by Moore’s

law as we approach the limitations of Dennard scaling. Consequently, researchers have

put increasing efforts into optimizing GPUs for computationally intensive tasks such as

matrix multiplication. The rapid adoption of GPUs for a wide range of computationally

intensive tasks has infused the spheres of academia, industry, and engineering with a wealth

of literature, implementations, and guidelines for developing performant kernels for matrix

multiplication on the GPU.

While GPUs excel at most parallel workloads, these devices are not a panacea for complex

workloads including computations which may require branching for data dependent condi-

tions. Such workloads must be completed independently by the CPU. Yet, one of the newest

emerging technologies attempts to combine the benefits of the CPU and other accelerators

into a dynamic, hybrid, reconfigurable processing unit. One realization of this effort comes

by way of the Heterogeneous Architecture Research Platform (HARP). This system con-

sists of an Intel Broadwell Xeon CPU combined with an Intel Arria 10 GX1150 FPGA into

a Multi-Chip Package (MCP) that enables shared DRAM memory through a single Intel

x



QuickPath Interconnect (QPI) and two Peripheral Component Interconnect Express (PCIe)

channels.

With the advent of such hybrid architectures, one of the benefits of OpenCL is the ability

to write code for a given task, once, and have it execute across a range of devices in a

heterogeneous environment. With a suitable implementation in hand, one should be able

to perform complex computations efficiently in any OpenCL compliant environment. As

better hardware becomes available, one should be able to execute these kernels on new

infrastructures with little, if any, modification to the existing kernels. Using the OpenCL

framework as a vehicle of exploration, we have investigated the efficacy of using the current

wealth of knowledge and best practices pertaining to matrix multiplication for OpenCL

compliant devices on the HARP system and the implications of such methodologies for

future heterogeneous architectures.
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Chapter 1

21st Century Challenges in Matrix

Multiplication

1.1 Introduction

Matrix multiplication is a well-known mathematical operation that is critical in numerous

disciplines. Even with the nearly exponential increases in computer performance, matrix

multiplication remains a persistent challenge and the advent of accelerators (both FPGA

and GPU) reopens questions of both expression and optimization. In decades past, users

could scale up simply by purchasing the next generation of higher performance processors,

but with the breakdown of Dennard scaling, along with thermal and memory barriers, there

has been a divergence from the performance predictions previously driven by Moore’s law

and CPU clock rates have reached a plateau around 4-5 GHz. Under these constraints, both

users and manufacturers have elected to scale horizontally. Manufacturers increase the core

counts on processors and users aggregate more of these processors into individual servers,

and by extension into data center clusters. However, vertical and horizontal scaling of CPU

resources has not been enough to keep up with the demands of modern workloads. This

performance gap has motivated alternative architectures such as GPU, ASIC, and FPGA

solutions.

Some users have bypassed CPU and GPU architectures entirely by adapting their workloads

to Application-Specific Integrated Circuits (ASICs), which tend to be more performant than

general purpose CPU/GPU devices for specific applications. However, these devices require

1



significant overhead and cannot be modified once created. For devices with strict tim-

ing and performance constraints, and requiring application modification in the future, the

Field-Programmable Gate Array (FPGA) has become the option of choice. Although it has

considerably less cost and development overhead than an ASIC, developing a comparable

FPGA based solution may involve a steep learning curve that has traditionally only been

accessible to those with knowledge of Hardware Description Languages (HDLs) and digital

system design techniques.

That learning curve may be exacerbated in heterogeneous environments due to additional

challenges, two of the most prominent being orchestration and data migration. With each

device having different architectures, languages, and computational units, it can be challeng-

ing to wrangle all the disparate tools and functionalities to create a suitable implementation

of an application. This may be further complicated by data migration, wherein pertinent

data must shuttle from one device to another in a pipeline or streaming fashion, particularly,

across memory hierarchies.

To alleviate these challenges, the Khronos Group, a non-profit technology consortium, has

developed an open framework called the Open Computing Language (OpenCL). OpenCL

allows rapid development of programs that can execute across a wide range of heterogeneous

platforms, including but not limited to, CPUs, GPUs, and FPGAs. The OpenCL frame-

work enables computation orchestration on existing systems and its compatibility with the

Intel High Level Synthesis compiler allows users to architect new designs for reconfigurable

hardware using C/C++.

As the world shifts toward more application-specific accelerators for modern workloads, Intel

has developed an alternative accelerator in the form of a unified hybrid CPU+FPGA. One

realization of this effort is the Heterogeneous Architecture Research Platform (HARP). Ver-

sion 2 of this system consists of an Intel Broadwell Xeon CPU combined with an Intel Arria

10 GX1150 FPGA into a Multi-Chip Package (MCP) that enables shared DRAM memory

through a single Intel QuickPath Interconnect (QPI) and two Peripheral Component In-

terconnect Express (PCIe) channels. Using the HARPv2 as a vehicle for exploration, we

investigate the design space of matrix multiplication, using several existing cache-oriented

optimizations to better understand the performance portability of OpenCL and the impli-

cations for such optimizations on this and future heterogeneous architectures.

2



Across a range of matrix sizes, we show that several classic optimizations designed for tradi-

tional caches are also effective on the HARP system. This includes transposition, blocking,

and loop unrolling. When all optimizations are included, our implementations consistently

outperform the optimized standard library implementation (CBLAS). However, there are still

considerable variations in performance, across both matrix size and various tuning parame-

ters, that are not yet well understood and that warrant further investigation.

1.2 The Current State of the Art

Over the past decade, heterogeneous computing has typically implied a computation that

is partitioned across one or more devices containing a combination of CPUs and GPUs.

For CPU computations, there are a wealth of libraries and tools, such as Open Multi-

Processing (OpenMP) and the Basic Linear Algebra System (BLAS) that facilitate the rapid

development of high-performance computations. For GPUs, the dominant solutions come

from industry leaders such as NVIDIA who manufactures the most popular GPUs as well as

being the author of CUDA, the well-known parallel computing platform [1, 27, 38, 21, 14].

In a general sense, these solutions simplify development. Developers have invested consid-

erable time and effort into understand the underlying hardware architectures, identifying

optimal execution methods, and generalizing these operations. Instead of investigating the

myriad of hardware specifications, developers have identified generalities between target

architectures to use across various classes of devices. By having a solid grasp of the com-

putational architectures, developers provide users with extensions, application programming

interfaces, and tools that organize the data, computation, and communication efficiently

across these devices. Yet, developers also share the burden of the revision process: particu-

larly, as hardware evolves, users and developers alike are required to pivot to new hardware,

frameworks, and specifications to take advantage of additional features incorporated into

next-generation GPUs. Developers perform the heavy-lifting for users that may not have

the time or background to understand how an algorithm may augment performance or the

resources to create interfaces to operate these devices.

While users have the flexibility to perform tasks that may actually degrade performance,

developers typically provide users with best-practices for a given class of tasks [19]. Instead

3



of having to reinvent the wheel, users with these tools can rapidly develop solutions that

fully utilize these devices with little effort. However, even with such tools many challenges

arise when users want to use multiple devices for a given computation. With different

computational units, memory hierarchies, and communication methods, users can spend

considerable time on data manipulation, coordination, and orchestration. Irrespective of the

sophisticated programmatic solutions developed for a given computation, data migration

also can have significant impacts on overall performance.

These challenges bring out new questions concerning algorithms, architectures, and compu-

tational workflows. For example, are there tools that allow user to orchestrate a computation

and reconfigure all available resources in the most efficient manner? This is one goal that

researchers are working towards with solutions such as OpenCL for orchestration and hybrid

accelerators for reconfigurable architectures. However, such question pose a more fundamen-

tal question: Are we developing solutions that target the computation or the hardware?

1.3 Innovation under Compliance Constraints

Mathematical concepts such as systems of equations, linear transformations, and scalar prod-

ucts are prevalent in many areas of science. One of the most pertinent of these concepts is

that of matrix multiplication. Matrix multiplication has been studied, analyzed, and estab-

lished for decades. It sits at the core of many numerical algorithms, scientific computations,

and big data workloads.

Much like fundamental arithmetic operations, many would consider the “problem” of matrix

multiplication to be solved: we do not often consider the efficiency of arithmetic operations

or review new developments in their optimizations, assuming suitable performance of such

arithmetic operations. That is, we assume that these operations can be performed as fast

as the hardware (i.e. silicon switching) will allow. When we consider multiplication and

division, we often focus more on precision than on efficiency. We would like to think that

the operations may run slightly slower than addition or subtraction, but that ultimately the

main challenge is one of precision. However, this comparison could not be farther from the

truth: the performance of matrix multiplication remains an open problem.
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The challenge of optimizing the performance of matrix multiplication has been investigated

by Strassen [18], Bini [4], and Coppersmith & Winograd [8], among others [55]. Many

resulting algorithms have been implemented on computer systems since the 1970s, and yet

each year the scientific communities of the world still try to find more efficient ways to

perform this well-known mathematical operation [22, 5, 7, 2, 50, 23, 16, 34, 33, 36, 45].

Given that the efficiency of matrix multiplication on modern computer systems is still in

a state of flux, what does it mean when a new method arrives that is touted to be more

efficient, simpler, faster, or offering more calculations per unit of time? These definitions

are all suitable classifications for efficiency. However, efficiency in the context of matrix

multiplication has a particular metric that complements any other measurement of efficiency:

utilization. The algorithm with the highest level of efficiency is often tightly coupled with

the utilization of the underlying hardware resources. Because of the relationship between

efficiency and utilization, each matrix multiplication algorithm has to be specifically tailored

to the underlying architecture.

Given the multitude of computer systems on the market and the likely new architectures

of the future, it thus seems necessary to continue refactoring implementations indefinitely.

There are many reasons why we cannot now simply write a program once and (without

further modification) see improvements in precision, performance, and efficiency as better

technology on which to run the program becomes available: we write our programs to a

specific architecture as opposed to writing code solely to address the computational problem;

our primitive data types may be selected from predefined capacities; our algorithms reflect

the parallelism of our compute units; and our function calls, methods, and tools are often

selected a priori based on available languages, operating systems, or architectures.

To overcome those limitations of the current state of the art, it is appropriate to consider what

computations would look like if we could simply write a sufficient algorithm and the system

then could dynamically orchestrate the underlying architecture to fulfill the algorithmic

requirements.

The experiments presented in this work offer a preliminary step towards that vision, with a

particular emphasis on domain specific architectures and heterogeneous solutions, by exam-

ining performance of matrix multiplication across different relevant design and architectural
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factors. By investigating state of the art techniques for a subset of matrix multiplication chal-

lenges, we have identified some areas where new ideas about architectures and assumptions

affecting matrix multiplication may prove useful.
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Chapter 2

Modern Architecture

In 1972, Intel released the first commercial 8-bit processor called the 8008. This processor was

formed from 3,500 transistors that ran at speeds up to 800 kHz. Using the (then advanced)

8-bit architecture, this processor was capable of accessing up to 16 KB of RAM. In stark

contrast, today’s modern processors are comprised of over 8,000,000,000 transistors and can

reach speeds of up to 4,400,000 kHz (4.4 GHz). Using modern 64-bit architectures, these

processors can access over 2,000,000,000 KB (2TB) of RAM. Since the inception of the 8008,

the performance of microprocessors has increased dramatically. A well-known predictor of

processor performance has been Moore’s law which proposed that the number of transistors

on microprocessors would double every 18 months. For a time, this prediction held true and

society reaped the benefit of increased performance year after year. However, since about

the mid-2000s processor speeds have plateaued due to constraints imposed by physics and

the laws of thermodynamics. While many would argue that Moore’s law is dead, each time

this argument arises engineers and scientists develop new ways to bring its predictive power

back to life. In this incarnation, Moore’s law is reborn again via multi-core processors.
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2.1 Parallelism and Concurrency

Figure 2.1: Parallelism vs Concurrency

While many programs have segments of sequential code, there are often opportunities to

take advantage of parallelism in code segments. An important part of computer processing

involve the concepts of parallelism and concurrency. While these two terms are often used

interchangeably, parallelism and concurrency are not equivalent. Parallelism is an execution

model wherein two or more tasks can be executed simultaneously. However, the concurrent

task model allows tasks to progress at the same rate even if executed at different times.

Concurrent tasks are typically executed in an interleaved fashion which allows two or more

programs to execute in lock-step with each other. These execution models are shown in

figure 2.1. In the most general sense, a computer consists of a combination of CPU, Memory,

Storage, and various input and output devices which utilize a communication system (a.k.a.

a bus) that is used to transfer data between components inside the computer system.

Traditionally, all computer processing units consist of control, arithmetic logic, and memory

management units. The control unit orchestrates all the processes occurring inside the

CPU. From execution of program instructions to the ALU and memory management, all

processes are governed by the control unit. The ALU performs all arithmetic and bitwise

logic operations. The memory management unit controls access and communication with

memory. CPUs are typically synchronous circuits which utilize a clock signal to synchronize

8



their operations. Each and every operation occurs on a “tick” of a clock cycle. This clock

signal arises from external oscillator circuits that generate a fixed number of pulses per second

in the form of periodic square waves. The frequency of these pulses is how we derive the

speed of the processor and the number of instructions that the CPU can perform per second.

To simplify things, we will define a processor as containing a Processing Element (PE) which

manages the execution of instructions, an Instruction Pool which stores those instructions,

and a Data Pool which stores the data which the instructions will act upon. Over time,

processors have improved to take advantage of parallelism using different methods to control

both data and execution within the CPU.

In 1966, Dr. Flynn proposed a method for classifying digital computers, which is now referred

to as Flynn’s Taxonomy [13]. The primary classifications can be subdivided into two groups:

Single Data Stream (SISD, MISD) and Multiple Data Stream (SIMD, MIMD) architectures.

2.1.1 Single Data Stream Architectures

Single Instruction Stream, Single Data Stream (SISD)

Figure 2.2: Single Instruction Stream, Single Data Stream (SISD)

As is shown in figure 2.2, a traditional single-core processor would fall into the Single In-

struction Stream, Single Data Stream (SISD) category. This specific architecture processes

a single stream of data in sequential order. To process large amounts of data, the user would

be limited to using recursive techniques or loops in order to iterate through the data. This

architecture has no parallelism.
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Multiple Instruction Streams, Single Data Stream (MISD)

Figure 2.3: Multiple Instruction Streams, Single Data Stream (MISD)

In contrast to this is the Multiple Instruction Streams, Single Data Stream (MISD) archi-

tecture, a type of parallelism akin to pipe-lining. Multiple processing units perform separate

operations on the same data set. This method is fault-tolerant as the same instruction can

be executed by different PEs in order to ensure reliability. However, this architecture has

been superseded by multiple data stream architectures.

2.1.2 Multiple Data Stream Architectures

Single Instruction Stream, Multiple Data Streams (SIMD)

Figure 2.4: Single Instruction Stream, Multiple Data Streams (SIMD)
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In terms of modern CPUs, one would be hard-pressed to find a system which did not contain

more than one core. That is to say, most modern CPUs are multi-core processors. These

processors have a Single Instruction Stream, Multiple Data Streams (SIMD) architecture,

shown in figure 2.4, which allows them to perform the same instruction on multiple data sets

simultaneously. This architecture exploits data level parallelism.

Multiple Instruction Streams, Multiple Data Streams (MIMD)

Figure 2.5: Multiple Instruction Streams, Multiple Data Streams (MIMD)

SIMD was expanded to take advantage of multiple instructions as well as data. CPUs of

this type employ Multiple Instruction, Multiple Data architectures (MIMD) as shown in

figure 2.5. These processors contain multiple PEs which work independently and asyn-

chronously allowing the execution of various instruction on unique data sets simultaneously.

This is typically referred to as task level parallelism according to Flynn’s taxonomy. A sub-

category of MIMD is Single Program, Multiple Data (SPMD) wherein a single program is

executed across all PEs.
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2.2 Single-Core to Multi-Core Evolution

2.2.1 Von Neumann Architecture

Figure 2.6: Von Neumann Architecture

General purpose CPUs have advanced significantly with the advent of additional cores, low

power usage, and additional extensions. As shown in figure 2.6, the CPU consists of a Con-

trol Unit and Arithmetic Logic Unit (ALU) connected via data bus to the Memory Unit. The

Control Unit manages communication with the ALU and interprets program instructions.

The ALU receives data/commands from the Control Unit in order to execute arithmetic and

logic instructions on the received data. This design is known as the Von Neumann architec-

ture. Data and instructions are stored in the memory subsystem in the same format. This

allows the contents of memory to be defined by the system interpreting the memory loca-

tion. For instance, a program compiler can translate user-defined programming pragmas into

machine language that is stored as ordinary data but can also be executed by the CPU di-

rectly as instruction directives. This makes Von Neumann architecture flexible and versatile

but it has one glaring disadvantage, a phenomenon known as the Von Neumann bottleneck

which will be discussed later. This architecture places specific limits on the programmatic

12



solutions as the execution of instructions are inherently sequential. Fundamentally, modern

general purpose CPUs have not diverged from the original Von Neumann architecture since

its inception which shows both the longevity of this architecture as well as the legacy of

persistence computational constraints.

2.2.2 Computing at Scale

Figure 2.7: Horizontal vs Vertical Scaling

General-purpose architectures have developed over the years and are deployed in many indus-

tries based on the workload targets. However, a little over a decade ago, in an era dominated

by the seemingly ever-increasing CPU frequencies, many industries found that if their com-

puter systems could not keep up with the computational demands, they would defer to the

old adage of “wait until next year”, in order to upgrade to a faster CPU by utilizing vertical

scaling. Some industries would take a slightly different approach by taking advantage of

horizontal scaling which would incorporate additional CPUs in networked servers to increase

processing power, as is often found in High Performance Computing (HPC) environments.
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However, horizontal scaling in this fashion is expensive and cost prohibitive for many in-

dustries. Such vertical and horizontal scaling, shown in figure 2.7, were not limited to the

industries which adopted the processors, but were also adopted in processor fabrication as

well.

The rapid advances in processing power were due to the ability to take advantage of transistor

scaling that enabled the minimization of transistors. Consequentially, the semiconductor

industry took advantage of horizontal scaling afforded by transistor minimization in order

to pack more transistors into integrated circuits (ICs) and thereby improve performance.

For several decades, the number of transistors per square inch on an integrated circuit (IC)

doubled nearly every two years, corresponding roughly to the projections by Dr. Moore. Such

rapid increases in transistor scaling elicited an unparalleled effervescence of computational

power and processor diversity. As the size of transistors became smaller, transistor density

and switching frequency increased. Coupling the transistor improvement with significantly

cheaper manufacturing costs created a perfect storm of events that led to rapid expansion in

computer technology to such an extent that system integrators were barely able to assemble

existing hardware before newer and more powerful integrated circuits (ICs) were introduced

to the market.

Dr. Moor’s projections seemed likely to extend far into the future, but two challenges

emerged that caused actual results to diverge from the long held predictions: thermal run-

away and quantum effects. As subsequent chips incorporated smaller and more tightly packed

transistors, it was determined that these chips could maintain the same amount of power

while operating at higher frequency while consuming less voltage. That is, as transistor

feature size decreased, the power density remained relatively constant. This idea is com-

monly referred to as Dennard Scaling. However, the tremendous benefit of Dennard Scaling

overlooked a major component: leakage current. Dennard scaling did not take into account

leakage current which serves as a baseline for power per transistor. Consequently, the tightly

packed chips with electrons moving at increasing speeds through smaller and smaller silicon

circuits, contributed to higher and higher power densities. Given that power density does

not scale with size, this generated substantial amounts of heat that would become impossible

to dissipate with common airflow cooling methods. The only option for manufacturers was

to limit either the number of transistors or the frequency of the processor. Due to Dennard

Scaling, processor frequencies have not exceeded roughly 5 GHz.

14



With further transistor scaling, further challenges emerged which are related to smaller

feature sizes. Transistors lie at the heart of a processor and are comprised of electrical

leads called the emitter, collector, and base. In computer systems, these transistors are

responsible for switching: that is, moving between on and off states to encode ones and

zeroes. In switching implementations, the electrical leads take on additional terminology

with the emitter referred to as the source, the collector as the drain, and the base as the

gate. These terms evoke a notion of current or fluid flow. The most critical component that

enables the action of switching revolves around the gate, which controls the flow of electrons

through the transistor. As transistors are scaled to smaller and smaller feature sizes, the

thickness of the gates decreases as well.

Figure 2.8: Quantum Tunneling

Thinner gates can lead to a phenomenon known as quantum mechanical tunneling wherein

electrons can pass through the gate medium of a closed gate. In Classical Mechanics, if

an electron has enough energy to overcome the potential energy at the top of the barrier,

the electron will be able to traverse the barrier. Even if the electron does not have enough

kinetic energy to overcome the barrier, however, quantum effects may allow the electron to

tunnel through the barrier. Figure 2.8 shows an example of quantum tunneling with the

blue arrows indicating the Classical Mechanics trajectory and the red arrows indicating the

Quantum Mechanical trajectory.

Quantum tunneling effects can contribute to a significant gate leak current that increases

exponentially as the gate thickness decreases. The break down in Dennard scaling, undesir-

able quantum effects, and limitations on clock frequencies led many researchers to assume
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that Moore’s Law was coming to an end. However, innovation would breathe new life into

Moore’s Law through the introduction of multi-core systems.

2.3 Multicore to Heterogeneous Architectures

Horizontal scaling, it would seem, has developed a lasting permanence in the computer

industry. As noted previously, when computations required additional computing power, one

could either scale vertically through the purchase of faster processors (if available) or scale

horizontally with the acquisition of additional servers. The semiconductor industry took the

horizontal approach and with transistor miniaturization, more processors could fill the same

horizontal space on a microscopic level. With limitations curtailing transistor minimization,

the semiconductor industry developed a new approach to the challenges which threatened to

end Moore’s Law. Instead of creating dense high frequency single core processors, they began

to develop additional cores which ran at comparable frequencies as single core processors and

the era of multi-core processing began. The increasing numbers of processor cores benefited

many workloads but did little to help with sequential tasks.

Nevertheless, multi-core processing enabled the partitioning of workloads onto several pro-

cessors and also introduced the notion of dark silicon [52]. The semiconductor industry

designed the multi-core processors so that only a fraction of the processors was actually

operating on a workload at any given time which greatly reduced the power constrains that

were leading to thermal runaway and other complications. With many processors cores work-

ing on a subset of a given workload, some processors were running while other processors

were idle or “dark”. The dark silicon paradigm increased the industry’s ability to improve

power efficiency in computer systems. Yet, the growth of multi-core systems has lagged far

behind architectural needs for massive computationally intensive workloads which in turn

has opened the door to alternative architectures.
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2.3.1 Alternative Accelerators

Figure 2.9: Modern Compute Devices

Given the demand for viable solutions to support computationally intensive workloads many

industries have attempted to scale horizontally by adding additional CPUs in networked

servers to increase processing power. However, scaling in this fashion is expensive and cost

prohibitive for many industries. Not to mention, since about 2006, processor speeds have

shifted from what appeared to be exponential growth to logarithmic growth and we find

ourselves close to a plateau in processor frequency. Increases in the number of transistors

per square inch for general purpose CPUs according to Moore’s law predictions has declined

in recent years. The International Technology Roadmap for Semiconductors (ITRS) has

warned that transistor minimization may reach its limit in 2021 [52]. While there has been

a steady increase in processing power of general-purpose CPUs, the doubling of performance

according to Moore’s law projections no longer holds. In light of this, there is a need for new

technologies and programming paradigms to offset some of the deficiencies in performance

scaling.

In recent years, many have turned towards heterogeneous computing to satisfy computational

demands. The most prominent technologies in terms of hardware have been GPUs, FPGAs,

and ASIC. Of the three, GPUs offer a readily available option. They are commonly found in

most modern desktops and laptops, offering competitive raw processing power as compared

to their CPU counterparts [26]. GPUs are capable of processing computationally intensive

workloads that would typically be performed by the CPUs. The underlying hardware features

of GPUs have been exposed by manufacturers to support parallelism in processing that

can be orchestrated by the programmer. While traditional superscalar processors support
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many hardware features such as branch prediction, instruction pipelining, and out-of-order

execution, GPUs do not. However, what GPUs lack in terms of execution model versatility,

they compensate for with exceptional performance.

For the past few decades, general purpose CPUs have been tailored almost exclusively to-

wards serialized workloads. Examples of such workloads include compilation, network com-

munication, and user interactions. There have been advances in recent years towards parallel

workloads with the inclusion of multi-core architecture for such purposes. However, CPU

cores continue to be optimized for single-threaded performance. Consider an arbitrary x86

CPU with 8 cores, hierarchical shared memory caches, with a max frequency of 4-5 GHz.

If this example CPU is made with a 14 nm process, each chip will have approximately 2

billion+ transistors consuming around 35W of power. This example processor is shown in

figure 2.10 (notice the portion of the die area used for the ALUs of the processor).

Figure 2.10: General Purpose CPU Architecture

With so little of the die area committed to arithmetic computations, it is evident why

additional CPUs are required for intensive computations. The remaining space of the die

and the main contribution to heat comes from multiple caches, decoders, and additional

extensions while not visible on the die, contribute significantly to the increase in single thread

performance. One of the primary contributors to increasing single thread performance is the

concept of speculation. Speculation optimizations go far beyond speculative execution (the

execution of instructions prior to determining if the resulting output will be needed for future

operations) into such areas as data caches, branch predictions, and out-of-order processing.

Speculation allows the system to anticipate with a given probability the need for data. This
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in some sense could be thought of as a bet that a certain portion of the data will be in high

demand in the near future.

These speculative optimizations may work well depending on the workload, particularly

in cases where the data has high locality, significant branching, and a variety of operations.

However, these optimizations come at the expense of precious die space which could otherwise

be used for additional processing units. If the workloads tend to be of a scientific nature

such as similar sequential operations, then these optimizations remain underutilized, merely

hoarding precious die space and consuming countless watts of thermal design power.

Many companies elect to use advanced process technologies to achieve higher operating

speeds, but increasing the clock rate comes at a price. Particularly, transistors operating

at higher speeds lead to higher operating temperatures. Overclocking processors requires

significant adjustments in heat dissipation techniques beyond air cooling. Water or nitrogen

cooling is unfeasible for most users and companies for that matter. In addition to thermal

issues, high speed processors also contribute to increased power leakage and are cost pro-

hibitive to develop. In light of these issues, processor speeds have leveled off around 4 GHz to

date but other methods have been employed to increase the performance of these processors

up to a maximum of 5 GHz.

It should come as no surprise that micro-architecture optimizations can contribute signifi-

cantly to performance of these chips. The typical methods used fall into two class: dual-issue

core and multi-issue core [43]. The dual-issue core is a superscalar architecture which allows

the processor to execute up to two instructions per clock cycle. In many cases, there is a

set of specifications which define which instructions can be executed together. Those rules

often define explicitly what operations can be performed simultaneously on particular data

types. For instance, two integer operations or one integer operation and one floating-point

but not two floating-points can be executed simultaneously. Most modern programs typi-

cally execute in sequential order and because of this, the dual-issue core can often exploit

the intrinsic instruction-level parallelism (ILP) found in many programs for a significant

performance gain. While the processor cannot always exploit ILP in every program, there

is typical enough ILP in most programs to take advantage of this functionality. Multi-issue

cores follow the same principles but have more execution units to utilize simultaneously.
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Modern processors often utilize the multi-issue architecture and advanced features of an x86

processor such as multi-branch prediction, speculative execution, and simultaneous multi-

threading among others. Most of these performance enhancements are used to optimize

single-threaded performance of the device. New methods are being used to squeeze as much

performance out of these processors as possible given that manufacturers have been hitting

the wall or limitations for Von Neumann architecture. There are actually three particular

types of “walls” that manufacturers encounter for this architecture:

1. Power

• Increased frequency leads to increased power density.

• Difficult to mitigate dynamic and static power dissipation.

• Diminishing return on performance for higher power density.

2. Memory

• Compute bandwidth continues to outpace memory bandwidth.

• Data migration can become the limiting factor on performance.

• Exacerbated by increasing data set sizes.

3. Instruction-level parallelism

• Increasingly difficult to find parallelism in single instruction streams.

• Diminishing returns on additional ILP hardware.

• Functional Units remain idle waiting for memory access.

Many programs have sequential execution which allows the CPU to exploit the natural ILP of

these programs but the performance is program specific. In terms of the power wall, adding

more and more transistors to the processor and running them at high speeds has increased the

power dissipation of the processors far beyond the capacity of inexpensive cooling techniques.

This memory wall also has another name, the Von Neumann Bottleneck. In the past few

decades, processor speed has increased dramatically but the performance of memory has not

kept pace. Much of the improvements in memory have been attributed to increased density

(i.e. higher memory capacity). With the advent of faster processors, the CPU spends an
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increasing amount of time waiting for data to be fetched from memory. Irrespective of

the processor, its speed is in effect limited by the rate of transfer from memory for most

operations. A faster processor would simply mean increased idle time. Thus, memory has

secured its place as the primary bottleneck in Von Neumann architectures.

Several solutions are used to alleviate the intensity of the bottleneck. The most prominent

ones are Larger Caches, Hardware Prefetching, Software Prefetching, and Multi-Threading [12].

Increasing the cache size can be prohibitively slow and only efficient if data has both tem-

poral locality and fits into the cache. Hardware Prefetching cannot be optimized for each

application and its functionality is based on the behavior of the program execution at run-

time. Software Prefetching typically excels for iterative loops with regular array access, but

it requires source code and manual programmer intervention which is not often feasible,

especially in the case of precompiled programs and closed source. Finally, Multi-threading

solves the problem of throughput but ultimately does not contribute to decreases in memory

latency.

The present solutions can only take this so far but in order to traverse these walls, many have

chosen to look to a paradigm shift in terms of hardware architecture. The Von Neumann

architecture has securely reserved itself a place in computing. However, as researchers look

to move beyond the inherently sequential processing paradigm for demanding applications,

they look to incorporate modern GPUs.

2.3.2 Modern GPU Architecture

The Graphics Processing Unit (GPU) has changed dramatically since its inception. It began

as a specialized device used to accelerate the rendering of computer graphics for visual

displays. To output images to the screen via the frame buffer, the GPU used fixed-function

3D graphics pipelines to quickly process pixel data independently and in parallel from vertex,

texture, and lighting data. This data needed to be processed quickly but unlike CPUs, there

was less necessity for minimal latency and more of an emphasis on high throughput, as

the visual acuity of humans is less sensitive and can operate on longer time scales than

other critical systems. The effort to have maximum throughput was necessary as the images

required the GPU to process millions of pixels at a time and in the case of real-time rendering,
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billions of pixels per second. The process of image rendering has a fundamental level of

parallelism.

Data input to the GPU goes through a series of pipeline tasks. The output of each pipeline

stage is used as an input to the next stage of the pipeline. Operating on data simultaneously

in consecutive tasks, the pipeline reveals the task parallelism of the GPU architecture. As

each stage of the pipeline operates on multiple data inputs simultaneously, this exposes

the intrinsic data parallelism capability of the GPU. The first programs written for GPUs

were geared towards graphics processing and utilized languages similar to assembly that

mapped user specified input data to particular operations. Researchers began investigating

alternative computational methods for their parallelized workloads and began to re-purpose

GPUs for such endeavors. Using GPUs for such tasks required researchers to reorganize

their programs into a graphics processing format [25, 28, 41]. Writing programs for scientific

computations as a graphics processing tasks proved difficult. The resulting programs were

riddled with bugs that were hard to isolate and the code was challenging to debug, optimize,

and develop.

However, research began to indicate that GPUs offered better performance for certain algo-

rithms compared to their CPU counterparts, and the adoption of GPUs for computations

increased [6, 35, 9]. With this new found interest in GPUs came the development of high

level languages which simplified programming tasks and decreased the burden of dependence

on knowledge of the underlying graphics systems in order to create programs. While these

graphics programming languages allowed many researchers to show performance improve-

ments of GPUs over CPUs for particular workloads, they were ultimately deprecated when

hardware vendors released their own implementations for their hardware. The GPUs first

conceived as simple graphics processing devices have evolved into indispensable tools for deep

learning, artificial intelligence, bioinformatics, and essentially any computationally intensive

process which requires a high level of parallelism [40, 1, 27, 51, 38, 21].
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Figure 2.11: CPU vs GPU Architecture

Before the advent of GPU computations, mathematical libraries were used to create perfor-

mant computations on general purpose CPUs. Developers spent considerable time analyz-

ing CPU architectures and memory hierarchies to develop optimizations for general purpose

hardware [10]. However, CPUs lack the necessary computational units to process large data

sets in parallel given their high frequency but low core counts. GPUs on the other hand have

low frequency but high core counts that are specifically designed to perform floating point

computations for 32 and 64 bit data types. A comparison of the two architectures can be

seen in figure 2.11. Developers have analyzed GPUs to create specialized libraries that take

advantage of GPU architecture [3, 11, 39]. The computational power and specialized archi-

tectures leveraged by GPUs over CPUs for parallel workloads explains the rapid adoption of

GPUs for ML and Big Data workloads today [38].

2.3.3 GPUs as Accelerators

The modern GPU has moved far beyond the display of graphics for visual applications.

While some GPUs continue to display graphics, specialized GPU cards have been developed

(sans graphics port) to utilize the GPU solely for the purpose of intensive computations.

Many manufacturing companies create GPU devices, with the top manufacturing companies

being Intel, AMD, and NVIDIA. Though Intel is the largest manufacturer, their graphics

focus has been toward integrated and low-performance cards found in laptops and economy

workstations and servers. The remaining two suppliers, AMD and NVIDIA, are well known

for their high performance cards. Of the two, NVIDIA appears to be the dominant supplier

of cards for academic and industrial environments. NVIDIA also happens to be the maker

of CUDA, a programming language developed for their line of GPUs.
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Newer GPUs are composed of multiple GPU processing Clusters (GPCs), Texture Processing

Clusters (TPCs), Streaming Multiprocessors (SMs), and memory controllers. Differing from

standard server architecture, advanced GPUs utilize High Bandwidth Stacked DRAM mem-

ory which has significant advances over standard GDDR5 server memory. A GPC combines

multiple TPCs into individual units. Each GPC contains the characteristics of a standalone

GPU and each one can be dedicated to an individual workload or used in conjunction with

one another. The TPC is a cluster of SMs with a texture unit and logic controls. Similar

to the GPC, the TPC can be grouped into higher level configurations known as a Stream-

ing Processor Array. The highlight of the TPC is the ability to utilize texture memory

functions. Texture memory found in the texture unit is a cache memory, entirely separate

from the global, shared, and register memory. It can be used to improve both latency and

bandwidth for certain workloads. The texture memory cache is geared towards 2D graphics

processing but for computational workloads the optimization of the cache allows for 2D spa-

tial data locality. With the data bound to pitch linear memory, a running kernel can update

this data allowing for increased performance in caching behavior and minimize superfluous

data duplication computations, in calculations that require two-pass updating.

Figure 2.12: Streaming Multiprocessor Architecture

The primary workhorse of computations is the SM shown in figure 2.12. The SM contains

several cores and Special Function Units (SFU). The collection of SMs are multithreaded
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SIMD processors. At a high level, the GPU is a MIMD composed of a grouping of mul-

tithreaded SIMD processors. The SM are optimized for high throughput floating point

operations. The SM is equivalent to the Processing Element as seen in CPUs. The floating

point and integer cores allow for faster throughput in computations. The SFU supports high

throughput intrinsic functions (sin,cos,etc). The Tensor cores are high throughput mixed-

precision FP16/FP32 cores optimized for deep learning applications. Multiple Tensor cores

per SM are capable of performing multiple floating point operations per clock cycle. Pro-

actively placing these specialized Tensor cores on the GPU allows for specialized machine

learning tasks and emerging applications.

To process data GPUs uses two different architectures. For global execution across the

TPCs, the MIMD architecture is used. To execute across the SMs, the Single Instruction

Multiple Thread (SIMT) architecture, a subset of the SIMD classification, is used. Unlike

traditional Von Neumann processors, the SIMT architecture allows a substantial number of

parallel computations to execute across thousands of hardware threads each with different

data sets. SIMT advances the SIMD design pattern not only in performance but in ease of

use for programmers. Given that SIMT is scalar, it has no predefined set vector width which

allows SIMT to perform at maximum speed regardless of the vector width. By compari-

son, the SIMD architecture experiences a capacity reduction when the input size is smaller

than the SIMD/MIMD width. SIMT guarantees that the processing cores operate at full

capacity consistently. Demanding workloads with substantial parallelism can benefit from

the massively parallel computational abilities of GPUs.

2.3.4 GPUs are not the solution

GPU adoption has increased over the past few decades and has become the go-to device for

parallel workloads, but have we really solved the challenges faced by the modern CPU? GPU

architecture with its own caches, memory hierarchy, and PCI bus communication exploits

embarrassingly parallel workloads by design but the primary bottleneck for Von Neumann

processors is inherent to GPUs as well and significant performance degradation in data mi-

gration continues to persist. We have seen that CPUs lacked sufficient compute units to

process massively parallel workloads and researchers have scaled horizontally to increase

computational power. As we look at the landscape of GPU computing are we not doing
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the same thing? That is, densely packing servers with more and more GPUs and linking

them over high bandwidth technologies such as RDMA and infiniband. Have we not simply

shifted the problem to a different (albeit more capable) device? As new cards emerge with

additional features, compute units, and extensions, we find ourselves refactoring code again.

Another challenge that is faced by GPUs which is often overlooked is the notion of code

branching. GPUs perform very badly, in fact worse than CPUs, when they encounter code

with conditional branches. To circumvent this problem, many tools recommend executing

branching code on the CPU and strictly parallel code with no branching on the GPU. This

can bring other challenges as some data is on the CPU and in system memory while other

portions are traveling across the bus to the internal GPU memory. Such synchronization,

aggregation, and coherence can severely affect computational performance. The constant

refactoring continues as new revisions of GPUs arrive to market and data migration chal-

lenges persist across device specific memory hierarchies. In a sense, we have not solved the

problem but have simply shifted the issue to another architecture.

2.4 Alternative Hardware Accelerators

2.4.1 Application-Speciic Integrated Circuits

Industries with specific computational demands have diverged from standard CPU and GPU

adoption in favor of Application Specific Integrated Circuits (ASIC). These devices differ

from other hardware solutions in that they are not targeted for general purpose applica-

tions. These application specific integrated circuits, or chips, are targeted for very specific

use cases. Such chips are often used in embedded device or single purpose applications in

fields such as networking, bitcoin mining, and automotive industries just to name a few.

As discussed previously, by adopting general purpose processing solutions, one has to tailor

computations to the underlying hardware which may have drawbacks that limit computa-

tional performance. ASICs on the other hand, tailor the underlying hardware architecture

to the computational demands. This makes for hardware with very precise architecture that

ensure certifiable execution times and can take full advantage of the resources in order to

complete the computation or function. However, developing such chips require a significant

amount of time in terms of design, development, and fabrication. Traditionally, an industry
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System Specifications Identify the non-formal functionality specifications of
the ASIC.

Architectural Design Layout development taking into account area, power,
and size considerations.

Functional and Logic Design An electronic components description used to capture
functional requirements of the integrated circuit logic.

Circuit Design The physical description of ASIC circuitry that achieves
the system specification using a hardware description
language.

Physical Design Partitioning, floor-planning, placement, Clock Tree Syn-
thesis, Signal Routing, and Timing.

Physical Verification and Signoff Formal circuit, timing, power testing, evaluation, and
verification.

Fabrication Physical device creation.
Packaging and Testing Device packaging and final testing to ensure that ASIC

operates within specified tolerances.
Completed Chip Ready for use by the industry.

Table 2.1: ASIC Design Flow

with interest in using ASICs would need a large team including several designers that would

come up with an architectural layout using hardware description languages (HDL). Once the

design was completed, the developer would need to engage an ASIC manufacturer to fab-

ricate the design. Initially, designers would normally be constrained to using the available

design tools of a manufacturer based on Verilog or VHDL. Over time third parties began de-

veloping design tools to provide features comparable to those found in manufacturer-specific

tools, and today there are many options to choose from. These modern tools assist with

logic synthesis and are able to compile HDL design descriptions into gate-level netlist which

gives a description of the connectivity of all electronic components to one another. Creating

ASICs follows a very specific design flow as shown in Table 2.1.

One of the most intensive processes of ASIC development is Functional Verification. Such

verification may include techniques such as logic simulation, emulation, and formal verifica-

tion. Unlike FPGAs, ASICs cannot be reprogrammed once they complete the fabrication

phase. If errors are found after the fabrication phase, the redesign and re-fabrication of the

device can be cost prohibitive. To eliminate errors, designers may elect to use full coverage
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testing wherein the device is tested through all of the possible permutations of its function-

ality. However, given the volume of potential permutations or test-cases, even for a simple

design, functional verification tests could exceed a Vigintillion (1063) test cases in order to

verify a design. The functional verification process is often compared to program verification,

both of which are NP-hard and may have zero possible solutions in all test cases. Solutions

such as simulation, emulation, and intelligent verification can assist with the process in most

cases to ensure the correctness of the design to a given margin of error.

Design and fabrication of ASICs can fall into two categories: Fully Custom and Semi-Custom

designs. Many circuit designs have common components that fulfill basic logic or functional

requirements. These common components are often packaged into cells and comprise a

library of circuitry that may be offered by a vendor in order to speed up development and

limit not only re-inventing common functionality but also required Functional Verification

for a portion of the design. Designers are free to choose such libraries or create new ones

for their applications. In the case of fully custom designs, the designer has the flexibility

to create a complete layout of the circuitry on the device whereas semi-custom designs are

slightly more constrained given that the design may use one or more of the pre-designed cell

libraries provided by the manufacturer.

Clearly, ASICs provide the best performance given that the architecture is completely tai-

lored to the computation, but this flexibility comes at a considerable price in terms of cost,

price, and effort. Some of the time expense can be reclaimed by taking advantage of semi-

custom designs but ultimately, one has to create a new hardware architecture which is cer-

tainly more time consuming than merely refactoring source code for the CPU or GPU. The

multi-factor expense of ASIC development seems larger than the effort required to refactor

code for other architectures. Have ASICs solved the refactoring problem or is there another

solution that will enable professionals to take advantage of architectural flexibility without

reinventing the wheel?
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2.4.2 Field-Programmable Gate Array

Figure 2.13: FPGA Architecture

While ASICs have a long development time, a solution that is seeing a lot of adoption lately

is that of the Field Programmable Gate Array (FPGA) shown in Figure 2.13. These devices

have a lot in common with ASICs and when compared to the ASICs fully customizable

design abilities, FPGAs fall into the semi-customizable category. FPGAs are integrated

circuits that provide re-programability which is something that ASICs lack. They also can be

configured using the hardware description languages as used for ASIC development. FPGAs

are comprised of arrays of programmable logic blocks and a nested hierarchy of reconfigurable

interconnects that allow designers to connect available circuitry at will. The logic blocks

support simple or complicated functions and most FPGAs include complete memory blocks.

With an ever growing amount of resources at the disposal of the FPGA, designers can build

ASIC like circuity with competitive I/O rates to that of modern computer systems and can

be used in mission critical areas where timing constraints must be fulfilled.

FPGAs provide an unparalleled level of flexibility and enable designers to create dynamic

architectures with considerably less effort and costs than ASIC development. Yet, why have

FPGAs not been adopted in all industries with demanding computational needs? One major

factor is the steep learning curve required to master hardware description languages such as
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VHDL and Verilog. Even with the growth in programmers’ workforce there has always been a

limited number of professionals with an understanding of low-level architecture development.

Improvements in FPGA architectures make them attractive for real-time cyber-physical sys-

tems with timing, area, and power specific requirements for applications ranging from au-

tonomous vehicles, to computer vision to robotics [24, 31, 32, 37, 47]. Unlike CPUs and GPUs

with fixed datapaths, pipelines, and computational units, FPGAs allow users to adapt the

hardware to critical features of computation. Of specific relevance to our problem of inter-

est, Zhuo and Prasanna [56] deploy matrix multiplication on an FPGA using HDL, as have

Thomas and Luk [53] in the context of random number generation. Instead of waiting for

GPU manufacturers to develop new logic for a given computation, users can rapidly develop

new architectures, augment existing designs, and iterate through revisions to find the best

design for the task at hand. Rather than using low-level languages such as Verilog or VHDL,

our focus is on exploring the utility of a higher-level language, OpenCL. FPGAs provide

dynamic architecture which is needed to solve the matrix multiplication issue but given the

barriers to languages, has not been adopted at large. If the learning curve was lessened would

the FPGA be a viable solution? By incorporating the FPGA, one’s computation would still

suffer from the bottlenecks associated with the CPU and GPU wherein memory has to be

shuttled from one device to another across the slow bus. An interesting synergy of solutions

have developed which may make the FPGA a viable solution for matrix multiplication and

other computational expensive tasks.

2.4.3 Hybrid CPU+FPGA

Figure 2.14: Intel HARP Version 2 CPU+FPGA Architecture
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No single device excels at all computational tasks, and computations can alternate between

serial and parallel execution leaving the performance improvements of accelerators dimin-

ished by data migration that limits computational performance (and may be further ex-

acerbated by imperfect coordination of multiple devices). GPU makers have focused on

high-bandwidth memory to reduce external memory transactions and device-to-device inter-

connects to speed up cooperation. Ultimately, most of these devices are limited by the speed

of PCIe interface. One radical architecture, which may minimize data migration in the case

of FPGAs, comes from a solution which combines CPU and FPGA architectures. Intel has

introduced the Heterogeneous Architecture Research Platform version 2 (HARPv2), shown

in figure 2.14 which consists of an Intel Broadwell Xeon CPU combined with an Intel Arria

10 GX1150 FPGA into a Multi-Chip Package (MCP) with shared DRAM memory through a

low latency, high bandwidth, Intel QuickPath Interconnect (QPI) and two Peripheral Com-

ponent Interconnect Express (PCIe) busses. This supports a common last-level cache and

DDR memory.

General purpose communications can travel across the PCIe bus and the primary workload

can be shared across distributed-memory between the CPU and FPGA caches. The Intel

HARPv2 is the second-generation of the HARP platform. The first-generation HARP plat-

form, released in 2015, consisted of an Intel Xeon CPU combined with an Altera Stratix

V FPGA in a Discrete Configurable Platform (DCP). These two architectures were con-

nected with a single QPI channel and shared DRAM memory. The HARPv2 moves beyond

a discrete configuration for separate chips and combines both chips into a single MCP. In ad-

dition to unified DDR memory, the FPGA supports cache coherence and virtual-to-physical

memory address translation. This provides a unique communications capability between the

CPU and FPGA. This emerging technology gives users an opportunity to architect their

own solutions without having to perform the arduous task of designing new circuitry from

schematic to fabrication.
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2.5 Hardware Agnostic Programming

2.5.1 OpenCL Overview

While architecture unification is emerging in platforms such as the HARPv2, one of the

barriers to working with FPGAs has traditionally been the lack of knowledge and experience

with Hardware Design Languages(HDLs) such as VHDL and Verilog which describe precise

low-level structure and behavior of electronic circuits. Using these tools, one can define a

formal description and perform automated analysis and simulation of an electronic circuit.

Thereafter, the HDL semantics can be synthesized, using High-Level Synthesis (HLS), into

a netlist that describes the physical component layout along with exact connections to each

component. Because HDL-based languages target digital logic circuits, their effective use

requires a deep knowledge of electronic circuit design, theory, and applications, which intro-

duces a steep learning curve for some users who would like to delve into hardware design.

OpenCL is an industry standard language developed by the Khronos Group and is designed

to take advantage of parallelism in multi-core processors such as CPUs, GPUs, and FPGAs.

We live in an environment where there is a high demand for devices with superior com-

putational performance in industries from science and engineering to video production and

financial corporations. To satisfy this need, many industries look to transition to heteroge-

neous platforms which utilize co-processors and other accelerators. Over the years there have

been multiple languages developed to take advantage of GPU hardware. In the early 2000s,

the prominent tools were graphical APIs such as OpenGL and DirectX. There were various

intermediate solutions such as BrookGPU and RapidMind. Thereafter, vendors developed

their own implementations to support GPU computing. Currently, OpenCL is rapidly be-

coming the dominant language for GPUs given its open model and its ability to be used on

cross-platform GPUs. To better understand this model, we will now look at the OpenCL

architecture.

To enable broader experimentation with heterogeneous architectures and designs, the the

OpenCL framework allows rapid development of programs for such platforms. The HARP

platform supports HLS through OpenCL and allow users to implement FPGA computations

using a C-based language without describing the hardware implementation of an algorithm.
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However, the OpenCL framework has one drawback in that the developer does not have

precise control over the hardware implementation. To have a fully optimized kernel may

require an investigation into the low-level architecture. Yet, OpenCL is a step in the right

direction and makes emerging architectures accessible to a wide range of programmers.

2.5.2 Platform Model

The OpenCL framework offers a high-level abstraction that removes requirements for low-

level hardware configuration and enables orchestration of memory and execution models for

parallel workloads across accelerators. Source code can be written, compiled, and executed

on a range of OpenCL compatible devices. Every OpenCL program has three primary

components: Compute Units, Kernels, and Data Buffers. OpenCL generalizes heterogeneous

devices into an OpenCL Platform model. One “Host”, typically a CPU, controls multiple

“Compute Devices”. These “Compute Devices” contain multiple “Compute Units” which

have multiple “cores”. Each “core” is typically an execution unit referred to as a “Processing

Element” and each ”Processing Element” can be used by one work-item. Work-items can

be arranged into workgroups using an abstraction called an NDRange. OpenCL programs,

called “Kernels”, are executed on multiple “Processing Elements”. The host sends kernels

to the compute units and associates data buffers with compute unit(s) memory hierarchies.

In many instances, when the hardware allows, the number of kernels sent to the compute

device can be proportional to the dimensions of the data to be processed. These kernels,

also known as work items, are then directed to individual processing elements. Work items

are processed in groups and are executed in parallel to process all the data in the compute

unit memory. Each work item, will operate on a specified region of memory.

OpenCL provides two abstractions for partitioning workloads: NDRange and Single-Work-

Item (SWI). An NDRange describes a 1- to 3-dimensional space for work-items. Contrasting

this is the SWI, which follows a sequential model similar to many programming languages.

However, OpenCL can extract pipelined parallelism from code at compile time, based on

dependency analysis, to replicate a deeply-pipelined worklflow that is common for FPGAs.
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2.5.3 Memory Model

Before we explore OpenCL Memory architecture, it is important to say a few words about

consistency. Consistency models are seen across many aspects of computer science and in

systems with distributed shared memory. A given system, is said to support a particular

model if the memory operations follow a given set of rules. There are two categories that

sequential consistency models fall into. Those being Issue and View. Issue defines rules that

specify the ways in which a process can issue operations. View defines a set of rules as to how

those operations can be ordered and their visibility to the affected processes. The consistency

model can for instance specify that a given process is not allowed to issue operations until a

previous set of issue operations have been completed. These categories are also referred to as

program order and and write atomicity. If all of the criterion for a given consistency model

are satisfied, it is considered stronger than another model which may not fulfill the entire

criteria specified. By relaxing one or more of the sequential consistency model requirements

we derive a model called the Relaxed Consistency Model.

This model offers no memory consistency at the hardware level. Under this model, the pro-

grammer is responsible for realizing consistency via synchronization techniques. Generally,

a few methods are used to define a relaxed consistency model as shown in Table 2.2

Relaxation Requirements (usually program order or write atomicity

requirements) may be relaxed in the sequential consis-

tency model .

Synchronizing Assign variable restrictions to two group so that one

group has weak consistency and the other defines a more

restrictive model.

Non-Synchronizing One consistency model for all memory access.

Table 2.2: OpenCL Consistency Model

Relaxation techniques can also define a relaxed write to read, relaxed write to read and write

to write, or relaxing read and read to write program orders for example.
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In the case of OpenCL, the memory model follows the relaxed consistency model and classifies

memory into four groups: Private Memory, Local Memory, Global/Constant Memory, and

Host Memory, shown in Table 2.3

Private memory Private to individual work items executing within a pro-

cessing element. No visibility to the host. Can be ac-

cessed by all work items but variables created by indi-

vidual work items are not visible to other work items in

the work group.

Local memory Allocated exclusively to individual compute units. Not

visible to the host. Allows read and write access by

all of its processing elements within the compute unit.

Typically used to store shared data that must be ac-

cessible to multiple work items. Synchronization and

consistency may be achieved by utilizing fencing and

barrier methods of OpenCL.

Global memory Accessible by both the host and device. Allows for read

and write access for host and all compute units.

Constant Global memory Accessible by read and write access to the OpenCL host

but allows only read access to the device.

Host memory Only accessible by the OpenCL host. In order to move

data to lower regions of the memory hierarchy, it must

be copied sequentially. For instance, to move data to

private memory, it must be moved from host memory to

global memory to local memory and finally to private

memory.

Table 2.3: OpenCL Memory Hierarchy

2.5.4 Execution Model

The OpenCL execution model acts on applications. Applications can be split into two

parts, host side and device side. OpenCL applications created for the host call OpenCL
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APIs, compile and submit kernels, allocates memory for devices, create command queues,

and other administrative processes for device management. An OpenCL host will utilize the

OpenCL API platform to orchestrate the computational task by identifying compute devices,

submitting kernels to selected devices, and managing the workload across the devices. On the

device side, OpenCL kernels, written in the OpenCL implementation of C are created and

execute across work items, perform parallel tasks, and operate compute device processing

elements. OpenCL provides granular data parallelism and thread parallelism within data

parallelism and task parallelism. A typical host program manages the device kernel execution

by creating queues for memory and kernel execution commands and synchronization. It also

creates a context for the kernels which includes compute units, program and memory objects,

along with the kernels themselves.

The sequence of Kernel execution is as follows:

1. The host defines a kernel.

2. The host submits the kernel to the compute unit for execution.

3. OpenCL generates an NDRange for work-items.

4. Based on the NDRange, an instance of the kernel is created for each element in it.

OpenCL work-groups have a number of properties and restrictions that should be elaborated

on. OpenCL work-groups are independent of one another and multiple work-groups can be

executed in parallel. Work-items within individual work-groups can communicate with each

other by utilizing shared data buffers. However, these buffers must be synchronized in order

to be accessed. At the lowest level, processing elements execute all instructions sequentially.

Unlike their CPU counterparts, the processing elements do not have branch prediction nor

speculative execution. Consequential, if conditional branch paths exist, execution of both

paths are required. Code can be modified to perform branch logic on the host side to limit

the superfluous branch execution.

By creating a context consisting of heterogeneous devices, multiple accelerators can work

in tandem to solve problems for which they are well suited. However, this solution does

not resolve the Von Nuemann bottleneck. For most architectures, transferring data through
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memory (across bus channels) is still the weakest link in the computational chain. An

alternate solution would be to combine the best of the architectures, perhaps in the form

of Application Specific Integrated Circuits (ASICs) but these would only prove valuable for

one application which would not accommodate general purpose computations. The current

developments in the field of hybrid processors such as CPU+FPGA built into the same die

space may become a promising solution. With both devices on the same die, memory transfer

speeds increase significantly. Branching code can be executed by the CPU with parallelized

workloads sent directly to the FPGA.

While FPGAs may present one part of the solution, CPUs are still a relevant part of het-

erogeneous computing. OpenCL enables the aggregation of heterogeneous computational

systems into a well defined, manageable, and cohesive package. OpenCL offer a high level

abstraction language which allows the creation of parallel algorithms that can execute ef-

ficiently on a variety of hardware architectures. OpenCL allows programmers to describe

and manage parallelism in a hardware agnostic manner in contrast to hardware description

languages (HDLs) such as Verilog and VHDL which require descriptions at a much lower

level which limit the portability and constrain the description. Standard high-level synthesis

tools have some measure of higher level abstractions but they have a fundamental limitation

of converting sequential C based source code into a parallel HDL implementation. This

methodology makes it problematic to accurately express maximum performance thread-level

parallelism in FPGAs.

NDRange

FPGAs and GPUs contain similar but different execution models. A traditional GPU can

take advantage of SIMD parallelism wherein a single instruction can be performed on mul-

tiple data inputs. The substantial number of compute units available on these devices can

significantly increase performance for embarrassingly parallel operations. The parallelism

comes from the fact that such operations partitioned across processing elements are inde-

pendent and can all execute at the same time. This method uses a programming style called

an NDRange. That is, an N -dimensional range of processing elements with N ∈ {1, 2, 3}.
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Single Work-Item Instruction

Contrasting SIMD parallelism is the notion of pipeline parallelism that is readily suggested

for use in FPGA based applications. Instead of having all the processing elements execute

a single instruction on multiple datasets, pipelining allows each operation to move in lock

step across the processing elements.

One interesting consequence of these parallelization methods is the way in which branching

code is executed. When branching occurs in code of the SIMD processing elements, it is

necessary for all of the processing elements to perform the same operation or stall until the

particular operation is finished. This can introduce long idle times in the computation as all

operations must be synchronized. In many tasks, the pipeline parallelism provided by the

Single Work-Item instruction can be beneficial to many workloads.

The overall execution model for both methods is characterized in Figure 2.15. Computations

involving branch statements or following a particular ordering of operations are characterized

in Figure 2.16.

Figure 2.15: Execution Behavior Figure 2.16: Branching Behavior
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Chapter 3

Matrix Multiplication

3.1 Theory

In ages past, great monolithic machines occupied entire floors of academic halls, laboratories,

and government institutions. With the progression of time, the computer evolved. Smaller,

faster, and more powerful generations superseded their monolithic predecessors. Today the

computer is pervasive. It can be found in our homes, offices, pockets, and even within us.

Even as computers have become smaller, more powerful, and geographically distributed, we

find them being aggregated together to form larger (sometimes nebulous) clusters. Today,

as we explore a small facet of computer technology and its evolution, we will find this theme

of expansion and contraction occurring over and over again in our investigation of emerging

technology.

Underlying any calculation is an equation. However, calculations can come in many different

forms and the most challenging problems typically involve multiple equations. These individ-

ual equations can be aggregated to become a system of equations wherein valuable answers

are often derived from solutions that satisfy all equations simultaneously. The coefficients of

such equations, placed into a matrix in row/column order, can be used to describe a system

of linear equations.

Numerous operations can be performed on a system of equations. One of the most prominent

and time consuming operations involves multiplication. Matrix multiplication has applica-

tions in many areas, ranging from modern physics and graph theory to Markov Chains and
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computer science, establishing a great need for viable solutions to support these computa-

tionally intensive workloads.

Many calculations that we perform by hand only involve simple arithmetic, but more com-

plicated calculations typically involve an equation, such as:

x′1 = a11x1 + a12x2 + . . . + a1nxn

Individual equations can be manipulated with little effort, but significantly more effort may

be required when we move to systems of equations:

x′1 = a11x1 + a12x2 + . . . + a1nxn

x′2 = a21x1 + a22x2 + . . . + a2nxn

...

x′m = am1x1 + am2x2 + . . . + amnxn

Solving these equations and keeping track of variables and subscripts by hand can become

a very tedious process. In light of this, it may be better to place the equations into the

standard matrix equation format:


x′1

x′2
...

x′m

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 an2 . . . amn



x1

x2

...

xn


Using concise notation, the matrix equation can be written as x′ = Ax where x′ and x are

vectors and A is an m×n matrix. The m×n matrix A consists of m rows and n columns and

the set of m× n matrices with real coefficients may also be denoted Rmn. This equation is

known as a vector matrix product and has many applications in circuit and state equations.

The vector matrix product is a special case of matrix-matrix multiplication. Given an m×k
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matrix A and an k× n matrix B, the m× n matrix C, is the product of AB that is defined

by:

AmkBkn =


a11 a12 . . . a1k

a21 a22 . . . a2k
...

...
. . .

...

am1 an2 . . . amk



b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...

bk1 bk2 . . . bkn

 =


c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...

cm1 cn2 . . . cmn



The product AB can be obtained by multiplying each term of the ith row of Aik and the

jth column of Bkj over k and summing the products. Therefore, cij is the dot product of

the ith row of A and the jth column of B and is defined as cij =
∑n

k=1 aikbkj.

When data are represented in matrix format, many techniques can find solutions to this

system of equations, but more importantly placing the data into a row/column format makes

the data more amenable to the row-major or column-major order used in modern computer

systems. Notice that data placed in matrix format is uniquely tailored to the underlying

architecture of computer hardware with its rows and columns of ordered data found in

memory, pipelines, and files makes the computer a prime candidate to perform operations

on such ordered data.

To perform matrix multiplication efficiently on computer systems, numerous matrix multi-

plication algorithms have been proposed with the most trivial implementation running in

O(n3) time. To illustrate this, we will briefly investigate some of the algorithms which lead to

the necessity of improving matrix multiplication. The standard computer algorithm for per-

forming the matrix multiplication requires three for loops. Each nested loop runs in exactly

n, m, and k iterations, respectively, and with the assignment of sum occurring in constant

time, this algorithm runs in O(mnk). When the dimensions of the matrices are equal (i.e.

m = n = k), this algorithm runs in O(n3) time. This running time can contribute to increas-

ing computational wait times as the size of the matrices increase. The challenge of matrix

multiplication has led to the development of various algorithms which have well-known be-

havior and performance. Improved running times for matrix mutiplication were discovered

by researchers such as Strassen (n2.807), Coppersmith & Winograd (n2.376), Slothers (n2.374)

, Williams (n2.3728642), and Le Gall (n2.3728639).
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Given the plethora of matrix multiplication algorithms available, one would imagine that

there are many implementations available for complex workloads. However, in practice, very

few of these algorithms are actually implemented. By using recursive techniques, commonly

called divide-and-conqueror methods, several libraries utilize the Strassen algorithm for sub-

dividing large matrices into smaller subsets that fit nicely into the processors cache. Notice

that the Coppersmith & Winograd algorithm, which runs asymptotically faster than the

Strassen method is rarely implemented and is typically utilized to prove theoretical time

bounds. This is largely due to the fact that in order to benefit from the Coppersmith &

Winograd algorithm would require matrices so large that they would exhaust the capacity

of all modern computer hardware, making the algorithm, what some would call, a galactic

algorithm [29].

3.2 Optimizations

For programs developed to run on an FPGA, our only limitation was the amount of resources

available to the FPGA. Initially, we intended to increase the blocking and loop unrolling

increments but found that we ran into issues wherein the HLS system was unable to place

and route additional replicated units. In light of this, we standardized on a maximum of 64

units for blocking and loop unrolling. We set our increments to powers of 2 in order to create

a thorough and well-defined analysis of the hardware. We subdivided our optimizations by

levels to get a better feel for the impact that each optimization has on the computation. Our

optimization levels are as follows:

• Level 0: Näıve Implementation - Standard unoptimized methods for matrix multipli-

cation (i.e., 3 nested loops).

• Level 1: Transposition – Transpose one of the source matrices to enable more efficient

row-major order access to benefit spatial locality.

• Level 2: Blocking 2, 4, 8, 16, 32, 64 – Operate on 2-dimensional sub-blocks of the

matrices to benefit temporal locality.

• Level 3: Loop Unrolling 2, 4, 8, 16, 32, 64 – Unrolling inner loops to allow deeper

computational pipelining.
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3.2.1 Näıve

The näıve implementation consists of the textbook, 3 nested loop implementation shown in

Algorithm 1. Even though our performance expectations are low for this design, it forms a

baseline for comparison with what follows. We will consider this the unoptimized version.

Algorithm 1 Näıve Matrix Multiply (AM×K , BK×N ,M,N,K)

1: C[M,N] = 0
2: for row = 1 to M do
3: for column = 1 to N do
4: sum = 0
5: for index = 1 to K do
6: sum = sum + A[row,index] * B[index,column];
7: end for
8: C[row,column] = sum
9: end for
10: end for

While a näıve implementation many not traditionally be classified as an optimization, it

provides a good baseline to determine if future optimization choices are beneficial or detri-

mental to the performance of the computation. Referring to Algorithm 1 we see that the

computation consists of three sequential for loops that range over the indices of the matrices.

Figure 3.1: Näıve Algorithm - Matrix Multiplication

Looking at the matrix multiplication operations graphically, as shown in figure 3.1, each

element of the resulting matrix is comprised of one row of matrix A and one column of matrix

B. This sequential method has a significant impact on the cache behavior. Disregarding
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cache line sizing and instead focusing on data arrangement within each cache line, we see that

this algorithm makes poor use of the cache for columns of Matrix B as shown in figure 3.2.

Figure 3.2: Näıve Algorithm - Cache Behavior

Notice that in the case of Matrix A, all the elements required for the computation fit into

an arbitrary length cache line. However, in the case of Matrix B, only one element of the

B column is available in the cache line. This will cause significant cache misses and cache

reloading which will negatively affect the performance of the overall computation. In the

case of sequential matrix multiplication, notice that the row-major order allows us to retrieve

elements of A in an efficient manner but given that we require column entries of B, we suffer

from numerous cache misses equal to the dimension of the matrices themselves. To eliminate

these misses, we will be performing a transposition of the B matrix which will streamline

our element retrieval.

3.2.2 Transposition

The first optimization that we employ is to transpose the B source matrix. In OpenCL

(which is based on C/C++) matrices are stored in row-major order. As a result, when the

B matrix is accessed down a column, there are significant inefficiencies in the cache usage.

Algorithm 2 shows the resulting implementation, which benefits the temporal locality of the

accesses to B.

To get a better feel for how transposition effects the computation, the rearrangement of the

data will occur on the host system and not the accelerator. The transposition optimization

concerns the arrangement of the data, and the available ordering methods are row-major

order and column-major order. These orderings are the traditional methods used for storing

multidimensional array data in linear storage systems. The orderings are often language

dependent and in the case of languages such as Fortran, MATLAB, R, and GNU Octave,

column-major order is used. The common row-major order languages are C, C++, and SAS.

It is important to note that the CBLAS library which was used to perform computations
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Algorithm 2 Transposition Matrix Multiply (AM×K , BK×N ,M,N,K)

1: C[M,N] = 0
2: for row = 1 to M do
3: for column = 1 to N do
4: sum = 0
5: for index = 1 to K do
6: sum = sum + A[row,index] * B[row,index];
7: end for
8: C[row,column] = sum
9: end for
10: end for

on the CPU is written in Fortran and has adopted the column-major ordering scheme.

Nevertheless, data layout is a critical component in parsing arrays, especially those written

in any number of languages.

Figure 3.3: Transposition Algorithm - Matrix Multiplication

Notice that when the data is arranged in row-major order, the computation now operates on

row elements of matrices as seen in figure 3.3. The CPU can retrieve the data in contiguous

chunks given that the data has been arranged in a manner that benefits both spatial and

temporal locality. In the case of column-major order, the entire line that is transferred to

the cache contains only one of the needed elements. When the CPU is ready to process

additional elements, it must evict the current cache line and retrieve another line to obtain

the data in the next row given the column-major ordering. With the transposition of the

Matrix B we see an efficient use of the cache behavior as shown in figure 3.4.
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Figure 3.4: Transposition Algorithm - Cache Behavior

One interesting caveat about transposition is that it is not a cure-all for cache misses. Even

with matrices being loaded into the cache in row-major order, we can still suffer from cache

misses when the rows of the matrices are larger than the length of the cache lines. This is a

hardware limitation that can significantly affect the performance of our computation.

3.2.3 2 Dimensional Block

The blocking of data is a method that is beneficial to the computation irrespective of whether

the data undergoes transposition or not. The key idea is to split the data set into smaller

partitions to be worked on independently. This is shown in Algorithm 3. Blocking ben-

efits both temporal and spatial locality. We implement blocking with TILE SIZE ∈
{2, 4, 8, 16, 32, 64}.
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Algorithm 3 Blocking Matrix Multiply (AM×K , BK×N ,M,N,K, TILE SIZE)

1: C[M,N ] = Asub[TILE SIZE] = Bsub[TILE SIZE] = 0

2: tile1 = tile2 = TILE SIZE

3: for k2 = 0 to N by tile2 do

4: for j2 = 0 to N by tile2 do

5: for i2 = 0 to N by tile2 do

6: for k1 = k2 to k2 + tile2 by tile1 do

7: for j1 = j2 to j2 + tile2 by tile1 do

8: for i1 = i2 to i2 + tile2 by tile1 do

9: for i = i1 to i1 + tile1 do

10: for j = j1 to j1 + tile1 do

11: index = 0

12: for k = k1 to k1 + tile1 do

13: Asub[index] = A[i * K + k]

14: Bsub[index] = B[j * K + k]

15: index++

16: end for

17: for k = k1 to k1 + tile1 do

18: C[i * N + j] += Asub[index] * Bsub[index]

19: index−−
20: end for

21: end for

22: end for

23: end for

24: end for

25: end for

26: end for

27: end for

28: end for

In the case of transposition, we wanted to reduce cache misses by reusing elements and tak-

ing advantage of the spatial and temporal locality found in the data. If we subdivide our

computation into sub-blocks we can identify valuable decomposition information.
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Consider matrices A and B:

A =

a0 a1 a2

a3 a4 a5

a6 a7 a8

 , B =

b0 b1 b2

b3 b4 b5

b6 b7 b8



We know that the product AB is as follows:

AB =

(a0b0 + a1b3 + a2b6) (a0b1 + a1b4 + a2b7) (a0b2 + a1b5 + a2b8)

(a3b0 + a4b3 + a5b6) (a3b1 + a4b4 + a5b7) (a3b2 + a4b5 + a5b8)

(a6b0 + a7b3 + a8b6) (a6b1 + a7b4 + a8b7) (a6b2 + a7b5 + a8b8)



We determine that the rows C are comprised of the following elements of A and B

C1 = [c0 c1 c2]

C2 = [c3 c4 c5]

C3 = [c6 c7 c8]

= [(a0b0 + a1b3 + a2b6) (a0b1 + a1b4 + a2b7) (a0b2 + a1b5 + a2b8)]

= [(a3b0 + a4b3 + a5b6) (a3b1 + a4b4 + a5b7) (a3b2 + a4b5 + a5b8)]

= [(a6b0 + a7b3 + a8b6) (a6b1 + a7b4 + a8b7) (a6b2 + a7b5 + a8b8)]

The elements of A have good spatial locality for every row of C and each element has a stride

of 1. Similarly, the elements of B have good temporal locality across the columns of C. By

reading sub-blocks of data into our cache we hope to take advantage of the data reuse that

is inherent in the matrix multiplication calculation. Investigating the rows of C we can see

that it is comprised of the following elements of A and B:

C =

C1

C2

C3

 =

A1,jBi,1

A2,jBi,2

A3,jBi,3


We will get good cache behavior from row reads of A, but given that the calculation requires

columns of B, we may experience a cache miss on every element of B. Subdividing the

elements into blocks for Algorithm 1 is shown in figure 3.5.
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Figure 3.5: Näıve Algorithm - Blocking

Now after transposing matrix B, the rows of C would become comprised of the following

elements:

C =

C1

C2

C3

 =

A1,jB1,j

A2,jB2,j

A3,jB3,j


By working with the rows of A & B, we can make better usage of the cache as we can infer

from the transposition blocking behavior shown in figure 3.6.

Figure 3.6: Transposition Algorithm - Blocking

One of the other factors which we will investigate involves the block sizes themselves. Is there

one block size that works in every case? Can variations in the block size affect performance

as the dimensions of the matrices increase? We will be looking at block sizes of 2x2, 4x4,

8x8, 16x16, 32x32 and 64x64 sub-blocks to investigate this question.
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3.2.4 Loop Unrolling

The final optimization we perform is loop unrolling. This is supported in the development

toolchain via a #pragma statement. The unroll level is specified as one of 2, 4, 8, 16, 32, or

64. As with all of the other optimization levels, this is implemented in both the SWI and

NDRange implementations.

So as to not suffer a combinatorial explosion of experimental configurations, we apply the

above levels of optimization cumulatively. As such, level 2 optimizations are all applied on

code that has already been optimized at level 1. In addition, the loop unroll factor in level 3

is tied to the blocking factor used in level 2. So if we are performing a blocking size of 2,

then we will unroll the computation by the same amount.

Algorithm 4 Traditional For Loop

1: for index = 0 to 1000 do

2: purge(index);

3: ...

4: end for

Algorithm 5 Unrolled For Loop

1: for index = 0 to 1000 by 2 do

2: purge(index);

3: purge(index + 1);

4: end for

There is often a trade off, known as the space-time or time-memory trade-off, wherein in-

creasing program size may decrease execution time as we will see in the following example.

The normal loop case in Algorithm 4 must make 1000 iterations as compared to only 500

iterations for Algorithm 5. Algorithm 5 can be thought of as using an unroll factor of 1. By

selecting an unrolling factor of K, our loop body will be repeated K number of times. This

can increase our algorithmic efficiency, reduce loop overhead, and independent statements

can be executed in parallel. Given that we using this statement for FPGA execution, we

will essentially create additional pipelines in our architecture that can support K operations

per cycle.

With a slight modification to the code, we have reduced the number of iterations by 50%.

In the case of FPGAs, we are only limited by the available resources in terms of lowering the

number of iterations. This notion will become important in our matrix multiplication cal-

culations as we must perform computations using the traditional method. Yet, the question

may arise, what is a good choice for the number of loop unrolls? In our investigation, we
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based the loop unroll factor on the previous blocking optimization. So if we are performing

a blocking size of 2 where we load two elements of A and B respectively into sub-tiles, then

we will unroll the computation by the same amount.
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Chapter 4

Experimental Results

4.1 Experimental Setup

All experiments are conducted on the Intel HARPv2 system at the Texas Advanced Compute

Center (TACC). The HARPv2 system consists of a 14 core (28 thread) Broadwell Class Xeon

CPU paired with an Intel Arria 10 GX1150 FPGA. We were given access to this device

in 4 hr increments. Consequentially, time became a limiting factor on the length of our

experiments. We elected to not use any additional performance features such as OpenCL’s

Shared Virtual Memory (SVM) or any other architecture specific features. We considered

that while such features will increase the performance of our computation, given that we

are exploring the design space for a completely new hardware architecture, it was important

to get the baseline performance for the most popular techniques without any additional

platform specific optimizations.

The programs are coded in OpenCL, conforming to version 2.0 of the specification [17].

A number of commonly used practices for matrix multiplication on multicore devices are

applied to dense matrices that range in size from 1024× 1024 to 8192× 8192. The common

advice for FPGA programming recommends writing code in the SWI format, allowing the

compiler to identify elements that could be pipelined to take advantage of parallelism on the

FPGA [19]. This is in contrast to the approach on GPUs which are naturally well suited to

the NDRange methodology [40].

We explore both approaches. For NDRange implementations, the literature encourages

users to set up a workgroup size that partitions the workload across processing elements in a
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uniform manner [40]. We utilize a method wherein the workgroup sizes are representative of

the blocking and loop unrolling sizes. For instance, in kernel L2 B16 U16 ndrange, the kernel

divides the matrices into 16 × 16 blocks and processes 16 elements simultaneously. This

configuration will have a workgroup size of 16 by 16 processing elements. Each of the 256

processing elements takes a 16×16 block of the matrix and processes 16 elements each clock

cycle. To ensure correctness, each computation performed by the FPGA is compared against

the same computation performed on the host processor using the cblas sgemm function of

the well-known CBLAS library.

In designing new architectures on the HARP system our only constraint was the area of the

FPGA. In selecting algorithms for matrix multiplication, we found that the proper choice is

often dependent on not only the size but the sparsity of the matrix. Given that a general

matrix multiplication computation may come in any number of sizes or densities, we decided

to investigate some of the general methods for optimizing dense matrix multiplications. After

reviewing the literature and common practices in industry, we identified many solutions that

were highly architecture specific. That is, there were many custom functions and specialized

operations that would allow one to take advantage of new features built into emerging devices

but we wanted to look at relevant optimizations that work across the myriad of devices in

the architectural topology.

4.2 Experimental Levels

Given the many observations and the unique benefits of each optimizations along with the

execution methods, how does one pick the right combinations for matrix multiplication or any

other complex operation? We decided to use different experimentation levels with increasing

optimizations to get a rough topography of the optimization space for the new Intel HARPv2

accelerator. Those optimizations are delineated as follows:

• Level 0: Näıve Implementation - At this level we use standard unoptimized methods

for matrix multiplication (i.e., 3 nested loops).

• Level 1: Transposition – At this stage, we will simply transpose one of the source

matrices to enable more efficient row-major order access, benefiting spatial locality.
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• Level 2: Blocking 2, 4, 8, 16, 32, 64 – Building on the previous optimizations, we

operate on 2-dimensional subblocks of the matrices, benefiting temporal locality.

• Level 3: Loop Unrolling 2, 4, 8, 16, 32, 64 – Unrolling the inner loops will allow deeper

pipelining in the implementation.

The full set of experiments is as follows (along with their labels):

1. Level 0 – näıve, both NDRange and SWI

(indicated with L0 ndrange, L0 swi)

2. Level 1 – transpose matrix B, both NDRange and SWI

(L1 ndrange, L1 swi)

3. Level 2 – blocking size in {2, 4, 8, 16, 32, 64}, both NDRange and SWI

(L2 B2 ndrange, L2 B4 ndrange, L2 B8 ndrange, L2 B16 ndrange,

L2 B32 ndrange, L2 B64 ndrange, L2 B2 swi, L2 B4 swi, L2 B8 swi, L2 B16 swi,

L2 B32 swi, L2 B64 swi)

4. Level 3 – loop unrolling factor in {2, 4, 8, 16, 32, 64}, both NDRange and SWI

(L3 B2 U2 ndrange, L3 B4 U4 ndrange, L3 B8 U8 ndrange, L3 B16 U16 ndrange,

L3 B32 U32 ndrange, L3 B64 U64 ndrange, L3 B2 U2 swi, L3 B4 U4 swi,

L3 B8 U8 swi, L3 B16 U16 swi, L3 B32 U32 swi, L3 B64 U64 swi)

The labels encode the relevant information to identify each experiment, the number after

the L indicates the optimization level, the number after the B indicates the block size, and

the number after the U indicates the unrolling factor.
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4.3 Performance

Figure 4.1: Performance Results – Execution Time vs Matrix Size

To provide an appreciation of the breadth of performance results, Figure 4.1 plots the execu-

tion time for the matrix multiply operation as a function of matrix size (for square matrices)

in every case we consider in this work (including the CBLAS result). At first glance it is clear

that there is significant variability among the different kernels. To investigate this variability,

we will separately address subsets of the kernels to help us elucidate and characterize this

behavior, starting with the unoptimized näıve kernel.

An important thing to note in this plot is that the software-only CBLAS performance is

in the highest performing group. This implies that a large number of the kernels do not

provide performance that is competitive with well-tuned library code executed on traditional

processor cores.
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Figure 4.2: Gigaflop Performance - Overall

To help understand the performance of these kernels, we will contrast kernel execution time

with an investigation of the kernel gigaflop performance as shown in Figure 4.2. All kernels

are depicted in terms of their gigaflop performance on the inner axis with matrix dimensions

shown radially on the outer edges.

As we look at the Level 0 kernels for both execution methods, shown in Figure 4.3 and 4.4, we

see that for the kernel dimensions that they could complete, they completed their workloads
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with only fractions of a Gigaflop and never exceed a 10th of a Gigaflop in performance. This

somewhat explains the poor execution time of these kernels.

Figure 4.3: Performance results – Level 0 (Näıve) Implementation.

Figure 4.4: Gigaflop Performance - Level 0
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The level 0 (näıve) implementation performance results occupy the middle ground of the

overall performance graph (kernels L0 ndrange and L0 swi). Not surprisingly, this unop-

timized kernel does not provide performance that is competitive with other kernels. For

matrices smaller than 4096, the NDRange methods performs slightly better than the SWI

kernel implementations. However, for larger matrices we see that the SWI kernel takes the

lead in performance. Unfortunately, neither were fast enough to complete the 8192 dimension

in the allotted experiment time.

Figure 4.5: Performance Results - Optimized SWI Kernels

We next turn our attention to the SWI kernels shown in Figure 4.5. All but one of this set

is bunched in the upper left corner of the initial graph shown in Figure 4.1, indicating that

they performed the worst of all those considered. The single exception is the L1 swi kernel

which had performance that was competitive with the L1 ndrange kernel. It is worth pointing

out here that the SWI approach is the one most recommended for initial implementation by

the manufacture’s Best Practices Guide [19]. For the highly parallel task of dense matrix

multiplication, this approach is clearly not the best one to pursue.
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Figure 4.6: Gigaflop Performance - Optimized SWI Kernels

Looking at a subset of the optimized SWI kernel, particularly those with Level 2 or greater

optimizations, we see a clear delineation in Gigaflops performance as shown in Figure 4.6.

Clearly, kernels with a higher loop unroll factor increased the throughput noticeably. How-

ever, overall, the performance for these kernels, in terms of throughput, is less than the

un-optimized versions.

59



Figure 4.7: Performance Results – Optimized NDRange Kernels

The best performing kernels are the NDRange kernels shown in Figure 4.7. The performance

for many of the kernels bifurcates into two comparable groupings for the majority of matrix

sizes. Figure 4.9 zooms in on the smaller matrix dimensions (6144× 6144 and smaller) and

includes only NDRange kernels.

As we look towards the level 2 NDRange kernels, shown in Figure 4.8 we see a great deal of

expansion and contraction as we move through the matrix sizes. Because of the differences

in performance between the Level 2 and Level 3 optimizations for the NDRanges, we will

observe them separately to get a better understanding of their performance profiles.
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Figure 4.8: Gigaflop Performance – NDRange Level 2

For the Level 2 NDRange kernels, we see some very unexpected behavior. Kernels with

a blocking size of 4 and 8 have significantly higher throughput than the rest of the block

sizes in this figure. Referring back to Figure 4.9, kernels with blocking sizes of 4 and 8 also

experience performance inflections at matrix sizes of 4096 and 8192. Notice that the kernel

with a blocking size of 64 has not only a longer execution time but also has a smoother

performance profile and a smaller but relatively uniform Gigaflop performance across the

matrix sizes.
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Figure 4.9: Performance Results – NDRange Small Matrices (6144× 6144 and smaller)

Looking at these kernels, we see that the bifurcation starts almost immediately. All kernels in

the upper diverging path, except for L3 B2 U2 ndrange, do not have the level 3 optimization

(i.e., loop unrolling). Interestingly, L3 B2 U2 ndrange has the same performance profile as

L3 B2 ndrange, and their execution times differ by a fraction of a second. We assume that

is because the L3 B2 U2 ndrange kernel has a loop unroll factor of only 2. We conclude that

greater loop unrolling is critical for this application.

As we look at NDRange performance between sizes 3072× 3072 and 6144× 6144, we can see

the general trend of bifurcation with the exception of the aforementioned L3 B2 U2 ndrange

kernel. Notice that kernels without the loop unroll optimization continue along smooth

gradations towards higher execution times but all kernels with the level 3 optimization have

a spike in execution time at matrix dimensions of 4096×4096 and 6144×6144 while decreasing

for the 5120× 5120 dimension. This is an illustration of a pattern that happens frequently,

in which we realize large swings in performance for unexpected reasons.

As we move forward to the larger matrix sizes, we have some interesting behavior starting

after 7168×7168. Figure 4.10 shows the results zoomed in to these matrix sizes. For kernels
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Figure 4.10: Performance Results – NDRange Matrices (larger than 6144× 6144 inclusive)

with level 3 optimizations, those with a loop unroll factor of 2, 4, 8, and 16, have yet another

spike which has a profile that degrades their performance even over kernels with only level 2

(i.e. blocking) optimizations. However, this behavior does not seem to impact level 3 kernels

with unrolling factors of 32 or 64. Notice for 8192 × 8192 matrices, the performance of

L3 B16 U16 ndrange is comparable to L2 B16 ndrange and we see a similar trend to the one

that we saw in the L3 B2 U2 ndrange kernel.

The Level 3 NDRange kernels, as shown in Figure 4.11, take advantage of loop unrolling

to increase throughput, and have significantly more performance inflections across matrix

dimensions. A point of interest lies in a comparison of the last three kernels in the figure.

Particularly, inspecting the throughput of kernels with a loop unroll factor of 16, 32, and 64

respectively, we see that kernels with an unroll factor of 32 and 64 have similar performance

profiles as well as a better execution time over the kernel with a loop unroll factor of 16.

Those kernels of interest also have a relatively similar shape. Interestingly, the kernel with

a loop unroll of 16 has more pronounced throughput inflection points and also experiences

performance degradation for matrix size of 8192.
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Figure 4.11: Gigaflop Performance – NDRange Level 3

We see some interesting results in terms of execution time and gigaflop throughput. Based

on these results, we would like to merge the two metrics to gain some further insight into

the heterogeneous architecture behavior.

4.4 Insights

We would now like to review the three highest performing kernels across all of our exper-

iments, comparing them to those conducted on the CPU. In all of our experiments, the

highest performing kernel is L3 B64 U64 ndrange. However, we noticed that the runner-up

kernels vary based on matrix dimension. In some cases, such as for 8192 × 8192 matrix

dimension, the standard CBLAS computation has a faster execution time than the other

optimized kernels.
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Figure 4.12: Top 3 Highest Performance – 1024 x 1024

Figure 4.13: Top 3 Highest Performance – 2048 x 2048

Figure 4.14: Top 3 Highest Performance – 3072 x 3072
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Figure 4.15: Top 3 Highest Performance – 4096 x 4096

Figure 4.16: Top 3 Highest Performance – 5120 x 5120

Figure 4.17: Top 3 Highest Performance – 6144 x 6144
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Figure 4.18: Top 3 Highest Performance – 7168 x 7168

Figure 4.19: Top 3 Highest Performance – 8192 x 8192

While the particular runner-up kernel varies across matrix dimensions, what is consistent

throughout is that the full suite of optimizations is needed in order for the FPGA deployment

to be competitive with the CPU implementation. The top 3 in every case were level 3

optimizations that include both blocking and loop unrolling of an NDRange kernel.

To better understand this behavior, we plotted the top 4 highest performing kernels by

Gigaflops as shown in Figure 4.20.
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Figure 4.20: Top 5 Highest Performance – Gigaflops

As a final comparison, Figure 4.21 shows the execution time and Figure 4.22 shows the

gigaflop performance of the best-performing kernel, L3 B64 U64 ndrange, and the software

CBLAS implementation.

Figure 4.21: FPGA vs CPU Execution Time Figure 4.22: FPGA vs CPU Gigaflops
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As one would expect, the execution time is growing O(N3) with the dimension N for both

the software and hardware implementations. The software dependence upon matrix size,

however, is fairly smooth, while there is considerable variability for the FPGA design. The

FPGA design outperforms the software implementation at every matrix size, however, the

performance gain is highly variable, ranging from 1.05× to 3.53×. The average performance

across dimensions is shown in Figure 4.23. The average speed up is 1.59 with an average

execution time of 65.59 on the FPGA and 104.38 on the CPU.

Figure 4.23: FPGA/CPU Speed Up

4.5 Discussion

The wealth of experiments conducted made it challenging to identify the natural trend of

the data and what if any optimizations may have been causing performance degradation.

To better understand the behavior, we took a look at the shortest overall execution times

across all of the experiments which included the CBLAS computations that were performed

on the CPU as well. We noticed a very interesting trend.

The SWI implementations, as seen in Figure 4.1, all performed worse than the standard

CBLAS computations. The SWI execution model is recommended for FPGA implemen-

tations given that its architecture benefits pipelining, but after investigating Algorithm 3,
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we conclude that the compiler was unable to determine the exact loop iterations needed

to pipeline the for-loop stages, due to our dynamic tiling, and executed many of the for-

loops sequentially, leading to considerable serial execution stages. Given that the execution

window for an experiment on the HARP system was limited to 4 hours, many of the SWI

computations where unable to complete the full range of experiments in the allocated time

period. This time constraint allowed us to have a better view of real world scenarios wherein

time may be a constraint on the computation. The NDRange implementations performed

considerably better than the SWI implementations but as shown in Figure 4.9, they follow

a scattered trajectory to each dimension.

The NDRange performance, as shown in Figures 4.7 & 4.9 had both interesting bifurcation

patterns and oscillating performance spikes across dimensions. We speculate that this is

caused by caches, memory subsystems, or underlying microarchitectural features, in effect

hitting size boundaries of the various physical structures involved. A general rule in opti-

mization is to design your algorithms to make optimal usage of architectural features such as

cache behavior and memory coalescing [10]. Given the dynamic design of our implementation

using HLS it is difficult to determine how to perform this behavior a priori. We should not

assume a particular cache size or method to coalesce memory reads. We would argue that

our results clearly show performance sensitivity to this class of optimizations. Some block

sizes actually degraded performance which we speculate was caused either by imbalanced

memory access or inefficient cache usage. We would argue that HLS introduces the need for

new design methods that may differ from our assumptions of traditional cache and memory

hierarchies.

The charts in Figure 4.12 - 4.19 show the top 3 fastest execution times by dimension. The

line running through each graph is the amount of gigaflops achieved for each computation.

Surprisingly, our most optimized kernel always finished first out of all of the computations

but an interesting phenomenon occurred as we increased the dimensions of the matrices. At

first, glance, given that kernel L3 B64 U64 ndrange always finished first, it may be natural

to assume that the less optimized kernels would occupy 2nd, 3rd, and 4th place respectively.

For the 1024x1024, we saw this behavior for the top 3 kernels. The last place was actually

taken by the standard CBLAS computation. As we moved to larger kernels, we encountered

situations wherein the less optimized kernel, for instance, in the 5120x5120 dimension, the

L3 B16 U16 ndrange kernel outperformed the L3 B32 U32 ndrange kernel. This became more
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poignant for the 6144x6144 dimension where the L3 B8 U8 ndrange kernel outperformed the

L3 B32 U32 ndrange kernel. When we reached the final matrix dimension of 8192x8192 only

our most optimized L3 B64 U64 ndrange kernel made it to the top. All other kernels were

outperformed by the standard CBLAS kernel which was very surprising.

There are several things that we can conclude from these experiments:

1. In a system such as the HARP, in which the FPGA is tied in to the cache hierarchy,

classic optimizations targeting cache behaviour are beneficial to the FPGA as well as

the CPU.

2. In order to take advantage of the accelerator in this environment, all of the opti-

mizations we consider are needed to achieve performance competitive with mature,

optimized software.

3. The standard CBLAS library was able to outperform all but one optimized kernel in

spite of the fact that these kernels are executing on an FPGA. even though the other

kernels had advantages like transposed data, blocking, and loop enrolling enhance-

ments.

4. Many optimized kernels have degraded performance for a range of workloads. Whether

or not a particular optimization ends up being performant is not all clear prior to

implementation and measurement.

5. In order to optimize emerging accelerators, it is important to consider a spectrum of

metrics.

6. These experiments confirm that FPGA performance can exceed CPUs such as the Intel

Xeon class processor when coding in OpenCL, but realizing that performance benefit

is not necessarily a simple porting exercise.

When we approach performance, are we writing optimal code for the problem or simply

cobbling together prebuilt components to suit our needs? With limitations on processor

speeds, cost constraints, and power limitations, we have to rethink if we really want to use

the tools that are already built for us or do we want to use new accelerators which give us

the flexibility to truly design the components to solve the problem.

71



In order to make the most of accelerators, we are going to have to invest time, energy, and

research into understanding our components. We can no longer simply rely on our systems

to perform as we anticipate especially when underlying design decisions made in the past

may actually be curtailing the performance of future calculations. The report should give

pause to really think about what it means to have an optimized implementation not only

interms of the execution time but the data types, memory structures, and computational

units that such an implementation will execute on.

The performance of the FPGA kernels vaired considerably across both optimization levels

as well as matrix dimensions. This is in contrast with CBLAS, giving performance uniform

and competitive across matrix dimensions. The experiments reveal the possibility of devel-

oping performant kernels for the Intel HARPv2 system that are not only comparable but

in some cases higher performing than their CPU counterparts. Yet, the results have shown

conclusively that there are many considerations that must be taken into account in order to

successfully develop high-performance kernels on reconfigurable hardware.

We have to rethink whether general purpose tools give us the flexibility to truly design,

tailor, and reconfigure components to our particular computation. In order to make the

most of accelerators, we are going to have to understand not only the algorithms but how

they interact with data, workflows, and other cooperative components.
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