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ABSTRACT OF THE THESIS

A Reconfigurable FPGA Overlay Architecture for Matrix-Matrix Multiplication

by

Zihao Chen

Master of Science in Computer Engineering

Washington University in St. Louis, 2022

Research Advisor: Professor Roger Chamberlain

The increasing popularity of deep learning in workloads across vision, speech, and language

has inspired many attempts to develop hardware accelerators for matrix-matrix multiplica-

tion. Both application specific integrated circuits (ASICs), and field-programmable arrays

(FPGAs) are used for this purpose. However, a trade off between the two platforms is that

ASICs provide little flexibility after they are manufactured while designs on FPGAs are

flexible but application development on FPGAs is more time-consuming.

In this work, we aim to find the balance between reconfigurability and development efficiency

by designing a reconfigurable systolic architecture as an overlay on the FPGA. Our contribu-

tion to the reconfigurable systolic architectures is a multiplexer based crossbar network that

interconnects every processing element in the network. The crossbar network grants user

run-time reconfigurability of the topology of the systolic array, enabling the user to specify

the shape and size of the systolic architecture on-the-fly. The proposed overlay architec-

ture achieves similar computational hardware resource usage and maximum clock frequency

compared to the baseline designs.
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Chapter 1

Introduction

General matrix-matrix multiplication (GEMM) operations are the key computational kernel

in many modern day workloads, especially in the deep learning domain. Many attempts have

been made to build hardware accelerators for GEMM operation ranging from application-

specific integrated circuits (ASICs), such as the Nvidia Volta GPU [16] and Google’s TPU [6]

to field-programmable arrays (FPGAs) [1, 15]. Most of the state-of-the-art GEMM accelera-

tors resemble traditional systolic array architectures, due to their high efficiency in processing

parallel and regular data flow. However, types of GEMM workloads in real world workloads

such as convolutional neural networks (CNN) are not always regular. They vary in size and

sparsity from instance to instance. While ASICs usually are more performant and energy-

efficient [12], they lack the flexibility to accommodate a fast-changing data flow. Designs

based on FPGAs are reconfigurable, but its development cycle is slow. Coarse grain recon-

figurable arrays [12] and FPGA overlays are state-of-the-art solutions that mitigate the slow

development cycles on FPGAs while retaining the flexibility to some extent. Our work aims

to utilize the FPGA overlay idea to build a dynmically reconfigurable systolic architecture.

Many FPGA-based overlay designs [5, 13] grant users the ability to reconfigure the circuit

at run-time after loading the bit file onto the FPGA. We adopt a similar idea in developing

our overlay systolic architecture that allows a user to dynamically adjust the topology and

function of the systolic array. We design a crossbar interconnect network that replaces

the neighbor-to-neighbor connectivity in traditional systolic arrays. The crossbar network

can provide arbitrary connection from one processing element to another, and the user can

transfer a new topology to the crossbar network quickly at run-time.
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This work designs an overlay systolic architecture that is specifically built for handling

flexible matrix-matrix multiplication, and also details the structure of the key components

of the overlay architecture. The performance of our overlay architecture is then compared

against the performance of the traditional systolic array system, the timing characteristics,

and hardware resource utilization. The contributions of this work are the following:

• we design a suite of baseline systolic array designs that are used as comparison to our

overlay architecture;

• we design and implement the overlay architecture;

• we demonstrate that the overlay architecture consumes little resource overhead versus

the traditional design while providing run-time reconfigurability;

• we describe an approach to mitigating the performance degradation of implementing

run-time reconfigurability.

The outline of the thesis is as follows. Chapter 2 introduces background knowledge of the

FPGA-overlay systems and related work. Chapter 3 describes the architecture of the baseline

systolic arrays and the overlay architecture. Chapter 4 provides the hardware utilization

and timing analysis that comprise the comparison between the baseline and the overlay

architecture. Chapter 5 draws conclusions for our reconfigurable systolic architecture and

points out directions for future work.
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Chapter 2

Background and Related Work

We will first describe approaches to reconfigurability based on FPGA overlays. This is

followed by a description of systolic arrays and their reconfiguration.

Wilson et al. [18] proposed a novel FPGA overlay-based application development approach

called Seiba. Seiba integrates an HLS-generated fixed circuit with the reconfigurable over-

lay logic to grant a developer fast design iterations at run-time. The overlay architecture

consists of three parts: a fixed, user circuit synthesized from HLS, a soft processor that

provides reconfigurability on-the-fly, and an overlay execution manager. The HLS-generated

user circuit executes the initial design with no dynamic reconfigurability and the execution

manager only enables the user circuit. In later design iterations, when the user wants to

incrementally modify the functionality of the design, the overlay execution manager enables

the soft-processor and redirects the flow of execution to the programmable overlay to realize

the incremental design changes dynamically. However, this study shows that supporting the

run-time reconfigurability of both control and datapath incurs area overhead, which is also

present in our design.

To reduce the circuitry redundancy that is necessary for run-time adjustments while pre-

serving control of the configurability of the datapath, Coole et al. [2] introduce a family of

overlay architectures called super nets that takes advantage of reusable netlists across mul-

tiple sources and a crossbar interconnect network that is similar to our design. The super

net merges the netlists of the user circuits to formulate a superset of them. At run-time,

user circuits are mapped onto the corresponding interconnects within the synthesized super

nets network. Merging reusable circuits reduces the area cost of the overlay architecture.

Additionally, the super net grants flexibility at run-time by integrating a secondary crossbar
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interconnect network. Input netlists that cannot find a match in the super net interconnect

network are routed through the crossbar network. The merge and match operation of the

super net overlay along with the crossbar network can both reduce the area overhead of the

synthesized circuit and expose dynamic flexibility to the users.

Other works demonstrate the wide variability of the FPGA overlay architectures but also

show how FPGA-overlay systems are case-specific and thus, lack a universal standard for

programmability, productivity and adaptability [12]. Jamal et al. [5] adopt a debug overlay

on top of an HLS-generated circuit to provide functional flexibility for the developer to ac-

celerate the debug cycles. Ng et al. [13] use a soft-processor overlay architecture to manage

and control a hardware accelerator circuit, where a recompilation is needed to modify the

hardware accelerator execution logic. Another work [19] provides flexible functionality and

programmable datapath on-the-fly by reusing multiple modulated overlay building blocks

recurrently. The above architectural designs of FPGA-overlay systems involves complex

control and datapath designs which achieve very specific goals but suffer from loss of gener-

ality. This calls for a simple overlay design that both allows rapid development cycles and

serves as building blocks for general computing workloads.

Systolic arrays map the data flow of high-performance computation onto hardware archi-

tectures, which leverages the advantages of both parallel processing and pipelining for data

processing. Kung [8] introduces the advantage of systolic arrays in processing large amounts

of regular and parallel data, and its reconfigurable datapath give rise to numerous inter-

connect topology that accommodates data flow of different types of workloads, as shown

in Figure 2.1. Because of these benefits, systolic architectures have become popular basic

computing blocks among many modern workloads such as HPC and DNN tasks. Recent re-

search on FPGA overlay architecture specifically target systolic array-like circuits to expand

functionality as well as flexibility.

Eyeriss [1] is a novel architecture inspired by traditional systolic arrays to accelerate convo-

lutional neural network computation. In this work, they exploit the data locality in weights

and activation matrices to minimize data movement among PEs and global memory. The

layout of their PEs can adapt to different sizes of convolutional multiply and accumulate

because the architecture utilizes the local storage of the PEs, the direct spatial connections

between PEs, and PE-level parallelism. The design was prototyped on FPGA boards but
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Figure 2.1: Three common types of systolic architectures.

later manufactured into ASICs. This differs from our reconfigurable architecture in that

once it is manufactured, the datapath of the PE network becomes fixed logic circuit and

thus, does not provide dynamic reconfigurability.

Another closely related work is by Qin et al. [15] on systolic architectures to accelerate DNN

workloads. The authors argued that traditional systolic arrays can not perform general

matrix-matrix multiplication on irregular or sparse matrices efficiently, which is a common

operation in DNN workloads. They propose a novel accelerator architecture called SIGMA

for handling irregular and unstructured sparse GEMM operations. Instead of the neighbor-

to-neighbor connectivity on a traditional systolic array, SIGMA features a distribution net-

work that can broadcast data over all PEs and a reduction network, called forwarding adder

network, that performs the MAC operation based on the shape and sparsity of the original

matrices. Although this design grants flexibility in the shape and sparsity of the input ma-

trices, this work differs from our architecture in that the control knobs of the datapath are

not exposed to the users.

Systolic arrays require a rhythmic data flow from the memory outside the computing fabrics,

which calls for optimization of data movement outside of the systolic array. A recent study by

Gao et al. [3] proposes an intra-layer parallelism together with inter-layer pipelining, where

each layer can be a single systolic array. Their work aims to optimize the data flow outside

the computation fabric that promotes data reuse and sharing as well as reduces pipeline

delays. Since our design mostly focuses on implementing fast run-time reconfigurability of

the computation units, this work may direct our future work to expand the current design

to a full-on ASIC chip by integrating data flow optimization outside of the systolic array.
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Chapter 3

Methods

To evaluate the resource utilization and timing characteristics of the proposed overlay ar-

chitecture, we implement two baseline systolic arrays: a hexagonal array, described in [21],

and a rectangular array, described in [17], as both a starting point and a control group

to the proposed design. We implemented the baseline design and the overlay architecture

separately onto the same target FPGA and examined the hardware utilization reports and

timing analysis provided by the synthesis tool flow to evaluate the costs and benefits of the

overlay design. The platform we use for the implementations of the baseline and the overlay

architecture is the SP701 FPGA evaluation kit of Xilinx Spartan-7 family. To author the

designs, we used the Vivado 2019.1 HLx Development Kit.

Algorithm 1 shows the naive matrix-matrix multiplication, where A and B are input matrices

and C is the output matrix. The sequential execution flow of the original matrix-matrix

multiplication algorithm does not take advantage of data-level concurrency and has repetitive

loads on the same data in the memory. Systolic array architectures, on the other hand, map

each iteration in the sequential execution onto a specific spatial and temporal location in

the processing element network, which guarantees the correctness of the computation while

enabling parallelism among iterations. Each data point loaded from the main memory gets

utilized in each of the processing elements that it passes, thus preventing the bottleneck of

fetching data from main memory.

6



Algorithm 1 Matrix Matrix Multiplication

1: int A[M][N], B[N][L]
2: int C[M][L]
3: for i← 1 to M do
4: for j ← 1 to L do
5: for k ← 1 to N do
6: C[i][j] += A[i][k] * B[k][j]

3.1 Building Blocks of Systolic Architectures

The fast reconfigurable systolic overlay architecture and the traditional systolic architectures

share similar overall structures as shown in Figure 3.1. While the topology of the connec-

tivity among processing elements varies between overlay and traditional architectures, there

are circuits that remain unchanged, so we use several basic building blocks shared across

the designs. Since this work primarily focuses on systolic array architectures for matrix-

matrix multiplication, we use multiply-and-accumulate processing elements as one of the

basic building blocks. The data transfer between the main memory and the systolic archi-

tecture, is outside the scope of this work, so we implemented linear feedback shift registers

that generate pseudo-random numbers to emulate data fetched from the memory hierarchy.

The designs of the processing elements and linear feedback shift registers are the same for

both overlay and traditional systolic architectures for the sake of evaluation.

Figure 3.1: General architecture of systolic arrays
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The Processing Element

The processing element is simply the multiply and accumulate unit that performs the

cij =
K∑
k=1

aik ∗ bkj

computation. The module definition of the RTL circuit for the processing element is shown in

Listing 3.1. The parameter DATA SIZE defines the width of the input and output elements

for matrix A and B. The data width for matrix C is 2*DATA SIZE + 1 to avoid overflow

after multiply and accumulate operations. Inputs a in, b in, and c in denote the data of

matrix A, B, and C respectively that pass through the systolic array architecture into the

processing element and outputs a out, b out, and c out denote data of A, B, and C matrix

after the processing element finished the computation.

1 module pe #( parameter DATA_SIZE = 16)

2 (

3 input clk , // input clk

4 input reset_l , // reset signal

5 // input values from neighboring PEs

6 input [DATA_SIZE -1:0] a_in ,

7 input [DATA_SIZE -1:0] b_in ,

8 input [DATA_SIZE *2:0] c_in ,

9 // output values to neighboring PEs

10 output reg [DATA_SIZE -1:0] a_out ,

11 output reg [DATA_SIZE -1:0] b_out ,

12 output reg [DATA_SIZE *2:0] c_out

13 );

Listing 3.1: Port declaration of processing element.

8



Figure 3.2: Block diagram of processing element.

1 always @(posedge clk) begin

2 if (! reset_l) begin

3 a_out <= 0;

4 b_out <= 0;

5 c_out <= 0;

6 end

7 else begin

8 c_out <= c_in + b_in * a_in;

9 a_out <= a_in ;

10 b_out <= b_in ;

11 end

12 end

Listing 3.2: RTL description of processing element.

The block diagram for the processing element is shown in Figure 3.2. When clock is at its

rising edge and reset low signal is high, a in, and b in first pass through a multiplier. The

intermediate product of a in and b in is then summed with c in, which is then latched into

c out. a in and b in are latched into a out and b out without any changes applied to them.

All three outputs will be set to zero when reset low signal is asserted. The RTL description

of the circuit shown in Figure 3.2 is authored in Verilog as in Listing 3.2.

The Linear Feedback Shift Register

This work focuses on developing an innovative interconnect topology that grants traditional

systolic architectures run-time reconfigurability. Implementing an interface with the main

memory that enables direct data transfer to the computing unit is outside the scope of this

9



study. On the other hand, exposing the inputs and outputs of the systolic architectures

significantly stresses the I/O resources on the FPGA board. Thus, for simulation purposes,

we implemented a pseudo-random number generator through a simple linear feedback shift

register circuit as shown in Figure 3.3.

Figure 3.3: Block diagram of linear feedback shift register.

A linear feedback shift register is a shift register that, at the rising edge of the clock, advances

the data through the register from one bit to the next most-significant bit. To form a

feedback, some of the bits are wired through an exclusive-OR circuit. A linear feedback

shift register takes the result of two or more registers after passing through the exclusive-OR

and feeds it to one of the registers. The feedback mechanism of this kind of shift register

generates a new equal-length signal at each clock cycle, if it is given a non-zero initial value.

The exclusive-OR configuration also affects the number of possible numbers that a linear

feedback shift register can generate. Peterson and Weldon [14] have compiled the exclusive-

OR configurations that guarantee maximal-length linear feedback shift registers of different

bit sizes, and we use the 16-bit configuration from their table in our implementation.

Note that in our implementation of the linear feedback shift register as shown in Listing 3.3

has an enable signal. Our overlay architecture enables transition between different sizes

and types of systolic architectures, which may require different data transfer patterns. The

spatial and temporal parallelism of the sequential execution flow of the traditional matrix-

matrix multiplication can only be mapped onto systolic architectures when the correct data

is clocked in at the correct time point and the correct processing element. Since the linear

feedback shift register generates new data every clock cycle, we use the enable signal to

control the pattern of the outgoing data flow. The enable signal is implemented in the top

RTL module as a counter that accommodates the data rate of different configurations.

10



1 module lfsr#( parameter DATA_WIDTH = 16)

2 (

3 input clk ,

4 input rst_l ,

5 input en ,

6

7 output reg [DATA_WIDTH -1:0] data

8 );

9 wire newData ;

10

11 assign newData = data [15] ^ data [14] ^ data [12] ^ data [3];

12

13

14 always @(posedge clk) begin

15 if (! rst_l || !en) begin

16 data <= 16’b10086;

17 end

18 else begin

19 data <= {data [15:1] , newData} ;

20 end

21 end

22

23 endmodule

Listing 3.3: RTL description of linear feedback shift register.
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3.2 Baseline Systolic Architectures

Traditional systolic architectures are often two-dimensional, and they can be rectangular,

triangular, or hexagonal to take advantage of higher degrees of parallelism [8]. Our overlay

systolic architecture allows fast conversion between different types of traditional systolic

arrays. We implemented two baseline systolic array architectures as benchmarks for the

overlay architecture. One of them is the rectangular array, which is efficient at processing

regular data flow. In terms of matrix-matrix multiplication, rectangular systolic architectures

are used to compute dense and regular matrices [9]. Hexagonal systolic architectures are good

at processing banded matrices, where the upper and lower triangular region are all zeros [10].

Rectangular Systolic Architecture

The execution flow of a 3 by 3 matrix-matrix multiplication on a rectangular systolic array

is shown in Figure 3.4. Elements in matrix A and B are denoted as ai,k and bk,j. At the

first clock cycle, a0,0 and b0,0 enter the upper leftmost processing element, and the product

of a0,k and bk,0 is one of the three terms that sum up to c0,0. As a result, the product of

a0,0 and b0,0 is buffered in the processing element waiting for later data to come. At the

second clock cycle, a0,0 is passed to the current processing element’s horizontal neighbor on

the right and b0,0 is passed to the bottom neighbor. Four new data are fetched on the same

clock cycle into different processing elements: a0,1 and b1,0 to the upper leftmost, a1,0 to the

middle leftmost, and b0,1 to the upper middle. Each of the three active processing elements

that receives new data performs the same multiply and accumulate operation, where the

middle leftmost computes c1,0, and the upper middle computes c0,1. Note that a0,1 and b1,0

get delayed for one clock cycle comparing to a0,0 and b0,0 to account for the pipeline delay.

This ensures that every pair of signals that need to be multiplied together arrives at the

same processing element at the correct clock cycle. The rest of the execution flow follows the

description of the first clock cycle. After all the elements of matrix A and B pass through

the systolic array, each of the processing elements will contain one element of the product

matrix C, where the upper leftmost contains c0,0, the upper middle contains c0,1, the middle

leftmost contains c1,0, and likewise for the remaining processing elements.

12



Figure 3.4: Data flow of a 3 by 3 rectangular systolic architecture[7].
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Hexagonal Systolic Architecture

While rectangular systolic architectures are suitable for full and regular matrix-matrix mul-

tiplication, the strength of its hexagonal counterpart lies in banded matrix-matrix multipli-

cation [10]. Figures 3.5 and 3.6 show the execution flow of two banded matrices A and B,

each with bandwidth 3 multiplied together to get the product matrix C. Banded matrices

differ from full matrices in that they have upper and lower triangular area equal to zero.

To better illustrate the computing flow as shown in Figures 3.5 and 3.6, the matrix-matrix

multiplication algorithm

cij =
K∑
k=1

aik ∗ bkj

can be mapped to a temporal recurrence that can be efficiently implemented in pipelines of

the systolic array.

c0ij = 0,

ct+1
ij = ctij + ait ∗ btj

where the t indices, denoting the time instance of each of the computations, are the temporal

mapping of the k indices in the original algorithm.

Different from the data flow of the rectangular systolic architectures, the A, B, and C matrices

are pumped through the network in three distinct directions synchronously. In this study,

the product matrix C is initialized with zeros and each of its elements passes through the

systolic network from the bottom. However, each of the cij can be treated as partial sums

from computation outside the systolic array, and does not necessarily have to equal zero.

The A matrix passes through the systolic array from the top left to the bottom right, B matrix

passes from top right to bottom left, and C passes from bottom to top, as indicated from the

arrows in Figures 3.5 and 3.6. At the first time instance, a0,0, b0,0, and c0,0 are fetched from the

memory and enter the systolic architecture. As shown in Figure 3.5, they reside in different

processing elements so no computation is performed on them. At the next instance of time,

two additional data points are fetched into the systolic architecture, a1,0, b0,1. Elements a0,0,

b0,0, and c0,0 also propagate to the next processing element along their respective direction,

where they meet and perform the multiply and accumulate operation. At the third clock

cycle, each of the data points that reside in the systolic array propagates along its designated

14



Figure 3.5: Data flow of a 3 by 3 hexagonal systolic architecture.
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Figure 3.6: Data flow of a 3 by 3 hexagonal systolic architecture (cont.).

16



direction to the next processing elements and two additional data points a0,1 and b1,0 are

fetched from the periphery. Three of the nine processing element are active and performing

computation on the values received as shown in Figure 3.5. The rest of the data flow follows

the pattern of the first three clock cycles. Different from the rectangular systolic array, when

the computation finishes, the hexagonal architecture does not store the resulting C matrix

in each of processing elements’ local register but rather gets flushed out from the systolic

array. For example, at the fourth clock cycle, c0,0 obtains its final result and, as indicated

by the upward arrow, is flushed into the memory outside the systolic architecture. Another

difference from the rectangular systolic architectures is that the hexagonal architectures are

not limited by the size of the matrices that passes through the array but the bandwidth of

them, which grants additional flexibility.

3.3 Flexible overlay systolic architecture

Our overlay systolic architecture differs from the traditional systolic arrays in that it allows

dynamic reconfiguration of the size and type of the systolic architecture after the bit file is

loaded on the FPGA board. The data path of the traditional systolic architecture becomes

fixed upon compilation, but our architecture contains a crossbar interconnect network that

can take configuration bits at run-time to replace the fixed data path in normal systolic

arrays. Thus, the topology of the interconnect network that we designed can be adjusted

with user-defined configuration files dynamically. Since the building blocks of the traditional

and our overlay systolic architecture are the same, changing the connectivity of the network

that connects all processing elements is sufficient for changing the functionality of the systolic

architecture. With 25 processing elements, our overlay architecture allows dynamic changes

from five-by-five to a four-by-six array, from one five-by-five to one four-by-four and one

three-by-three array, and from rectangular to hexagonal arrays.

Crossbar interconnect network

In our overlay systolic architecture, we implement a N-by-N crossbar network, where N

denotes the number of processing elements. As shown in Figure 3.7, the crossbar network
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allows arbitrary connectivity from one processing element to another. As we have shown in

previous sections, data flow of the input matrices A and B and the output matrix C pass

through the systolic array in three different directions. To realize N-to-N connectivity, three

sets of the same N-by-N crossbar network are needed.

Figure 3.7: A 3-by-3 crossbar network.

The crossing points in the network serve as switches that permit data transfer between

specific pairs of processing elements and avoid undesirable data passing from one processing

element to another. The switches are implemented as N+M-to-one multiplexers as shown

in Figure 3.8, where N denotes the number of processing elements used and M denotes the

bandwidth of memory interface and the systolic architecture. The multiplexer takes inputs

from the output ports of the processing elements 1 through N and the data directly from

memory ports 1 through M. The value of M depends on the size and the topology of the

systolic array. The edge processing elements receive data directly from the memory, so for

a three-by-three processing element, the The reason for having the direct connectivity with

the memory interface is that this overlay architecture grants arbitrary reconfigurability in

terms of systolic array topology, so any processing element should be able to directly receive

data from the memory. The select bits of the multiplexers are read from the configuration

specified by the user, and the outputs of the multiplexers are fed to the input ports of

the target processing elements. This circuit realizes connectivity from arbitrary processing
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elements to the target processing elements based on the configuration bit. N sets of the

multiplexer circuit implement the crossbar network.

Figure 3.8: Implementation block diagram of the crossbar network.

Figure 3.9: Feedback connection for C matrix data flow in rectangular configuration.

One thing worth noting about the multiplexer based crossbar network is the difference be-

tween rectangular and hexagonal topology. As mentioned earlier, three sets of crossbar

network are used to implement full connectivity between processing elements. However, the

rectangular systolic architecture differs from its hexagonal counterpart in that only input

matrices A and B pass through the systolic arrays. As a result, for the rectangular topology,

only two sets of the crossbar network are needed for the data transfer of matrix A and B. To

accommodate this architectural discrepancy while preserving the ability to switch between

rectangular array and hexagonal array, the overlay architecture still contains three sets of

crossbar networks but when the user configures the overlay into rectangular arrays, the cross-

bar network for C matrix forms a feedback from the output port of the processing element

19



to the input port itself as shown in Figure 3.9. Thus, C matrix will not propagate through

the systolic architecture as in the hexagonal configuration, and the latch in the processing

elements will become a register that stores the result of the matrix-matrix multiplication.

Reading in setup bits

To configure the topology of the systolic architecture, we build a finite state machine for

reading in the select bits for each of the multiplexer that implements the crossbar network.

Inside the overlay architecture, the setup bits are stored in arrays of registers so that the

topology remains unchanged unless the user specifies a new topology and flushes the old

configuration. The simple finite state machine requires a simple data bus interface, which is

used for data transfer from outside into the systolic architecture. The bus interface is shown

in Listing 3.4

1 module flex_sysarray #( parameter DATA_WIDTH = 16, ARRAY_SIZE = 16)

2 (

3 input clk ,

4 input reset_l ,

5

6 input [DATA_WIDTH -1:0] wrAddr ,

7 input [DATA_WIDTH -1:0] wrData ,

8 input wr

9 );

Listing 3.4: RTL description of the simple data bus interface.
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Chapter 4

Results

In this chapter we compare the hardware utilization and the timing characteristics between

the baseline systolic architectures and the overlay architecture. The results are based on a

five-by-five overlay architecture, which can be dynamically reconfigured in both hexagonal

and rectangular topology and transformed into one four-by-four and one three-by-three sys-

tolic arrays. The traditional systolic array baseline designs that are used to draw comparisons

are designed accordingly.

4.1 Hardware Utilization

We compare the hardware resource utilization of the various designs we implemented as

generated by Vivado HLx 2019.1 synthesis tool. We first report the hardware utilization of

the baseline designs, including the three-by-three, four-by-four, and five-by-five traditional

systolic array both in rectangular and hexagonal setup.

Table 4.1: The hardware utilization of three-by-three rectangular systolic array.

Resource Utilization Available Utilization%

LUT 1 64000 0.01

DSP 13 160 8.13

IO 35 400 8.75

BUFG 1 32 3.13
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Table 4.2: The hardware utilization of four-by-four rectangular systolic array.

Resource Utilization Available Utilization%

LUT 1 64000 0.01

FF 1 12800 0.01

DSP 24 160 15

IO 35 400 8.75

BUFG 1 32 3.13

Table 4.3: The hardware utilization of five-by-five rectangular systolic array.

Resource Utilization Available Utilization%

LUT 3 64000 0.01

FF 3 12800 0.01

DSP 37 160 23.13

IO 35 400 8.75

BUFG 1 32 3.13

Table 4.4: The hardware utilization of three-by-three hexagonal systolic array.

Resource Utilization Available Utilization%

LUT 1 64000 0.01

DSP 10 160 6.25

IO 35 400 8.75

BUFG 1 32 3.13

Table 4.5: The hardware utilization of four-by-four hexagonal systolic array.

Resource Utilization Available Utilization%

LUT 1 64000 0.01

FF 1 12800 0.01

DSP 18 160 11.25

IO 35 400 8.75

BUFG 1 32 3.13
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Table 4.6: The hardware utilization of five-by-five hexagonal systolic array.

Resource Utilization Available Utilization%

LUT 3 64000 0.01

FF 3 12800 0.01

DSP 28 160 17.5

IO 35 400 8.75

BUFG 1 32 3.13

The main difference across the different configurations is the number of digital signal process-

ing units (DSPs) as shown in Table 4.1 through Table 4.6. When the number of processing

elements increases in the design, the DSPs which are mostly used for synthesizing the pro-

cessing elements increase in numbers. As shown in the tables, the number of DSPs generated

by the synthesis tool is not exactly the number of the processing elements in the design. We

determine that this overhead is caused by the implementation of linear feedback shift register

because when we take out the pseudo random generator in our design and ran the synthesis,

the number of DSPs consumed equals to the number of processing elements in the systolic

array.

The hardware utilization of our overlay systolic architecture is shown in Table 4.7. As we

demonstrated in Section 3.3, the main difference between the traditional systolic arrays

and our overlay systolic architecture lies in the crossbar interconnect network, which is

implemented as look-up tables by the synthesis tool. As a result, the number of LUTs

synthesized is significantly higher than the number in the traditional systolic arrays. On

the other hand, the number of DSPs also slightly increases comparing to the most resource-

consuming traditional systolic arrays by 2% in terms of utilization on the board. Thus, we

determine that our design is feasible in terms of computational resource usage comparing

to baseline traditional systolic array systems. However, since we are using full crossbar

networks in our overlay architecture, the other hardware resources such as LUTs and FFs

are not scalable.
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Table 4.7: The hardware utilization of five-by-five overlay systolic architecture.

Resource Utilization Available Utilization%

LUT 7907 64000 12.35

FF 526 12800 0.41

DSP 40 160 25

IO 35 400 8.75

BUFG 1 32 3.13

4.2 Timing Characteristics

Since our overlay architecture encompasses some hardware redundancy and additional logic

to realize run-time reconfigurability, we are interested in how the additional circuitry af-

fects the timing characteristics of our overlay architecture comparing to traditional baseline

systolic arrays. We base the timing analysis on the report timing summary of the Vivado

synthesis tool. The target clock frequency we use in the implementations of all designs unless

specified is 100MHz with a 10ns clock period. An expression for calculating the maximum

clock frequency the specific design can reach is given by the manual provided by Xilinx [20],

where T is the target clock period. The worst negative slack in the equation is given in the

first column of the Tables. The number shows the latency for passing through maximum

combinational logic path in the design within one clock cycle. Thus, we take the maximum

between setup and hold worst negative slack time to calculate the maximum frequency.

fmax = 1/(T −WorstNegativeSlack) (4.1)

Table 4.8: The timing characteristics of three-by-three rectangular systolic architecture.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 8.208ns 0 0 42

Hold 0.29ns 0 0 42

Pulse Width 4.5ns 0 0 10

We run the same timing summary report for our overlay systolic architecture with the same

clock but found the worst negative slack violated the 10ns clock period constraints. So we

24



Table 4.9: The timing characteristics of four-by-four rectangular systolic architecture.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 6.813ns 0 0 64

Hold 0.29ns 0 0 64

Pulse Width 4.5ns 0 0 18

Table 4.10: The timing characteristics of five-by-five rectangular systolic architecture.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 5.178ns 0 0 162

Hold 0.228ns 0 0 162

Pulse Width 4.5ns 0 0 29

Table 4.11: The timing characteristics of three-by-three hexagonal systolic architecture.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 8.0588ns 0 0 192

Hold 0.478ns 0 0 192

Pulse Width 7.845ns 0 0 8

Table 4.12: The timing characteristics of four-by-four hexagonal systolic architecture.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 5.988ns 0 0 496

Hold 0.161ns 0 0 496

Pulse Width 4.5ns 0 0 18

Table 4.13: The timing characteristics of five-by-five hexagonal systolic architecture.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 4.737ns 0 0 930

Hold 0.148ns 0 0 930

Pulse Width 4.5ns 0 0 18
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Table 4.14: The timing characteristics of five-by-five overlay systolic architecture.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 9.185ns 0 0 1566

Hold 0.261ns 0 0 1566

Pulse Width 24.5ns 0 0 543

relax the clock frequency to 20MHz with a 50ns period. The timing report with the relaxed

target clock is shown in Table 4.14.

As shown in Table 4.8 to Table 4.13, the maximum clock frequency is given by equation 4.1

depending on the size of the systolic architecture. However, the maximum clock frequency

for the five-by-five overlay architecture is 24.5MHz, which is 8× slower than the five-by-five

baseline design. We determined the performance degradation was due to the long logic path

in the large multiplexers that are used to implement the crossbar interconnect network. Since

they are synthesized from look up tables on the FPGA board, and the look up tables only

have fixed size, so multiple look up tables are stacked together to build a single multiplexer,

which is the factor that causes the worst negative slack exceeding the baseline design.

We propose to mitigate this performance drop by adopting the C-slow technique [11], insert-

ing latches in the combinational logic to reduce the long paths. We use the C-slow technique

to shorten the long paths in our multiplexers as shown in Figure 4.1.

Figure 4.1: An 8-to-1 multiplexer vs. its C-slow equivalent multiplexer circuit.
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The equation that determines the relationship between the achieved clock frequency and the

number of layers of latches inserted is given by,

tC = [toriginal/C + 0.66× (lnC)0.7]ns (4.2)

where tC is the clock period after inserting C layers of latches, toriginal is the original clock

period, and C is number of layers of latches [4]. We plot the relationship between fC , which

is given by 1/tC , and C with the achieved smallest clock period of our overlay architecture

to demonstrate how the C-slow technique can mitigate the performance gap between our

overlay design and the baseline designs.

Figure 4.2: How frequency of the design changes with the number of C-slow layers added.

As shown in Figure 4.2, the frequency of the design increases with the number of C-slow

layers inserted in the combinational logic. When the number of C-slow layers reaches 10, the

performance gap between the baseline designs and the overlay architecture is mitigated. In-

serting 10 layers of latches in the multiplexer design should yield a maximum clock frequency

that is comparable to the baseline design. However, the C-slow technique induces additional

clock cycles for the data to pass propagate through the multiplexer and the interconnect
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network. We maintain the throughput of the design by interleaving multiple GEMM oper-

ations in our overlay architecture so that each GEMM propagates through the interconnect

network in a pipeline-like fashion, and thus obtaining the same level of overall throughput.
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Chapter 5

Conclusion and Future Work

This work describes our implementation of the proposed overlay systolic architecture that

aims to grant users reconfigurability of the systolic topology at run-time. The dynamic

flexibility of our overlay architecture lies mainly in the interconnect network that links the

processing elements. The flexible interconnect network is implemented as a crossbar network

that provides full connectivity from arbitrary processing element to another. The crossbar

network reads in setup bits at run-time to adjust its topology that avoids going through the

synthesis tool and re-loading a bit file onto the FPGA board.

We authored a suite of baseline systolic array designs with different shapes and sizes to

compare the hardware utilization and timing characteristics to our proposed architecture.

We found that our overlay architecture posed both resource and timing overhead. However,

the hardware resources used for computation, namely digital signal processing units, exceeds

the baseline design by only 2%, which is acceptable considering the run-time reconfigurability

that the overlay architecture provides. The maximum clock rate for the overlay design was

8× slower than the baseline designs, but we mitigated the gap by using C-slow circuit [11]

and interleaving multiple GEMM operations in parallel to maintain the throughput level.

Systolic array architectures require a rhythmic data flow to correctly operate on the data

that passes through them. For simulation purposes, we implemented a linear feedback shift

register that fed data to the systolic array to emulate the data flow from the main mem-

ory. For this works purpose of implementing run-time reconfigurability in traditional systolic

array, we choose to not implement a memory controller interface that allows our overlay ar-

chitecture to directly fetch data from the main memory. We conclude that the computational

unit, namely the overlay systolic architecture, can reach comparable resource consumption
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and timing characteristics comparing to the traditional designs. Additionally, a full cross-

bar interconnect network does not scale with the number of processing elements needed in

the system. We choose to use the crossbar network because of its arbitrary connectivity

comparing to other forms of interconnect network. As suggested above, further explorations

can be made in two directions: designing a memory controller that serves as the interface

between the computational fabric and the main memory, and designing application-specific

interconnect network that is more area-efficient.
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