
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2020

Domain Specific Computing in Tightly-Coupled Heterogeneous Domain Specific Computing in Tightly-Coupled Heterogeneous

Systems Systems

Anthony Michael Cabrera
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Cabrera, Anthony Michael, "Domain Specific Computing in Tightly-Coupled Heterogeneous Systems"
(2020). McKelvey School of Engineering Theses & Dissertations. 584.
https://openscholarship.wustl.edu/eng_etds/584

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Feng_etds%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/584?utm_source=openscholarship.wustl.edu%2Feng_etds%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

James McKelvey School of Engineering and Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Roger Chamberlain, Chair

Jonathan Beard
Jeremy Buhler

Ron Cytron
William Richard

Domain Specific Computing in Tightly-Coupled Heterogeneous Systems
by

Anthony Michael Cabrera

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2020
Saint Louis, Missouri

c© 2020, Anthony Michael Cabrera

Table of Contents

List of Figures . v

List of Tables . viii

Acknowledgments . ix

Abstract . xiii

Chapter 1: Introduction . 1
1.1 Research Questions . 5
1.2 Contributions . 5
1.3 Outline . 6

Chapter 2: Background and Related Work 7
2.1 Domain Specific Computing . 7
2.2 Data Integration . 8
2.3 Quantitative Characterization Techniques 10
2.4 FPGA . 11

2.4.1 Intel HARPv2 . 13
2.4.2 HARP for Acceleration . 14
2.4.3 Designing Kernels with OpenCL . 15
2.4.4 High Level Synthesis and Design . 19

Chapter 3: DIBS: A Data Integration Benchmarking Suite 21
3.1 Overview of Benchmark Suite and Integration Tasks 25
3.2 Benchmark Application Descriptions . 26

3.2.1 Computational Biology . 26
3.2.2 Image Processing . 28
3.2.3 Enterprise . 31
3.2.4 Internet of Things (IoT) . 32
3.2.5 Graph Processing . 34

3.3 Characterization of Data Integration Tasks 35
3.3.1 Locality . 36
3.3.2 Determinism/Branch Entropy . 38

ii

3.3.3 Instruction Mix . 38
3.4 Characterization Methods . 39
3.5 Results of Characterization . 41

3.5.1 Locality . 42
3.5.2 Branch Entropy . 45
3.5.3 Instruction Mix . 48
3.5.4 Discussion . 51

3.6 Conclusion . 52

Chapter 4: Multi-spectral Reuse Distance: Divining Spatial Information
from Temporal Data . 54
4.1 The Data Movement Problem . 55
4.2 Methods . 57

4.2.1 Benchmark Applications . 58
4.2.2 Reuse Distance . 58
4.2.3 Earth Mover’s Distance . 60
4.2.4 Memory Footprint . 62

4.3 Results and Discussion . 63
4.3.1 Spatially Dense Memory Accesses . 63
4.3.2 Page Sizing and Utilization . 68
4.3.3 Data Layout Transformation . 71

4.4 Conclusion . 71

Chapter 5: Evaluating Portability and Performance of OpenCL FPGA
Kernels on Intel HARPv2 . 75
5.1 Methods . 77

5.1.1 Needleman-Wunsch . 78
5.1.2 Description of Each Kernel Version 79
5.1.3 Hardware Design Space Search . 83
5.1.4 Shared Virtual Memory . 86

5.2 Results and Discussion . 87
5.2.1 FPGA Kernel Results . 87
5.2.2 Hardware Design Space Search . 91
5.2.3 SVM Performance . 94

5.3 Conclusion . 96

Chapter 6: Designing Domain Specific Compute Systems 98
6.1 Methods . 100

6.1.1 Clustering of Domain Applications 100
6.1.2 Evaluating the Hardware . 101
6.1.3 Kernel Development . 102
6.1.4 Hardware Design Parameters . 103

6.2 Kernels . 104

iii

6.2.1 ebcdic txt . 106
6.2.2 idx tiff . 108
6.2.3 fix float . 110
6.2.4 edgelist csr . 111
6.2.5 2bit fa . 113
6.2.6 fa 2bit . 115

6.3 Other Design Considerations . 117
6.3.1 Overlapping Data Transfer and Execution 117
6.3.2 Visualizing the Hardware . 118
6.3.3 Widening the Data Type . 121

6.4 Results . 123
6.4.1 Design Space Search Sweeps . 124
6.4.2 MWI versus SWI Implementations 135
6.4.3 Results of Widening The Datatype 141

6.5 Conclusion . 144

Chapter 7: Conclusion and Future Work . 145
7.1 Future Work . 147

References . 150

Vita . 163

iv

List of Figures

Figure 2.1: FPGA Block Diagram . 12

Figure 2.2: HARPv2 vs. PCIe Card FPGA . 14

Figure 2.3: NDRange vs. SWI Block Diagram 17

Figure 3.1: Spatial Locality Measure . 42

Figure 3.2: Cumulative Sum of Memory References Across Strides 43

Figure 3.3: Temporal Locality Measure . 45

Figure 3.4: Cumulative Sum of Memory References Across Reuse Distances . . . 46

Figure 3.5: Branch Entropy Measure . 47

Figure 3.6: x86-64 Static Instruction Mix . 48

Figure 3.7: x86-64 Dynamic Instruction Mix . 49

Figure 3.8: AArch64 Dynamic Instruction Mix 50

Figure 4.1: Reuse Distance Basics . 59

Figure 4.2: Reuse Distance Signatures . 64

Figure 4.3: Intuition for Mass Shift Proof . 67

Figure 4.4: Memory Footprint Results . 72

Figure 4.5: Earth Mover’s Distance Results . 72

Figure 5.1: Dynamic Programming Example . 79

v

Figure 5.2: Diagonal Parallelism Illustration . 81

Figure 5.3: Shift Register Example . 83

Figure 5.4: Staircase Shift Registers . 84

Figure 5.5: Exploiting Diagonal Parallelism and Staircase Shift Registers 85

Figure 5.6: NW Kernel Hardware Design Space Search 91

Figure 5.7: Shared Memory Benefit . 94

Figure 6.1: k -means Clustering of the DIBS Applications 101

Figure 6.2: Width vs. Depth Execution Models 102

Figure 6.3: Confirmation of Shared Memory Benefit 118

Figure 6.4: CDFGs and Cycle Schedules . 118

Figure 6.5: idx tiff SWI Results . 124

Figure 6.6: fix float SWI Results . 125

Figure 6.7: edgelist csr SWI Results . 125

Figure 6.8: 2bit fa SWI Results . 126

Figure 6.9: ebcdic txt SWI Results . 127

Figure 6.10: fa 2bit SWI Results . 128

Figure 6.11: ebcdic txt MWI Results . 129

Figure 6.12: fix float MWI Results . 129

Figure 6.13: edgelist csr MWI Results . 130

Figure 6.14: 2bit fa MWI Results . 130

Figure 6.15: idx tiff MWI Results . 132

Figure 6.16: fa 2bit MWI Results . 133

Figure 6.17: CPU vs. MWI vs. SWI Results . 136

vi

Figure 6.18: Data Type Vectorization Design Space Search 139

Figure 6.19: Input File Size Sweep . 141

vii

List of Tables

Table 3.1: Data Integration Task Classification 26

Table 3.2: Experimental Machine Specifications 40

Table 3.3: Throughput Results . 41

Table 5.1: HARPv2 vs. PCIe Card Results . 88

Table 5.2: Hardware Design Space Search for NW Kernels 90

Table 6.1: MWI Design Knob Trend . 131

Table 6.2: Most Performant MWI and SWI Configurations 137

Table 6.3: Utilization and Performance Results for Data Type Vectorization . . 140

viii

Acknowledgments

Though this dissertation bears my name as sole author, this process has hardly been a solo

endeavor. There are a number of people who have been in my corner throughout my life,

and without them, this work would not have been possible.

First, I would like to thank my parents, Patrick and Annabelle Cabrera, and my brother,

Chris Kramp, who have supported me throughout all of my endeavors. Through the baseball

games, orchestra concerts, and all of my academic pursuits, they were always behind me,

supporting me every step of the way and letting me know how proud they were. I could not

have gotten to where I am today without their love and support.

My advisor, Dr. Roger Chamberlain, has been invaluable in so many ways during my PhD

journey. He took me on as a graduate student in my second year, and trusted and respected

me as if I had already been his student for years. He has been nothing short of extraordinary

as a mentor, and I am thankful for his guidance. Even if it was staying up late for a paper

deadline, Roger would always make time for me when I asked, and that is something that I

will always appreciate.

There have also been a number of other faculty and colleagues that I would like to acknowl-

edge. My former research advisor, Dr. Viktor Gruev, gave me my first research opportunity

ix

as an undergraduate and is what ultimately lead me to pursue a PhD. My committee mem-

bers, Drs. Jonathan Beard, Jeremy Buhler, Ron Cytron, and William Richard have all

played pivotal roles in my formation as a researcher, even before they agreed to serve on my

committee. My colleagues in the CSE department at WUSTL, including Clayton Faber and

Drs. Steve Cole, Missael Garcia, Tim York, and many others, have been incredibly insightful,

and have helped shaped my development as a researcher.

I must also thank the faculty at Hendrix College, specifically Drs. Gabe Ferrer, Karen

Griebling, Damon Spayde, and Todd Tinsley, for their enthusiasm for teaching. They made

learning the hard stuff fun, and they showed me what happens when faculty truly invest in

their students’ success.

During the summers of my third and fourth years, I had the opportunity to intern and

work with some great people. I want to thank Dr. Jonathan Beard for taking me on as a

research intern at ARM, and for leading me through the nasty details of modern memory

subsystems and the field of High Performance Computing. Thanks also to Dr. Christine

Harvey, John Hilbing, Andrew van Overloop, Rose Schneider, and Dan Aiello for giving me

the opportunity to work at MITRE, and their constant support during my time as an intern

and beyond.

For all of the people I have had the pleasure of calling friend over the past few years, I am

also thankful. To Marcus Brown, Emily Murphy, Katy O’Keefe, and Page Vick, I am glad

to have gotten to know you from the third grade to the present, and I am thankful that

x

we still continue to keep in touch and lift each other up. To my Hendrix friends, namely

Stephen Borutta, Ernest Perez, and Drs. Sam Bondurant, William Haden Chomphosy, Sam

Fullerton, Lance Riley, Spencer Sanson, and Erik Urban, our friendships are ones that I will

continue to cherish.

Finally, I want to thank my wife, Jillian Smith, for whom I am eternally grateful. She has

shown me a level of affection, patience, and support that I had not known was possible. She

has been a wonderful cat mom to Lil’ Sebastian and Ann Purrkins. She welcomed me into

her life without hesitation, and I am grateful to have a second family in Jane, Ralph, Ben,

and Theo Smith and Shelley Bryant. Jillian has been there for me during my highest highs

and lowest lows, and she has never stopped professing how proud she is and how much she

believes in me. This achievement is just as much hers as it is mine. I love you, Jillian, and

I am fortunate to have been blessed with such a loving and supportive partner.

Anthony Michael Cabrera

Washington University in Saint Louis

August 2020

xi

Dedicated to Mom, Dad, and Jillian.

xii

ABSTRACT OF THE DISSERTATION

Domain Specific Computing in Tightly-Coupled Heterogeneous Systems
by

Anthony Michael Cabrera
Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2020
Professor Roger Chamberlain, Chair

Over the past several decades, researchers and programmers across many disciplines have

relied on Moores law and Dennard scaling for increases in compute capability in modern

processors. However, recent data suggest that the number of transistors per square inch

on integrated circuits is losing pace with Moores laws projection due to the breakdown of

Dennard scaling at smaller semiconductor process nodes. This has signaled the beginning

of a new “golden age in computer architecture” in which the paradigm will be shifted from

improving traditional processor performance for general tasks to architecting hardware that

executes a class of applications in a high-performing manner. This shift will be paved, in

part, by making compute systems more heterogeneous and investigating domain specific

architectures. However, the notion of domain specific architectures raises many research

questions. Specifically, what constitutes a domain? How does one architect hardware for a

specific domain?

In this dissertation, we present our work towards domain specific computing. We start by

constructing a guiding definition for our target domain and then creating a benchmark suite

of applications based on our domain definition. We then use quantitative metrics from the

literature to characterize our domain in order to gain insights regarding what would be

most beneficial in hardware targeted specifically for the domain. From the characterization,

we learn that data movement is a particularly salient aspect of our domain. Motivated by

xiii

this fact, we evaluate our target platform, the Intel HARPv2 CPU+FPGA system, for ar-

chitecting domain specific hardware through a portability and performance evaluation. To

guide the creation of domain specific hardware for this platform, we create a novel tool to

quantify spatial and temporal locality. We apply this tool to our benchmark suite and use

the generated outputs as features to an unsupervised clustering algorithm. We posit that

the resulting clusters represent sub-domains within our originally specified domain; specifi-

cally, these clusters inform whether a kernel of computation should be designed as a widely

vectorized or deeply pipelined compute unit. Using the lessons learned from the domain char-

acterization and hardware platform evaluation, we outline our process of designing hardware

for our domain, and empirically verify that our prediction regarding a wide or deep kernel

implementation is correct.

xiv

Chapter 1

Introduction

Over the past several decades, researchers and programmers across many disciplines have

relied on two trends in computing. The first is that the number of transistors on integrated

circuits doubles roughly every two years. The other is that the relationship between a

transistor’s feature size and power consumption and switching speed are constant. Together,

these insights have guided the semiconductor industry towards creating smaller transistors

to lower power consumption, raise clock frequencies, and increase compute capability per

unit area.

These two observations, known as Moore’s law [115] and Dennard scaling [12], respectively,

have been the driving force behind aggressively scaling semiconductor process technologies.

This allows for increases in compute capability in modern processors. However, recent data

and results show that the number of transistors per square inch on an integrated circuit is

losing pace with Moore’s law’s projection, and that second-order effects of extreme transistor

scaling are cancelling out the effect of lower power consumption for smaller transistors. The

impending end of Moore’s law due to the breakdown of Dennard scaling will mark the end

of an era characterized by relying on transistor scaling and increased clock frequencies to

improve performance gains.

1

In response to this, modern computing systems are becoming more architecturally diverse.

Architectural diversity includes any type of processing element within a computing system

other than the traditional processor core. The goal of introducing heterogeneity into a com-

puting system is to accelerate compute tasks that would otherwise be handled by a traditional

processor core. One of the earliest examples of this is Intel’s 8087 numeric data processor

that served as a co-processor dedicated to speeding up floating point computations [102]. In

the spirit of this type of hardware acceleration, modern systems are increasingly adding het-

erogeneity through incorporating hardware accelerators i.e., digital signal processors (DSPs),

graphics processing units (GPUs), or field-programmable gate arrays (FPGAs). GPUs in

particular are gaining traction, finding use in applications such as convolutional neural net-

works [74], molecular simulations [1], and protein sequence alignment [132].

In their 2017 ACM A.M. Turing Award speech, John Hennessey and Dave Patterson espoused

the importance of architecturally diversity. They address the challenges that arise from the

end of Moore’s law and Dennard scaling and use this to signal a new “golden age of computer

architecture”. However, the onus of research in a post-Moore’s law landscape was not solely

placed on computer architects. In order to create effective compute solutions, researchers

must embrace working across the hardware and software stack through hardware-software

co-design. Additionally, they suggest that the path to a post-Moore’s law world is paved, in

part, by domain specific computing. This key idea means shifting the paradigm of improving

general purpose processors that are good at many compute tasks towards building hardware

and surrounding infrastructure for processors that do fewer things but in a high-performing

manner. Between a spectrum bounded by general purpose processors and application specific

integrated circuits (ASICs), domain specific architectures would occupy the middle ground

by developing an architecture to accelerate a given domain or class of applications.

2

One way to help facilitate this shift is by using field-programmable gate arrays (FPGAs)

as a platform for domain specific computing. FPGAs are a special type of integrated cir-

cuit that can be programmed to implement a desired application in hardware. Historically,

FPGAs have been used for prototyping hardware or microarchitectures or as a lower-cost

solution to application specific integrated circuits (ASICs). The widespread use of FPGAs,

though nascent, has been burgeoning in recent years due to increased interest in industry.

This forward progress is reflected by companies like Amazon and Microsoft equipping their

data center nodes with FPGAs [107, 25, 5] and Intel acquiring FPGA manufacturer Al-

tera. Additionally, there is a growing research trend toward harnessing the reconfigurability

of FPGAs towards accelerating applications like neural networks [23, 43, 143], biocompu-

tation [62, 89, 94], and many other applications [88, 117, 125, 142, 150]. One of the key

ideas we present in this thesis, though, is designing techinques and tools using FPGAs to

accelerate classes of applications, rather than individual applications.

A common way to incorporate hardware accelerators like GPUs and FPGAs into a computer

system is to attach them through a PCIe bus. Accelerators attached in this way, though,

incur considerable overhead for data movement and keeping the memory between the host

and accelerator systems coherent. Recently, Intel has developed a system to address these

issues by incorporating both a multicore Xeon CPU and Arria 10 FPGA into the same chip

package and connected via high-speed and coherent interconnect. This particular project is

known as the Heterogeneous Accelerator Research Program, or HARP, and it is the platform

we use in this dissertation for developing domain specific hardware. We describe the HARP

hardware futher in Section 2.4.1.

One of the steepest barriers to using FPGAs, though, is expressing a design in the first

place using traditional hardware description languages (HDLs) like VHDL and Verilog. This

3

requires the ability to orchestrate a design at the logic gate level and at a clock-cycle gran-

ularity. The HARP system is no exception to this rule. A current research direction in

lowering the barrier is High Level Synthesis (HLS), which allows a programmer to express

a kernel of computation in a higher level language like C or C++ for deployment onto an

FPGA. (HLS is described further in Section 2.4.4.) This circumvents the problem of having

to learn an HDL to express a kernel and its low level interfaces, reduces the amount that a

programmer has to understand about FPGA microarchitecture, and abstracts away the lower

level details of using FPGAs. In addition to being able to author designs using an HDL,

Intel has provided the infrastructure to use the Intel FPGA OpenCL SDK for HLS FPGA

development [61]. While there have been recent publications targeting the HARP system

with a traditional FPGA design flow [4, 28, 117, 122, 135, 144], not much is known about the

experience, feasibility, and performance of targeting a HARP system using OpenCL. Our

work towards this combination is one of the contributions of this thesis; we show how to

effectively utilize properties of the Intel HARPv2 (the second iteration of the Intel Hetero-

geneous Architecture Research Platform) and evaluate its effectiveness as a domain specific

computing solution.

The overarching goal of this thesis is to develop a methodology for identifying a domain

and to architect performant hardware for that domain. We first define the domain of data

integration as a case study and define this domain using both qualitative and quantitative

methods. From there, we will evaluate the hardware design process and performance of

the Intel HARPv2 system. We target the HARPv2 system using the Intel FPGA SDK

for OpenCL for hardware development, which allows us to author designs in a higher level

language. We develop hardware design strategies specific to our target domain, as well as

strategies for generally using OpenCL to target the HARPv2 system. In order to make

quantitative hardware design choices, we create a tool called multi-spectral reuse distance,

4

whose outputs are used as features to cluster our applications and create sub-domains of our

original domain. We posit that these sub-domains represent whether a particular application

would benefit more from a widely vectorized or deeply pipelined implementation, and then

empirically verify our position.

1.1 Research Questions

In this dissertation, we make progress towards answering the following questions:

• How does one define an application domain?

• How does one architect performant hardware on the Intel HARPv2 platform using

OpenCL?

• How does one effectively architect domain specific hardware?

1.2 Contributions

In addressing these questions, we make the following specific contributions:

• The Data Integration Benchmarking Suite (DIBS), a suite of applications that repre-

sent data integration workloads across a variety of different application domains [22].

• Using known profiling techniques to quantitatively characterize the DIBS applica-

tions [22].

• A novel tool to measure the temporal and spatial locality of a given application [20].

5

• A performance and portability evaluation between OpenCL kernels synthesized for

FPGAs attached via PCIe card and the Intel HARPv2 system [17].

• A method using control data-flow diagrams to inform design decisions at the OpenCL

kernel level.

• A method for design space enumeration and search for the two OpenCL execution

models [17, 19].

• Empirically-based techniques for designing kernels for the Intel HARPv2 platform [17].

• A set of OpenCL kernels designed to target the Intel HARPv2 platform [19].

• A method leveraging an unsupervised clustering algorithm to predict the most per-

formant OpenCL execution model for a given kernel, and empirically validating the

prediction [19].

1.3 Outline

The rest of this dissertation is structured as follows: Chapter 2 will cover related work

and background information pertaining to domain specific computing, FPGAs, and HLS.

Chapter 3 will introduce the domain of data integration, the Data Integration Benchmarking

Suite, and our initial characterization of the applications. Chapter 4 will present multi-

spectral reuse distance, a novel tool and methodology to quantitatively capture both spatial

and temporal locality. Chapter 5 will present a performance and portability evaluation of

the Intel HARPv2 system. Chapter 6 will outline our method of domain specific hardware

design. Chapter 7 will conclude this dissertation and present our directions for future work.

6

Chapter 2

Background and Related Work

2.1 Domain Specific Computing

Early work in domain specific computing most resembling our approach has been done by

Cong et al., in which they propose a heterogeneous processor consisting of both fixed cores

and configurable fabric and perform a workload characterization on a set of domain applica-

tions in order to determine which components of those applications should be implemented

on the various compute units [30]. Our work differs in that we are both targeting a different

execution platform (the Intel HARPv2) and we are using HLS for application expression.

With the rise in machine learning, particularly neural networks, there has been hardware

created for accelerating such workloads. The Tensor Processing Unit (TPU) [69] and the Intel

Nervana NNP-T [140] are examples of such hardware for training and inference, respectively.

Both feature custom multiply-accumulate units to handle GEMM operations that dominate

convolutional neural network applications. Our work aims to address domains that aren’t

so clearly dominated by one aspect of the computation.

7

2.2 Data Integration

In this dissertation, the domain that we primarily focus on is that of data integration. The

issue of data integration is universal to anyone working on data driven applications and can

be troublesome to deal with, often taking time comparable to the actual computation of

interest [90, 91]. In general, data integration is the process of taking input data in some

initial form and shaping and preparing it into a suitable form required by downstream

analyses, e.g., a genome sequence application that requires a .fasta file be converted to .2bit,

or transforming the bounding box labels from the MS-COCO training dataset to the KITTI

format because the front-end of the target neural network training system requires it. While

definitions vary, we will use the definition presented in the Data Integration Benchmark Suite

(DIBS) in Chapter 3.

The data integration problem has received considerable attention already in the research

community. Quoting from Kandel et al. [70], “In spite of advances in technologies for working

with data, analysts still spend an inordinate amount of time diagnosing data quality issues

and manipulating data into a usable form. This process of ‘data wrangling’ often constitutes

the most tedious and time-consuming aspect of analysis.” Dasu and Johnson indicate that

data reformatting and cleaning accounts for up to 80% of the development time and cost in

data warehousing projects [34].

Customized Domain Specific Languages (DSLs) and graphical user interfaces (GUIs) exist

that are designed explicitly for describing data transformation workflows. Examples from

the ETL literature include AJAX [46], Potter’s Wheel [108], ARKTOS [128], BPEL [39],

Wrangler [71], and OptiWrangler [124]. Work has also considered finding the right transfor-

mations, helping address issues of data integrity and consistency. Guo et al. [53] describe a

model that proactively suggests data transforms. In addition, there are commercial systems

8

available both to specify the workflows and to execute them (either on traditional multicores

or, more recently, on map-reduce clusters). Examples here include IBM’s InfoSphere and

Informatica.

There are also a host of systems aimed at scientific data (e.g., see [2, 13, 16, 36, 101]). While

there is significant disparity of data formats in many disciplines, biology [101] for example,

other disciplines, such as ecology [13, 95], have a stronger culture of data description via

XML and semantic ontologies, enabling a higher degree of automation in the specification

of data transformations.

While there are any number of ways that data transformations can be specified, our gen-

eral interest is in helping research groups compare implementations of systems that ex-

ecute data transformations by providing a baseline implementation and its accompany-

ing characterization. The classic way to do this is via a benchmark suite. Examples of

benchmark suites in other fields include: the SPEC family1, including SPEC CPU2017 and

SPECjvm2008; MiBench [56], for embedded systems; PARSEC [10], for parallel applications;

MediaBench [81], for multimedia computations; Rodinia [26], for heterogeneous computing

with GPUs; HiBench [58], for map-reduce data processing; MachSuite [109], for accelerator

architectures; and CommBench [138], for network processing. We will use this benchmarking

suite as our target domain for architecting domain specific hardware.

Poess et al. [106] have developed an enterprise-centric data integration benchmark, but do

not speak to the more general data integration audience. Additionally, the characterization

of their benchmark suite is limited only to scalability and runtime. To the best of our

knowledge, we present the first benchmark suite that broadly characterizes data integration

tasks.

1http://spec.org

9

http://spec.org

2.3 Quantitative Characterization Techniques

Characterization of both temporal and spatial locality has a long history [38]. Metrics from

the literature include [31, 55, 75, 78, 119, 120, 121, 133].

Reuse distance–defined initially by Mattson et al. [92] as stack distance–is frequently used

as a measure of temporal locality. For example, Weinberg et al. [136] define a temporal

locality measure that is the area under the reuse distance curve, with the reuse distance

expressed using a log scale. This formulation has been used for the characterization of

various benchmarks [22, 27, 99, 109, 127]. Reuse distance has been compared with spatial

locality by previous authors [52, 147]. All of these authors owe the gestalt of their works to

the observations of Spirn and Denning [121] who made some of the earliest observations of

program locality. Gu et al. [52] observed reuse distance to be a measure of both temporal

and spatial locality. They used reuse distance as a measure of spatial locality as we do,

by altering the granularity of the data block size. They reason that varying the block size

leaves temporal locality unchanged, so distinctions between two block sizes are due to spatial

locality. These authors also propose a spatial locality score SLQ. Gupta et al. [55] propose a

statistical model based on the idea of “near-future windows sizes.” In contrast to this work,

our methodology uses Earth Mover’s Distance (EMD) [110] to provide a metric that gauges

spatial locality when moving histograms of multi-spectral temporal reuse data.

While the approach we espouse in Chapter 4 is driven by empirical data, others have taken a

more theoretical approach, using the cache oblivious model to determine data locality [118]

and graph theoretic approaches (interval graphs) [9]. These methods are of [9]) the search

for multiple cliques over the entire stream of allocations and accesses of a program. While

these methods are intended to inform cache behavior, our methods are intended to be more

10

general. We also intend to be approximate; we feel that for many cases in real world decisions,

a good fast answer is far better than a too-late exact answer.

Within Chapter 4, we make the claim that prefetching of data is a difficult problem. Mittal

[96] provides an excellent overview of contemporary prefetching methods and results. Plainly

speaking, the dynamic random access main memory (DRAM) of modern computers is yet

another level of cache, managed by the operating system. This DRAM can be composed of

many different types of memory technology, as well as having NUMA [79] characteristics.

The authors make no claims of use directly as a model for prefetching, however, the proposed

modeling methodology could be used to determine the optimal granularity of prefetch (in

the case of memory systems) and also on the selection of cost function to drive the control

process. Granularity of statistical prediction has a well known relationship with a prediction’s

accuracy [98] (e.g., very detailed predictions with more degrees of freedom often have more

uncertainty) and we make no claim to this relationship, but we do hope that this method

provides a means to more optimally use coarse grained prediction effectively (through better

page sizing). The problem of data placement within a tiered and NUMA system is by no

means new, and heavily related to data to disk optimization problems solved as examples

in [80]. Regarding domain specific hardware design, we will use the technique outlined in

Chapter 4 to generate feature data to identify sub-domains within our target data integration

domain.

2.4 FPGA

Field Progammable Gate Arrays (FPGAs) are integrated circuits that include programmable

logic blocks, hardened logic blocks such as Digital Signal Processors (DSPs) and floating point

units (FPUs), block RAMs (BRAMs, and referred to as M20K blocks for Intel FPGAs), and

11

reconfigurable routing circuitry to connect these components together and to hardened I/O

logic in order to interface with external hardware. A block diagram of an FPGA is shown

in Figure 2.1.

Figure 2.1: A block diagram of an Intel FPGA [60].

12

FPGAs tend to occupy the middle ground between general purpose CPUs and application

specific integrated circuits (ASICs) in terms of programmabilty, performance, and power

consumption. FPGA developers traditionally design hardware using Hardware Description

Languages (HDLs) such as VHDL or Verilog. This allows them to tailor hardware to a

specific application. This usually results in better performance than CPUs. The effective

use of hardware that is specific only to the problem also leads to lower power consumption.

2.4.1 Intel HARPv2

The second iteration of the Heterogeneous Architecture Research Platform (HARPv2) system

incorporates a 14 core Intel Broadwell Xeon CPU with an Intel Arria 10 GX1150 in the same

chip package, where both the CPU and FPGA share the same memory. The HARPv2 sstem

serves as the target platform in this work. Relative to the Stratix V GX A7 in the HARPv1

system, the FPGA in HARPv2 has 1.06 times more M20K blocks, 1.82 times more logic

blocks and registers, 5.93 times more DSP blocks, and is located on the same chip package

as opposed to a different socket. Integrating the CPU and FPGA on the same package is

different from traditional FPGA accelerator solutions that are connected via PCIe slot or on

their own development board. A block diagram comparing the Intel HARPv2 system and

the traditional PCIe card version are shown in Figure 2.2.

The FPGA is connected to the CPU through three physical channels: one through Intel’s

QuickPath Interconnect (QPI), and the other two through PCIe lanes. Intel also provides

the low level interface hardware for the FPGA through their Board Support Package (BSP).

Faict presents an excellent overview of the HARP system in [41].

13

Figure 2.2: Block diagrams of (left) the Intel HARPv2 system and (right) a traditional
FPGA solution using a PCIe card.

2.4.2 HARP for Acceleration

Since its inception, there have been many projects that have demonstrated the benefits

of using the HARP system in a variety of different applications and domains. Podili et

al. use the HARP as their experimental system in using Winograd FFTs to speed up

convolutional layers in Convolutional Neural Networks [105]. Alves et al. utilize the low-

latency QPI channel for collision detection algorithms to demonstrate the HARP’s feasibility

for real-time applications [4]. Sidler et al. exploit the shared memory feature of the HARP

system to reduce superfluous data movement in pattern matching for databases [117]. Stitt

et al. develop a scalable window generator architecture for sliding window applications,

which are a common pattern in FPGA design, to take advantage of the increased memory

bandwidth in the HARPv2 system and reported future memory bandwidth increases for

FPGAs [122]. Wang leverages the tighter coupling of CPU and FPGA in the HARP system

as a heterogeneous platform for accelerating graph processing [135]. In all of these cases,

though, custom RTL is written to express the hardware and low-level interfaces for the HARP

system, which is a skill not generally in the toolbox of the modern software developer. In

Chapter 5, we leverage OpenCL to allow a description of accelerator functions in C, which is a

higher level language than an RTL description. Specifically, we will evaluate the performance

14

and portability of OpenCL kernels that were originally intended for FPGAs attached via

PCIe card.

2.4.3 Designing Kernels with OpenCL

Traditionally, programming an FPGA requires domain specific knowledge of digital systems

design, which is not a skill of most software developers. Also, the designs are historically

expressed at the register-transfer level (RTL) using languages like VHDL, Verilog, or Sys-

temVerilog. High level synthesis (HLS) addresses both of these issues. Specifically, we use

the HLS framework provided by the Intel FPGA SDK for OpenCL [61].

This SDK is an implementation of the OpenCL standard API that allows for programmers

to author both host and device code in a high level language. The SDK provides a runtime

environment (RTE) that controls the execution of kernels on the FPGA. All of the low level

interfaces and drivers that facilitate the interaction between the host and target device(s)

are included in the BSP, traditionally provided by the board manufacturer. In the case of

the HARPv2 platform, a pilot BSP is provided by Intel. The Intel OpenCL FPGA SDK

provides an offline compiler that takes an OpenCL kernel, creates an HDL representation of

that design in Verilog, synthesizes that into logical FPGA elements (RTL), maps that design

into FPGA components (e.g. logic blocks, I/O blocks), places the mapped design onto the

target FPGA, and routes the design.

HLS effectively allows a programmer to express a computational kernel at a higher abstrac-

tion level than RTL, allowing the programmer to focus on the functional specification. This

kernel is then translated into an equivalent RTL description by the Intel tools which will

be fed into the traditional FPGA synthesis flow. At this point, a bitstream to program the

15

FPGA is generated as if the design is written in Verilog to begin with, i.e., the resulting Ver-

ilog is synthesized, placed, and routed to generate the bitstream. From this point forward,

we will refer to the tools that take the OpenCL specified kernel to perform the high level

synthesis, logic synthesis, place, and route steps collectively as the hardware compiler.

OpenCL FPGA Execution Models

There are two main execution models for designing an OpenCL kernel to target synthesizable

FPGA hardware: the Multiple Work-Item and Single Work-Item (SWI) models. MWI is

also known as the NDRange (NDR) execution model. These models are pictorially described

in Figure 2.3.

The MWI model expresses kernels through specifying a global amount of work (i.e. global

work size) to do in (up to) a 3-dimensional space, and a local amount of work to do (i.e.

local work size) in that same space that will be scheduled for execution on a processing

element. In Figure 2.3, the NDRange kernel is specified in a 1-dimensional space. Kernel

execution, then, must be enqueued from the host side to make sure all global work items

will be executed. Each work item is then scheduled by a hardware scheduler on the FPGA

side. This execution model is frequently used on GPUs, whose compute units are comprised

of many SIMD vector units that are well suited to take advantage of data-level parallelism.

The Single Work Item (SWI) model expresses kernels by setting the global and local work

size to 1 in all dimensions so that all computation is handled by a single work item. In both

cases, a custom pipeline is created for computation, as shown in Figure 2.3.

Intel recommends using the SWI model if the target kernel contains many loop and memory

dependencies [60]. This allows the offline compiler to have a global view of all computation so

it can account for dependencies when constructing a custom pipeline. Ideally, iterations can

16

Figure 2.3: (a) The NDRange model relies on using multiple work items to perform kernel
computations. Each of these work items must be scheduled for execution onto the compute
unit by a hardware scheduler implemented on the FPGA. In this case, there are two instances
of some 1D NDRange kernel enqueued for execution that each have N global work items that
need to be executed. The pipelined compute unit in this case has been vectorized by a
factor of 4. (b) The Single Work Item kernel uses only one work item and thus does not
need a hardware scheduler. Single work items rely on pipelining to exploit instruction-level
parallelism and resolving of loop and memory dependencies between iterations without the
use of costly memory barriers.

17

then be launched every clock cycle. Additionally, fine-grained sharing between loop iterations

in an NDR kernel requires an intricate mechanism that involves local memory and barriers,

and this leads to suboptimal kernel performance. Zohouri [148] takes this further and says

that NDRange kernels should only be employed if loops cannot be fully pipelined due to

variable exit conditions, complex loop-carried dependencies, or random external memory

accesses. For all other cases, they recommend that the SWI model should be employed.

However, the choice between the two models is non-trivial, as evidenced by Jiang et al. [64].

OpenCL FPGA in the Wild

Though there are many examples in the literature of using HLS frameworks to program

FPGAs, we highlight instances that are most relevant to this work. Jin and Finkel eval-

uate the performance of varying the number of replicated compute units for an OpenCL

kernel that computes an MD5 hash [66]. Sanaullah and Herbordt use the Verilog created

by the Intel FPGA OpenCL SDK offline compiler for an OpenCL kernel that describe a

fast Fourier transform, apply code structure optimizations, and outperform vendor IP-based

designs while also being able to fit this modified design into existing FPGA solutions that

use FFTs [112]. Zohouri et al. focus on the portability aspect of using OpenCL kernels

intended for GPUs on FPGAs [149]. Sanaullah et al. propose a framework for describing

OpenCL kernels that relies on the stacking of optimizations that should apply generally to

all kernels [114]. However, they prescribe that the most performant version of any OpenCL

kernel will use the SWI design paradigm and ignore the MWI paradigm. In this work, we

explore both paradigms and find that the design choice between the two is non-trivial. Jin

and Finkel perform a hardware design space search [68] similar to this work, but do not

show the effect of varying the vectorized data types and their interaction with the available

coarse-grained knobs. Additionally, they do not show the impact of scaling the input size.

18

We will address both of these issues in Chapter 6. In all cases, none of these works target

the Intel HARPv2 CPU+FPGA platform using OpenCL. This work specifically evaluates

the portability and performance of OpenCL FPGA system on the HARPv2 system, in which

the CPU and FPGA are located on the same chip package and share a common memory.

There is a only a small body of literature showing case studies that use the Intel HARPv2

platform in this way [17, 40, 42, 123, 145], and we intend for this work to add to the existing

literature in order to inform more performant OpenCL-based designs for the Intel HARPv2

system.

The kernels used in Chapter 5 to evaluate performance and portability are sourced from

work done by Zohouri et al. that aims to evalute and optimize OpenCL kernels taken from

the Rodinia suite [26] to evaluate the effectiveness of FPGAs in high performance computing

applications [148, 149].

2.4.4 High Level Synthesis and Design

In addition to the Intel FPGA OpenCL SDK, there are other ways to leverage High Level

Synthesis (HLS) and design to target FPGAs. One of the earliest HLS languages that

preceeded OpenCL for FPGAs was the Streams-C language and compiler, implemented by

Gokhale et al. [50], that allowed programmers to author streaming kernels in a C-based lan-

guage. They also quantified the tradeoffs between performance and ease of programmability

using HLS. LegUp, developed by Canis et al., takes a C program as input and automates the

process of finding segments of code that can be accelerated on an FPGA [24]. Bachrach et al.

develop a hardware construction language called Chisel in the Scala programming language

in order to design hardware using object-oriented principles and functional programming [6].

It is important to make the distinction that Chisel is not a “C-to-Gates” form of HLS; this

19

solution allows for a more expressive description of hardware using higher level ideas like

object-oriented programming.

20

Chapter 3

DIBS: A Data Integration

Benchmarking Suite

Generating and analyzing big data are tasks encountered by many scientists and researchers

in various disciplines. Social networks, computational biology, sensor data, and entrepreneurial

records are just a small sample of the range of applications that encounter various and exten-

sive data streams. It is generally well understood that big data is voluminous and prevalent

in the research and industrial communities alike, but what is less studied are all of the steps

that must be completed even before the primary computation (e.g., number crunching and

analysis of the data) can begin. Specifically, there is often a non-trivial amount of time,

effort, and resources that are spent towards retrieving and preprocessing big data sources.

This problem of taking data in some initial form and transforming it into a desired one comes

in several flavors. It might involve rearranging fields, changing the form of expression of one

or more fields (e.g., translating one character set into another, such as ASCII to UTF or

EBCDIC to ASCII), altering the boundary notation of records and/or fields (e.g., moving

between comma-separated and fixed-length fields), encrypting or decrypting records and/or

fields, parsing non-record data and organizing it into a record-oriented form, etc. We define

this problem, collectively, as data integration.

21

In the business community, this is part of the Extract, Transform, and Load (ETL) pro-

cess, specifically the transform step. Another phrase that is often incorporated into the

scope of data integration is data cleansing, which includes notions of checking data integrity,

(re)constructing missing fields, outlier detection, type checking (e.g., does a numeric field

contain non-numeric contents?), etc. Yet another phrase that is relevant is the notion of

pre-analytics. Here, various aggregations might be performed on the data (e.g., summation,

histogram construction) the results of which are then used, downstream, during the analyt-

ics process. Beyond dealing with record-oriented data, modern data integration must deal

with semi-structured and unstructured data as well [48]. Frequently, the challenges here

include parsing of the data to extract what structure does exist (e.g., click streams) and text

processing to address unstructured data (e.g., blog posts).

While the individual transforms are each (mostly) quite straightforward, the task is quickly

complicated by the fact that individual data streams can be quite large and there are fre-

quently many streams, each requiring a distinct transformation specification. Tens to hun-

dreds of multi-Gigabyte data streams must be concurrently integrated, and this must be

done prior to actually doing any of the real data analysis, the ultimate goal.

The issue of how to effectively achieve data integration is a pain point for enterprise data,

sensor data, scientific data, financial data, etc. Data-driven public policy, economics, and

journalism all rely on data from widely disparate sources that must first go through data

integration prior to effective use [54]. In short, efficient data integration is crucial to effective

use of big data resources.

Data integration manifests itself in many of the preliminary steps that researchers take before

applying the analysis algorithms or processing steps to their data. An example is the effort

expended in the effective usage of data provided by the US Virtual Astronomical Observatory

22

(VAO). Here, a team comprised of over 11 institutions provides access to astronomical data

from the National Optical Astronomy Observatory (NOAO), the National Radio Astronomy

Observatory (NRAO), the Sloan Digital Sky Survey (SDSS), the 2 Micron All Sky Survey

(2MASS), the Hubble Space Telescope, the Chandra X-ray Observatory, the Spitzer Space

Telescope, and others. Section 5.2 of the VAO Annual Report [131], entitled “Data Sharing

and Publishing,” describes updates to no less than 7 different tools for accessing the disparate

data available, one of which is tasked with simply telling astronomy researchers where they

can download the descriptions of the data sets themselves. Another tool provides information

about the various data models.

Thus, a user runs a first tool to find the format that describes the data, runs a second tool

to access the data model (our user at this point finally has metadata, but no actual data),

and then runs yet a different tool to access the data set itself. However, if they wish to use

data from more than one source, there is still the need to unify the (differently formatted)

data from these sources into a common format for analysis.

As another example, consider the needs of a researcher in biosequence analysis. Genomic and

proteomic data sets are available from a wide variety of sources in a large number of disparate

formats (e.g., FASTA, FASTQ, SAM, BAM, AB1/SCF, PDB, GTF, etc.). Wikipedia lists

22 distinct file formats for molecular biology and bioinformatics2. The data volumes are

sufficiently large that simply transforming the data from its original form into that needed

for analysis is becoming time prohibitive (e.g., three days are required to perform duplicate

marking, base score quality recalibration, and local realignment on a 250 GB BAM file at

30× coverage [91]).

2http://en.wikipedia.org/wiki/List_of_file_formats#Biology

23

http://en.wikipedia.org/wiki/List_of_file_formats#Biology

While there are a number of ways in which one could attempt to organize data integration

applications, we will consider an individual data integration job to be decomposed into one

or more of the following three tasks:

• Parsing/Cleansing – the computation associated with recognizing the records, fields,

and/or other components of the input data, including checking to see if it is well-formed

and addressing any example inputs that aren’t well-formed.

• Transformation – once parsed, the input data must be translated into the form that is

expected by the primary computation, typically going from a file-oriented format to a

memory-oriented format.

• Aggregation – any pre-analytics computations that result in aggregate information

about the input.

While the boundaries between the tasks in each category above are not always completely

clear, we will use the above tasks to help us reason about how representative and compre-

hensive is the set of applications ultimately chosen to be in the benchmark suite.

Here, we present the Data Integration Benchmark Suite (DIBS), a set of applications span-

ning several different application domains and the above three types of data integration

tasks. DIBS tries to be reasonably comprehensive with respect to both applications and

tasks. To help us address how comprehensive they truly are, the benchmarks are character-

ized through different measures in order to capture the properties (and idiosyncrasies) across

the various data integration tasks represented in the suite. The goals of DIBS are to provide

insight into the the nature of data integration tasks to guide research in this area, and to

create a way in which different research groups can compare their work [82].

24

3.1 Overview of Benchmark Suite and Integration Tasks

The challenges in selecting candidate applications for any benchmark suite include whether

or not the candidates that are ultimately included are both representative of the field and

comprehensive in their coverage of the field. To help us assure that the selected applications

are representative, we consider each application across two dimensions.

First, we want to capture the breadth of application domains that handle large volumes

of data. Scientific data are quite commonly organized in either one-dimensional or a two-

dimensional form. As a representative of one-dimensional data integration, we include biose-

quence data from the field of computational biology. For two-dimensional data, we chose

several image processing data transformations. To reflect the importance of business appli-

cations (and corresponding data volumes), we include a pair of data integration applications

from the enterprise space. We round out the set of application domains by including exam-

ples from IoT data and graph processing.

Second, we want to ensure that we include tasks that span the three composite parts of data

integration. For parsing and data cleansing, in many cases we are reading a human-readable

format and recognizing fields, records, etc., while at the same time separating the primary

data set from associated metadata. The data transformations essentially define each specific

application, putting the data into the form required by the computation that follows. Finally,

the aggregation tasks include counts, summations, and histograms.

The relationship between the five application domains, types of integration tasks, and ele-

ments included in the benchmark are all summarized in Table 3.1. The applications them-

selves (shown in the Transformation column) are each described in the following section.

25

Table 3.1: Data Integration Task Classification.

Data Integration Tasks

Domain Parsing/Cleansing Transformation Aggregation

Computational Biology
Separate bases and meta-data fa→2bit

Track total size
Handle non-A,T,G,C bases 2-bit→fa

Image Processing Parse FITS tags

fits→tiff Pixel statistics
idx→tiff Histogram

optdigits→tiff Taking log of pixels
unipen→tiff

Enterprise Adjust non-ASCII characters
ebcdic→txt

Count number of elements
fix→float

Internet of Things Tokenize input
tstcsv→csv

Running total of file sizegotrackcsv→csv
plt→csv

Graph Processing Parse edge list edgelist→csr
Get total vertex/edge count
Compute vertex edge degree

To assess the extent to which the benchmark suite provides comprehensive coverage of the

area, we will rely primarily on the distribution of the properties of the applications, described

in Section 3.3.

3.2 Benchmark Application Descriptions

In this section, we will describe each of the benchmark applications, identified by their

associated data transformation and organized by application domain. In all cases, the data

integration applications are written in C and the input data set size is large enough such that

any second-order effects caused by start-up transients can be ignored.

3.2.1 Computational Biology

In bioinformatics, DNA sequence alignment is the use of computing to compare sequences of

DNA to determine the degree of similarity between them. Based on discovered similarities,

26

researchers can determine structural relationships, pinpoint evolutionary mutations, and

predict biological functions [51].

Currently, there are a number of different sequence alignment computing tools and software

that, at their core, compare an input sequence against a known genomic sequence. For

example, the popular Basic Local Alignment Search Tool (BLAST) from Altschul et al. [3]

performs the comparison by approximating the Smith-Waterman dynamic programming

algorithm to find the maximal segment pair between the two sequences. Kent et al. [72]

developed the BLAST-like Alignment Tool (BLAT), which performs the comparison in a

similar to BLAST. It sacrifices homology depth for speed. The inputs to these tools, however,

are far from standardized. BLAST accepts sequences using the FASTA format [85], which

was born out of an alignment tool that predates BLAST. BLAT uses a custom 2-bit format in

which the four DNA bases are represented by two bits per base. There are also a number of

other DNA sequence formats that exist, such as FASTQ [29], SAM/BAM [83], and AB1 [126].

Often, it is the case that researchers will want to perform analyses on DNA sequence data

that require a format that differs from the format the data is originally in. For our suite,

we have chosen two of the conversion utilities available with BLAT–namely, the conversion

from the FASTA form to 2-bit form, and vice versa.

fa→2bit

In the FASTA to 2-bit form, the input FASTA bases are parsed line by line. The set of

accepted bases is {a,A, g,G, c, C, t, T, n,N}. For each base in a given line, its 2-bit equivalent

is found and packed into bytes, with four, 2-bit bases per byte. Newlines are not recorded.

There is also some metadata to be stored alongside the sequence of bases. If one or more

consecutive, non-A,T,G,C bases are found, the amount of them and their relative position

27

are recorded. This is also computed for one or more consecutive blocks of lowercase bases.

The two-bit data is then stored in a data structure that accounts for the raw data as well as

metadata (e.g. name of sequence, size, count and position of non-A,T,G,C bases) associated

with the raw data. A sample of FASTA human genome data3 totaling 130 MB in size is used

as input. When looking at results, this transformation will be under the label fa→2bit.

2bit→fa

In the reciprocal transformation, 2-bit to FASTA conversion, an input 2-bit file is parsed.

Each byte is unpacked into its corresponding FASTA representation. Each character is then

converted to its upper-case representation. The metadata from the 2-bit representation is

used to restore the lower-case blocks as well as the blocks of the character ‘N’. The 2-bit

representation of the input data from the previous transformation is used as input and is

34 MB. This transformation is labeled 2bit→fa.

3.2.2 Image Processing

From consumers and smartphones, medical physicians and biomedical imaging systems, and

astrophysicists and space telescopes, the proliferation of imaging data and has become one

of the most voluminous sources of data today. As reported by Venter and Stein [129],

images make up more than 80% of all corporate and public unstructured big data. For our

benchmarking suite, we have selected four different image processing applications in which

a non-traditional image format is converted into a more conventional one.

3ftp://ftp.ensembl.org/pub/release-89/fasta/homo_sapiens/dna/

28

ftp://ftp.ensembl.org/pub/release-89/fasta/homo_sapiens/dna/

fits→tiff

The Flexible Image Transport System (FITS) file format was developed specifically for stor-

ing data from scientific applications, and is the most common format for astronomical imag-

ing data. FITS files contain one or more headers that contain metadata such as data types

and image dimensions. Raw data immediately follows a metadata header. Our conversion

consists of three parts. First, the metadata headers are parsed and written into an accom-

panying JSON file. Next, the raw data is copied into a buffer that will be written into a

TIFF file. Finally, descriptive statistics are calculated and a histogram of the image is cre-

ated. Input data for this transformation is of the globular cluster Messier 12 through the B

band recorded by the Hubble Telescope4, and totals 17 MB. This transformation is labeled

fits→tiff.

Handwriting recognition is the process of taking a source of handwritten input and converting

it into a machine-readable form. There are have been many unique formats developed by

researchers to store handwriting data. In our suite, we present a conversion to TIFF for three

of these formats.

idx→tiff

The first is the IDX file format, which is the format used by the MNIST handwriting database.

IDX is comprised of two files. The raw data, which is stored in the first file (.idx3-ubyte),

contains a compilation of handwriting samples. The offsets for each image’s pixel data are

computed using the meta-data encoded at the beginning of the .idx3-ubyte file. This meta-

data includes the total number of images in the file and the number of rows and columns

4https://www.spacetelescope.org/projects/fits_liberator/m12data/

29

https://www.spacetelescope.org/projects/fits_liberator/m12data/

in each image. The labels (e.g., image 701 is the number “4”) associated with each image

is stored in the second file (.idx1-ubyte), and can be indexed in a similar fashion as the

image data. Both files are read into memory, and a different TIFF file is generated for each

handwriting sample. The input to our transformation is 7.5 MB and is taken from the

MNIST website5. This transformation is labeled idx→tiff.

optdigits→tiff

The optdigits format represents a set of handwritten digits in a bitmap format encoded

in ASCII. The raw handwriting data is preceded by metadata that describes the uniform

height and width of each digit, as well as the total number of digits in the set. This format

is used in the Optical Recognition of Handwritten Digits dataset [84], which is 2.0 MB and

serves as the input for our transformation. The transformation is performed by parsing each

handwritten digit separately, converting strings of ’1’s and ’0’s into 8-bit pixel values to

create a TIFF image. This transformation is labeled optdigits→tiff.

unipen→tiff

The UNIPEN format consists of handwriting digits that are described as a set of XY coordi-

nates. Sets of coordinates are demarcated by keywords that denote pen strokes (i.e., it is

in vector form). The transformation parses one set of coordinates associated with a given

handwriting sample at a time. To construct a TIFF image from a set of coordinates, each

consecutive pair of coordinates is treated as a line segment. Circles of a specified radius

are drawn from the first coordinate to the second using the Midpoint Circle Drawing algo-

rithm [44] and are then filled in after each circle is drawn. We use the 1.6 MB Pen-Based

5http://yann.lecun.com/exdb/mnist/

30

http://yann.lecun.com/exdb/mnist/

Recognition of Handwritten Digits dataset [84] as input. This transformation is labeled

unipen→tiff.

3.2.3 Enterprise

Enterprise data transformations are classically considered to be part of ETL (Extract, Trans-

form, and Load) processing. Poess et al. [106] include 18 different transformations in their

benchmark suite, which includes the same tasks that we use for organization of the trans-

formation (parse/cleanse, transform, aggregate). One thing we do not include, which is

present in [106], is a join operation across two distinct inputs. A great many of enterprise

transformations are motivated by businesses moving away from mainframe execution to us-

ing cloud-based machines. As such, data type transformations are quite prevalent, especially

from older, legacy systems (often EBCDIC based and even not including floating-point hard-

ware) to modern x86 platforms.

ebcdic→txt

In our benchmark suite, we include a simple EBCDIC to ASCII transformation. Our trans-

formation uses the traditional 7-bit ASCII encodings. Once the total number of elements is

calculated, the conversion executes by referencing a look-up table to find the corresponding

EBCDIC character. If a particular EBCDIC character does not have a corresponding ASCII

equivalent, the offending EBCDIC encoding is assigned an unused ASCII encoding specific to

that EBCDIC encoding. A 9.2 MB EBCDIC file is used as input. This transformation is labeled

ebcdic→txt.

31

fix→float

Additionally, we include a conversion for fixed-point data to floating point. The input dataset

is a 10 MB, random binary file6. The input data is interpreted in 16-bit chunks with a user

defined number of fractional bits. Each number is then converted into a 32-bit floating point

number using a bit-shift, division, and typecasts. The value is then saved into a memory

buffer completing the transformation. This transformation is labeled fix→float.

3.2.4 Internet of Things (IoT)

The Internet of Things (IoT) represents scores of devices with newly enabled connectiv-

ity [45]. While the promise of increased functionality provided by these devices is high,

there is very limited commonality in how they provide the data that they all collect. For

example, we use GPS data from multiple sources [32, 97, 146], yet different transformations

are required for each input data set. In our benchmark suite, we transform three different

types of GPS data in order to normalize them. The normalized format is a CSV file where

each record takes the form <ID>,<Latitude>,<Longitude>.

tstcsv→csv

The CSV format used for the Taxi Service Trajectory (TST) Prediction Challenge of 20157

uses a CSV format containing data describing the trajectories of operating taxis in Porto,

Portugal. The GPS trajectories are located in the last field of a data line, and are stored

as a list of coordinates in the form <Longitude>,<Latitude>. Each list is record of the

6http://rngresearch.com
7http://www.geolink.pt/ecmlpkdd2015-challenge/index.html

32

http://rngresearch.com
http://www.geolink.pt/ecmlpkdd2015-challenge/index.html

periodically recorded GPS coordinates from start to end of a fare. In our transformation, we

store the unique identifier for the trip, navigate to and parse the trajectories list for that trip,

swap the order of each pair of coordinates to match the normalized form, keep a running

total of the size, and create a new CSV file using the normalized format. A 437 KB data set

from the TST challenge [84] is used as input. This transformation is labeled tstcsv→csv.

gotrackcsv→csv

The GPS data released by the GoTrack mobile application8 is packaged in a CSV format that

contains GPS coordinates, coordinate identifiers, and timestamps. In our conversion, we

parse the input data line by line for the coordinate identifier and GPS coordinates. Then,

we write the data using the normalized format to a new CSV file. We use a 1.1 MB set of

GPS data from the GoTrack mobile application [84] as input. This transformation is labeled

gotrackcsv→csv.

plt→csv

The PLT format is used in the GeoLife project9 conducted by Microsoft Research Asia to

store GPS trajectories. The PLT format is essentially in CSV format, except the raw data is

preceded by six lines of metadata. The raw data includes GPS coordinates, altitude, and

variations of timing data. In our transformation, we calculate the total number of coordinate

pairs, parse the input data line by line, extract the coordinate identifier and its corresponding

<Longitude>,<Latitude> pair, and write the data using the normalized format into a new

CSV file. We use a 449 KB subset of the GeoLife dataset as input. This transformation is

labeled plt→csv.

8https://play.google.com/store/apps/details?id=com.numerex&hl=en
9https://www.microsoft.com/en-us/download/details.aspx?id=52367

33

https://play.google.com/store/apps/details?id=com.numerex&hl=en
https://www.microsoft.com/en-us/download/details.aspx?id=52367

3.2.5 Graph Processing

Across many disciplines, mapping complex problems to graph structures is a common oc-

currence [116]. Mapping problems to graph structures is advantageous because there exists

a wealth of graph theory information and research that can then be applied to the prob-

lem. Graph processing has become so important that there exists an intensive graphing

application benchmark, known as the Graph500, that is used to compare the performance

of world’s supercomputers. One piece of the benchmark, Kernel 1, consists of a kernel in

which an edge list is converted into a graph. In our benchmark suite, we have included the

Graph500 reference implementation of this kernel10.

edgelist→csr

Kernel 1 takes an edge list and creates a graph using the Compressed Sparse Row (CSR)

[111] matrix representation. This is accomplished by first calculating the degree of each

vertex and associating edges with their respective vertices. This information is used to

create three arrays to fill buffers that describe the graph’s non-zero elements, the number

of non-zero elements in each row, and the column position of each non-zero element. The

input data size is generated during run time, and is approximately 280 MB in size. This

transformation is labeled edgelist→csr.

10http://graph500.org/?page_id=47

34

http://graph500.org/?page_id=47

3.3 Characterization of Data Integration Tasks

In determining what attributes to choose to characterize our benchmark suite, we want to

address two specific things. The first is choosing an analysis that enables a comprehensive

look at the benchmark suite through many characteristic dimensions. Thus, the attributes

we use to characterize the data integration tasks in DIBS are chosen to exhibit the overall

behavior of each task and capture any idiosyncrasies associated with them. In most cases,

data integration tasks take the shape of looping through each data element in a set and

performing the required integration task. There are some qualitative properties that are

possibly intuited from looking at data integration tasks in this form, and our characterization

works to quantify these intuitions. Additionally, there are things that may not be so intuitive,

and our characterization selection also addresses such properties. In our characterization,

we declare data ingestion beyond the scope of our analysis, and focus instead on memory

access and compute behavior of the tasks. All of the characterization methods that follow

are profiling the data integration tasks themselves, and not the execution before and after

the data integration tasks.

Second, we wish to craft an analysis that is independent of the system that our suite is

deployed on. Current systems are comprised of many differing components and features—

for example, differing instruction paradigms like RISC and CISC, hardware accelerators,

and distributed systems—that are tasked with handling the load of data integration. This

necessitates that we create a characterization that is independent of the test system so

that our analysis can focus on the applications themselves and not the idiosyncrasies of the

execution platform.

With the aforementioned objectives, along with characterizations from benchmarking suites

listed in Section 2.2 as guides, we have chosen the following characterizations.

35

3.3.1 Locality

Measures of locality allow us to examine the behavior of a program’s memory access patterns.

To this end, we present measures for spatial and temporal locality. Our interest here is limited

to data access patterns, leaving instructions to be addressed below.

Spatial Locality

Qualitatively, a program’s spatial locality is described by whether or not subsequent memory

references will be located near previous memory accesses [15]. Programs in which future

memory references are near previous memory locations references are said to exhibit high

spatial locality. Higher spatial locality is generally beneficial to programs because it allows

contiguous chunks of data to exist in caches with less thrashing and evictions.

From a quantitative perspective, we need a method to express the degree of a program’s

spatial locality. In our characterization, we draw from work done by Weinberg et. al [136] to

quantify spatial locality in an architecturally independent manner. In this metric, used also

by Reagen et al.[109], they describe the stride of a memory access as the difference between

two memory reference addresses in units of a 64-bit word size. They present the following

equation to quantify spatial locality:

LSpatial =
∞∑
i=1

stridei
i

(3.1)

36

where stridei is the total number of memory accesses that are of stride length i. The result

of this expression is a normalized score in the range [0,1] that can be used to compare the

spatial locality between programs.

Temporal Locality

Temporal locality is a characteristic of a program’s memory access pattern that describes

the frequency of memory accesses to the same memory location. Higher temporally local

programs reference the same memory locations numerous times, whereas lower temporally

local programs do not exhibit as much data reuse. Programs with higher temporal locality

have similar behavior to programs with higher spatial locality relative to memory and cache

behavior, thus they are afforded similar benefits at that level.

To quantify temporal locality, we again draw from work done by Weinberg et al. [136].

They describe temporal locality through data reuse. Given a particular memory address,

data reuse is the number of unique memory addresses that have been accessed before that

particular memory address is referenced again. The formula that they proposed to quantify

temporal locality is shown below:

LTemporal =

log2 (N)−1∑
i=0

[(reuse2i+1 − reuse2i) × (log2(N)− i)]

log2N
(3.2)

where reuse2i is the number of dynamic memory accesses with reuse distance less than or

equal to 2i and N is the largest reuse distance used. This metric also produces a score within

the range [0,1] with which to compare to the temporal locality scores of programs.

37

3.3.2 Determinism/Branch Entropy

The predictability of a program’s control flow can be characterized by the regularity of the

program’s branching behavior during execution. Regularity in a program’s control can dic-

tate the performance of a program on an underlying architecture. Strong regularity in control

behavior allows for more confident branch predictions, while irregular branching decreases

prediction confidence. To quantify a program’s branching behavior, we draw from work done

by Yokota et al. [141]. Inspired by Claude Shannon and information theory, they define a

measure called branch entropy, which quantifies program regularity through branching be-

havior. Specifically, we will be using their formulation for table reference entropy, based on

the values that a pattern history register assumes. The pattern history register acts as a shift

register that either shifts in a 1 or 0, for a branch that is taken or not taken, respectively.

In this case, we will make the shift register 16 bits in length. A table reference entry, then,

is a resulting 16-bit value that the pattern history register takes after it is updated by a

branching decision. The formula for the branch entropy metric is shown below:

BE = −
∑
i

p(Ei) log2 p(Ei) (3.3)

where Ei is the i-th entry of the table, and p(Ei) is the probability of Ei occurring.

3.3.3 Instruction Mix

The instruction mix of a program is a measure of the unique instruction classes the program

contains and the distribution of those instructions during execution. In our benchmark suite,

38

we examine both the static and dynamic instruction mix, and we classify instructions in three

categories: compute, control flow/branch, and data movement.

Static Instruction Mix

The static instruction mix of a program is a static count of the unique machine instructions

present in the program image, post compilation. This metric shows the ratios of differing

classes of instructions which give insight into what operations are necessary for program

execution.

Dynamic Instruction Mix

The dynamic instruction mix of a program is the count of how many times the aforementioned

classes of machine instructions were executed. This metric can reveal hotspots of a program’s

execution and characterize the execution-time leanings of the program, for example, mostly

compute or an equal combination of data movement and compute.

3.4 Characterization Methods

In this work, we are only considering program execution on a single core and that the working

set size fits in the experimental machine’s RAM. Though many of these benchmarks can be

extended to deployment on multiple cores, hardware accelerators, heterogeneous systems, or

multiple nodes, we leave this extension to future work. The specifications of the experimental

machine are listed in Table 3.2.

39

Table 3.2: Experimental machine specifications.
CPU Intel Core i7 930

Clock rate 2.8 GHz
L1 d-cache size 32 KB
L1 i-cache size 32 KB
L2 cache size 256 KB
L3 cache size 8192 KB

RAM size 24 GB
Compiler GCC 4.8.4

ISA x86-64

To measure locality, branch entropy, and instruction mix, we use Pin, which is a dynamic

binary instrumentation framework for IA-32, x86-64, and MIC instruction-set architectures

that allows us to dynamically instrument our applications [87]. Thus, instrumentation is

performed at run time on the compiled binary files, which captures the behavior of the

applications as they are executed. The Pin framework allows us to perform architecturally

independent analyses of each program in our benchmark suite.

It is apparent, however, that instruction mix is inherently architecturally dependent. We

address this issue in several ways. First, we compile all programs with the default level of

optimization in GCC (-O0) in order to prevent the exploitation of architecturally specific

features at compile time. Second, we use a coarse categorization of instruction types, as de-

tailed in Section 3.3.3, to abstract away the particular details of differing architectures. Since

x86-64 is a CISC instruction set, some instructions do have implicit data movement within

an instruction. In these cases, we categorize the instruction based on its main function, i.e.

an ADD instruction counts as a compute instruction. Third, for a subset of the applications,

we provide instruction mix data for the ARM AArch64 instruction set in addition to the

x86-64 instruction set. Since the AArch64 instruction set is not supported by the Pin frame-

work, we use the gem5 simulation environment [11] and cross-compile our applications to

make this characterization.

40

Table 3.3: Throughput results.
Application Throughput (MB/s)

fa→2bit 23.4
2-bit→fa 12.2
fits→tiff 43.8
idx→tiff 13.2

optdigits→tiff 133
unipen→tiff 0.113
ebcdic→txt 139
fix→float 204

tstcsv→csv 75.8
gotrackcsv→csv 104

plt→csv 123
edgelist→csr 3310

We present throughput rates (input data size
execution time

) in Table 3.3 for our benchmark applications

executing on a single core of the machine described in Table 3.2. In each case, the application

was run 100 times and the value represented is the average across the runs.

While data integration tasks can be limited by I/O, we are interested in their computational

limitations. As can be observed in the data of Table 3.3, these data rates are below that

achievable in a modern I/O subsystem, therefore warranting investigation of their computa-

tional performance properties.

3.5 Results of Characterization

In this section, we present the findings of applying our characterizations to the applications

of the benchmark suite.

41

3.5.1 Locality

As mentioned in Section 3.3, the structure of most of our applications is a sequential loop

over all of the data records of a given input and performing the integration task. Since

most data records are located next to each other in memory, we expect that most programs

exhibit high spatial locality. Furthermore, the successfully processed data record is no longer

needed. Thus, we expect that the amount of data reuse and temporal locality in such data

integration tasks to be low.

Figure 3.1: Spatial locality measure.

Spatial Locality

The results of the spatial locality characterization are shown in Figure 3.1. Although the

spatial locality scores of the data integration applications are not as high as we originally

posited, the level of spatial locality is consistent across applications. To better understand

this, we can decompose the cumulative sum used to calculate LSpatial for each application

as shown in Figure 3.2. In this figure, we separate the applications into the domains from

which they originated, so that any trends that are domain-specific can be readily identified.

42

Figure 3.2: Cumulative sum of memory references across strides.

From the figure, we observe that 75% of memory references occur within a stride of 80 bytes

for 10 of the 12 data integration applications, independent of their domain.

The 2bit→fa application reaches 75% at a stride of 16 bytes. This results in a much higher

spatial locality score than the other data integration tasks. However, the optdigits→tiff

and edgelist→csr applications exhibit much lower spatial locality than the other applica-

tions. We examine the outlying applications to explain why this is the case.

43

Recall that smaller strides between subsequent memory accesses yield higher spatial locality

scores. The 2bit→fa transformation has the highest locality score because in this trans-

formation, 32 bases are packed into a single, 8-byte word. Since the data are packed so

tightly, sequential accesses in the 2bit→fa transformation experience high spatial locality.

Looking at Figure 3.2, we observe the result of the tightly packed data through the fact

that over 50% of memory references are within 8 bytes of each other. In the edgelist→csr

application, creating the sparse representation of the edge list is still sequential in nature,

but the base stride distance is longer, as seen in Figure 3.2. In the optdigits→tiff case,

each image is parsed and written line by line, effectively increasing the stride distance of the

data integration task’s memory accesses.

Temporal Locality

The results of the temporal locality characterization are shown in Figure 3.3. Similar to the

spatial locality scores, the accompanying temporal locality scores of the benchmark suite are

not as low as originally posited, but are relatively consistent relative to each other. Eight of

the 12 data integration applications have higher spatial locality than temporal locality. This

observation is the most pronounced in 2bit→fa and the two Enterprise integration tasks.

All three of these applications are marked by memory references of small stride distances with

minimal data reuse, which aligns with our original first principles intuition. Decomposing the

temporal locality scores in Figure 3.4, we observe that the 2-bit→fa and the two enterprise

integration tasks show minimal data reuse at smaller reuse distances. This explains the lower

temporal locality scores since our metric favors earlier data reuse.

Of the four applications for which temporal locality is higher than spatial locality, the

optdigits→tiff, the tstcsv→csv and the gotrackcsv→csv transformations are observed

44

to have a similar levels of spatial locality as temporal locality. However, the difference is the

most pronounced in the edgelist→csr applications. The main reason is that each edge

of the edgelist is stored in a structure that packs inside it the two vertices that the edge

connects. Counting the number of vertices and the degree of each vertex both take the form

of iterating over a group of edges. In each of these integration tasks, each edge structure

must be reference and unpacked, and extracting both vertices from each structure accounts

for the higher temporal locality exhibited by the edgelist→csr application relative to its

level of spatial locality.

Figure 3.3: Temporal locality measure.

3.5.2 Branch Entropy

Figure 3.5 shows the result of the branch entropy characterization of our benchmarking suite.

Looking at the distribution of the branch entropies of our benchmark suite, we observe that

there is a wide variety of branch entropy results, which speaks to the variability of each ap-

plication with respect to control flow. The unipen→tiff and tstcsv→csv transformations

exhibit the highest branch entropy. In the unipen→tiff case, the branch entropy stems

45

Figure 3.4: Cumulative sum of memory references across reuse distances.

from each pair of input coordinates and their relationship to each other yielding different

ways of redrawing the digit in the TIFF format. In the tstcsv→csv, the number of coordi-

nates varies in each list, which results in a variety of possible entries in the pattern history

register. The two enterprise integration tasks, ebcdic→txt and fix→float, exhibit the

lowest branch entropy. In both cases, the only branching decision to make is terminating the

loop if all of the data records have been processed. This corresponds to the pattern history

register value that represents always taking the branch (all 1’s) occurring at almost every

branching decision.

46

Figure 3.5: Branch entropy measure.

Although there exists variability among the integration tasks in our suite, all of them can

be classified as executing with a certain level of control flow regularity. To contextualize

this observation, we see that the maximum value of branch entropy metric is 16 bits, while

no applications in the benchmark suite exceed 8 bits. To achieve the maximum value of

branch entropy, there must be an equal probability of occurrence of all possible entries that

the pattern history register can take. This equal probability results in the highest degree of

irregular application control flow because all branching decisions are equally likely. This is

not the case in our application suite because at their core, all integration tasks take the form

of iterating over a set of data records. In general, this form exhibits relatively high control

flow regularity.

47

3.5.3 Instruction Mix

x86-64 ISA

Figures 3.6 and 3.7 show the results of the static and dynamic instruction mix character-

ization, respectively, on the benchmark suite. The static instruction mix characterization

shows the prominence of unique data movement instructions in each integration task. Out

of 12 tasks, 10 of them are comprised of more than 50% unique data movement instructions.

This follows from the fact that our benchmark suite is based on data-related operations.

This line of reasoning also explains the low percentage of unique compute and control flow

instructions in each benchmark since most of the data transformations are relatively simple.

Figure 3.6: x86-64 static instruction mix.

48

Figure 3.7: x86-64 dynamic instruction mix.

In the dynamic instruction mix characterization, we observe that data movement still exhibits

a significant presence during execution time in most of the applications, noting that this

presence is even larger but not represented since we binned complex instructions that contain

implicit data movement as their main function only. We also observe that the presence of

control flow and branching instructions during execution time becomes salient. There is

at least one branching condition (the terminating condition) executed every time a data

record is processed. Additionally, there are branching decisions associated with the way in

which each record is transformed. Finally, the instruction mix characteristics vary fairly

significantly across the benchmark suite; one indication that the choice of applications is

reasonably comprehensive.

49

ARM ISA

Figure 3.8 shows the dynamic instruction mix characterization for 7 of the 12 benchmark

applications when compiled to the ARM instruction set. There are a few observations worth

making here. First, the results are distinct from those reported in Figure 3.7, confirming our

earlier observation that the instruction mix characterization is inherently not architecture

independent (i.e, it is clearly architecture dependent). Second, the fraction of data movement

instructions is noticeably smaller (especially for a few of the applications), which could easily

be due to the distinction between the RISC and CISC instruction set styles. Finally, we

continue to see significant variation across the suite, further indication that our applications

are reasonably comprehensive.

Figure 3.8: AArch64 dynamic instruction mix.

50

3.5.4 Discussion

For most of the characterizations considered, our first principles arguments held. Though

the spatial locality was not as high as originally intuited, the degree of spatial locality was

consistent among applications, which supports the idea that most data integration appli-

cations have a certain degree of spatial locality. Temporal locality was lower than spatial

locality for most of the integration tasks. Additionally, the applications assumed a consistent

level of temporal locality. The applications in which they did not fully hold allows this char-

acterization to capture the idiosyncrasies associated with such data integration tasks with

regard to locality, which adds to the insight gathered by the characterization and adds to its

comprehensiveness. Modern memory subsystems are designed to exploit applications with

high data reuse, and while we have shown that there is a consistent level of locality, future

solutions addressing the data integration problem could be tailored to exploit the specific

level of locality present in the data integration tasks.

The treatment of branch entropy on the benchmark suite revealed that there is indeed

variability among the different applications in that regard, but that data integration tasks

as a whole generally exhibit a high level of control flow regularity. This result has implications

for how complex the branch predicting algorithms and hardware of a particular system needs

to be for data integration tasks.

Examining both the dynamic instruction mixes of the applications for the x86-64 and

AArch64 architectures, we show that the there is a non-trivial variation in the mix. This ne-

cessitates a review of performance when porting and compiling data integration codes across

different architectures because optimizations for one architecture may not exhibit the same

gains on another architecture. Through examining static and dynamic instruction mixes

of x86-64, we show that there is a significant amount of data movement instructions in all

51

applications for the x86-64 instruction set. Since the energy required to move data across

the memory hierarchy is proportional to performing multiple double-precision floating point

operations, this presents an opportunity to investigate ways to optimize execution to address

this, such as minimizing the amount of data movement or rearranging data to take account

of the existing memory subsystem that the data integration task is deployed on.

3.6 Conclusion

The Data Integration Benchmark Suite (DIBS) is a set of data integration applications that

is representative of many different disciplines and integration tasks. We explore the general

qualities as well as idiosyncrasies of the suite by applying a comprehensive and (mostly)

architecturally-independent set of characterizations to each application. Based on the char-

acterization, we observe that most data integration tasks have a consistent level of both

spatial and temporal locality, and that they usually exhibit a higher degree of spatial local-

ity. Our applications are also characterized by a high level of control flow regularity and, in

their x86-64 versions, an emphasis on data movement. The insight gained from our charac-

terizations will guide both software and hardware research in exploring and exploiting the

qualities associated with data integration tasks. From the results of all of the characteri-

zations, we have satisfied the objectives of creating a comprehensive characterization of the

applications through a battery of different metrics.

Regarding domain specific computing, this benchmarking suite has, in part, addressed our

intial question of identifying a domain. Specifically, it addresses how to qualitatively identify

the domain. Towards this end, we crafted a specific definition of our domain of interest, i.e.,

data integration, and then searched the literature for applications that fit our definition, as

well as creating our own applications that aligned with our definition. From there, we used

52

characterization methods from the literature that allowed us to generate qualitative insights

that will inform what a hardware accelerator would look like for this particular domain. In

the next chapter, we present a novel locality characterization tool that enables us to build

on this qualitative representation and lay the groundwork for a quantitative characterization

of our domain. From this quantitative description, we can use the results from this tool to

make data-driven hardware design choices.

Finally, we have made these applications and datasets publicly available so that researchers

can compare data integration-specific solutions and systems [21].

53

Chapter 4

Multi-spectral Reuse Distance:

Divining Spatial Information from

Temporal Data

Equipped with insights regarding the consistency in locality, predictable branching behavior,

and instruction mixes defined by a prevalence of data movement instructions, we now have a

better understanding of what features would be beneficial in hardware accelerated versions

of these applications. Specifically, we want to design hardware that focuses on the data;

we want to exploit the locality of the data integration and make data movement efficient.

However, these insights, though based off of quantitative measures, are qualitative in nature.

Our aim in designing domain specific computing solutions is to use quantitative measures

to inform quantitative decisions. The aim of this chapter, then, is to enable quantitative

hardware design choices through the development of a novel locality tool to capture data

movement measures. In general, this tool is applicable to quantitatively access the locality

of any application.

54

4.1 The Data Movement Problem

At present, data movement is far more expensive than compute (i.e., an off-chip DRAM

access will use 1000× more energy, comparatively, than the 64-bit floating-point multiply-

add that results from it when calculated using a 28nm process node [33, 73]). It follows

that superfluous data movement should be reduced as much as possible as a means to im-

prove system efficiency. Efficiently modeling the spatial and temporal locality of data has

a direct impact on multiple facets of the data movement problem [76]. This includes opti-

mal page sizing, data to memory technology placement, data page prefetching (related to

placement) [103, 130], and when (and where) to use various forms of data gather/scatter.

Page sizing is often not associated with changes in data movement, though it should be.

Whether using a disk controller or the main central processing unit, when data is paged-out

and new data paged-in, all the contents of that page must be written to persistent storage

if modified. That write-back and subsequent reloading with a new 4KiB page requires

128-256b coherence bus transactions for just one direction of movement (e.g., controller to

physical DRAM). If that page isn’t fully utilized once it is moved, then much of that data

movement is likely wasted. Consider the case when a 2MiB page is loaded to DRAM but

only half of the page is used before that physical memory is needed for another application.

We will potentially have wasted 215 bus transactions for loading the page, and another 215

transactions (only considering wastage for the portion of the page that was not used, the full

page would take 216 bus transactions with a 256b bus). Even when the core is not actively

participating in the transfer, cache line tag RAMs will be accessed, as will snoop/directory

filters within the cache coherence network. Every access for superfluous data movement

is an access taken away from useful data movement. Choosing the correct size of page is

also important for copy-on-write memory systems (which most modern operating systems

55

implement). If super (huge) pages are chosen where page utilization is low, much additional

data must be copied. For example, any time a write to a child page (the virtual page pointing

to a parent original page) occurs, the entire contents of that page must be copied. Simply

choosing a smaller page would have been desirable. The model described in this dissertation

could be used for online prediction for page size based on actual spatial/temporal reuse

patterns, potentially with relatively low overhead.

Modern computer systems often integrate multiple memory technologies into a computer

system. As an example, some GPGPU devices incorporate static random-access memory

(SRAM), high bandwidth memory (HBM), and nonvolatile memory (NVM) all within the

same device, and often byte addressable. The decision on where to place data within this

physical memory space has direct system performance implications. Placing data on an

HBM device provides very high bandwidth but intermediate latency, whereas placing data

in an SRAM scratchpad could provide very low latency and high bandwidth at the expense

of lower capacities (relative to other options such as NVM). Current industry practice for

placing data on these memories is either to do it manually (user driven) or to treat the

memory as a cache with some suitable replacement policy. The model described in this

dissertation could be used to determine dynamically what granularity page should be used

and if a predictor would be effective. Our model could do this by simplifying complex

patterns, which is a side effect of the multi-spectral reuse distance approach (i.e., patterns

often are easier to determine at a larger granularity versus small). Evidence presented within

this work suggests that by using larger pages, the page placement prediction policy would be

easier to derive due to the coarser granularity. Our model could be used as a means to decide

between a caching policy or a prediction counter policy that would attempt to proactively

fetch the next page.

56

Tightly related to data and memory technology placement is the choice of where to gather or

scatter (and also compress and decompress) data. Currently the best way to decide is through

extensive offline profiling on the target system. Evidence suggests that future systems will

be equipped with DMA-like gather/scatter engines at multiple locations within the memory

hierarchy [7, 86]. Just like the data placement decision and page sizing decisions previously

mentioned, gathering data at the network interface controller (NIC) or NVM versus bringing

all the data into the coherence network can pay dividends for efficiency [49]. If a system is

equipped with multiple gather/scatter units, how is the system to choose between gathering

at one location or another? If a reorganization function exists (provided by either the user or

compiler), then using the spatial and temporal locality data provided through our described

model a system could decide based on a heuristic if less data movement and tighter spatial

locality could be gleaned from data reorganization.

This chapter makes two primary contributions. First we demonstrate how to use a well

known statistical technique (Earth Mover’s Distance, EMD) in a novel way to inform the

relationship between spatial and temporal locality. Second, we show empirically the appli-

cation of our method using a set of industry standard benchmarks as a proof of concept and

how multi-spectral reuse distance analysis can inform various facets of memory management.

In Chapter 6, we use this technique to guide the design of data integration applications on

the Intel HARPv2.

4.2 Methods

This section outlines preliminary information and methodology for measuring multi-spectral

reuse distance, using EMD, and how we calculate memory footprint.

57

4.2.1 Benchmark Applications

The applications used in this work are a subset of the SPEC2006 benchmark suite [57].

However, profiling the entirety of a given benchmark proved too prohibitive. Generating

reuse data for any application compiled with the -size=train option (i.e., the largest input

size option) took several hours in the worst case. In the case of the 433.milc benchmark

compiled with the -size=ref option, the instrumented application took 26 days to complete.

Thus, functions within this subset that have been shown to take a large share of the total

execution time [104] were characterized. Additionally, the MEGA-STREAM benchmark [35],

is used to demonstrate behavior of codes with very high memory access to computation ratios

(itself derived from stencil computations).

Trying to save the traces of instrumented functions of the applications for post-processing

also proved to be problematic because traces easily exceeded terabytes in size. Sampling

reuse distances was also a possibility, but we did not want to risk aliasing a reuse distance

pattern or miss unique cache line accesses. Thus, the characterization has been limited to 1

trillion references while the target function was executing.

4.2.2 Reuse Distance

In a trace of memory references, given a unique distance is the number of unique references

that are made before it is referenced again. Traditionally, memory references take on a cache

line (64B) granularity. To calculate reuse distances for an application, a stack is employed

to maintain ordering of the memory references as they are encountered. The most recently

used memory reference is always at the head of the stack. There are two main operations

of the reuse distance stack: encountering either new or previously seen memory references.

58

Figure 4.1: (a) Reference trace. (b) Reuse distance stack. (c) Reuse distance histogram.

A memory reference is added to the stack if it has not been seen during execution. When

a memory reference has been encountered before, its index in the stack is isolated and the

distance between its index and the head of the stack becomes the reuse distance. This reuse

distance is the index into a histogram that keeps track of how many elements have a particular

reuse distance. Reuse distance analysis was performed by dynamically instrumenting loads

and stores using the drcachesim tool of DynamoRIO [14].

An example of calculating reuse distance is shown in Figure 4.1. The end result of the

reuse distance analysis, i.e., the reuse distance stack in Figure 4.1(b) and histogram in

Figure 4.1(c), is shown after processing the reference trace in Figure 4.1(a). Exploring the

memory reference named a, it contributes to the reuse distance histogram as follows: the

first time it is seen, it is added to the stack. The second time it is encountered, its reuse

distance is calculated to be 2, and the reuse distance is 0 when it seen for the third time.

A reuse distance signature is the probability mass function (PMF) for the reuse distances

of a given application across a range of bins. In this work, the bins represent groupings of

reuse distances on a logarithmic scale.

59

Reuse distance analysis has traditionally been performed at cache line granularities, i.e.,

data blocks are set to 64B. However, our particular method uses multi-spectral reuse dis-

tance, which is to say that we sample reuse distance at 64B, 4KiB, and 2MiB. The ‘multi-

spectral’ character of our methodology is what enables us to yield additional spatial locality

information.

4.2.3 Earth Mover’s Distance

Earth Mover’s Distance (EMD) is a metric described by Rubner et al. [110] that quantifies the

similarity of two histograms by finding the minimum amount of work necessary to transform

the mass of one histogram into the other. In keeping with the spirit of the nomenclature,

the two histograms can intuitively be viewed as a supplier and consumer of dirt (mass) that

make up the two disjoint sets of a complete bipartite graph with weighted edges. The nodes

of the supplier set can be viewed as piles of dirt, where the amount of earth in the pile

corresponds to the value of that bin. The nodes of the consumer set can be regarded as

holes, where the depth of each hole corresponds to the value of that bin. The weights are

the distances between a given pile and hole. The amount of work to fill a given hole with

dirt from a given pile is a function of the amount of dirt to be moved from the pile to the

hole and the ground distance between the two.

More formally, bins are formed by grouping reuse distances into ranges of exponentially

increasing reuse distances, with the exception of the first bin which has a range of [0,4). The

bins used in this work can be observed as the labels of the x-axis in Figure 4.2. Mass is the

value of a given bin of a reuse signature. Ground distances refer to the distance between

the indices of the supplier and consumer bin. Though bin ranges grow exponentially, their

indices are linear (e.g., bin with range [0,4) has index 0, bin with range [4, 8) has index 1, bin

60

with range [8, 16) has index 2). As an example of ground distance in the context of EMD,

the distance between bin [0,4) in one histogram and bin [32, 64) in the other histogram

would be:

abs(index([0, 4))− index([32, 64))) = abs(4− 0)

= 4

The amount of mass located at each bin is defined by X = x1, . . . , xn and Y = y1, . . . , yn,

for the supplier and consumer distributions, respectively.

From this, EMD can be solved for by applying polynomial time linear programming meth-

ods [110] to minimize the following equation:

EMD = min
∀fij

n∑
i=1

n∑
j=1

fijcij (4.1)

where cij is the distance (cost) of moving mass from bin i to bin j and fij is the amount

moved from bin i to bin j.

The minimization of EMD is subject to the following constraints:

fij ≥ 0 (4.2)

n∑
j=1

fij = xi, xi ∈ X (4.3)

n∑
i=1

fij = yj, yj ∈ Y (4.4)

In our case, we quantify the similarity between reuse distance signatures X and Y (e.g.,

reuse distance signatures for 64KiB and 4KiB granules), where fij is the amount of mass

61

that will be moved from bin xi to yj and the cost of moving that mass is defined by cij. The

amount of mass in both X and Y is normalized to 1, and our cost function is simply the

difference between the given indices, i.e.,

cij = j − i

4.2.4 Memory Footprint

The memory footprint is derived from the final state of the reuse distance stack after per-

forming reuse distance analysis at a given data block granularity. For each granularity, the

memory footprint is calculated as follows:

Sblock granularity ×Nunique blocks (4.5)

where Sblock granularity is the size of the granularity used for reuse distance analysis and

Nunique blocks is the number of unique data blocks accessed at that granularity. Calculat-

ing the memory footprint yields a measure of how much data (in bytes) is paged in for the

profiled application’s region of interest.

As an example, consider the final state of the reuse distance stack in Figure 4.1(b). If we

assume that the granularity of each block is 2MiB,

62

Sblock granularity = 2MiB

Nunique blocks = 3

Memory Footprint = 6MiB

This calculation shows that 6MiB of data were paged when profiled in a given region of

interest.

4.3 Results and Discussion

The reuse signatures for each benchmark are shown in Figure 4.2. Isolating any one granular-

ity shows typical temporal locality information such as how a particular memory subsystem

will handle the memory reference access pattern of a given application (e.g., how many

off-chip memory references to expect based on the PMF past the capacity of the last-level

cache). Analyzing the reuse signatures of different granularities (a.k.a., multi-spectral reuse

distance) provides valuable insight on the spatial locality of an application.

4.3.1 Spatially Dense Memory Accesses

When comparing the different signatures, there are two prototypical behaviors as the gran-

ularity of the reuse distance analysis is increased.

The first is the shift of mass in the PMF towards the bins of shorter reuse distances. An

example of this is the result from 464.h264ref -- 2719 in Figure 4.2. When the granularity

63

Figure 4.2: Reuse distance signatures for all benchmarks. The numbers following the name
of each benchmark are the line numbers on which the regions of interest for that application
start.

64

is 64B, almost a third of all memory references exhibit reuse distances greater than or equal

to 8. At the 4KiB granularity, all memory references exhibit reuse distances no greater than

16. In the 2MiB case, virtually all reuse occurs within a reuse distance of 3.

The second behavior is the shape of the PMF remaining largely the same as the granularity

is increased. There are two manifestations of this behavior. One is when the mass of each

of the reuse signatures are contained mostly in the first bin. The result from 450.soplex

-- 930 in Figure 4.2 shows almost identical reuse signatures for all 3 granularities, where

90% of the memory references happen within a reuse distance of 3 when the granularity is

64B, and 100% for 4KiB and 2MiB. The other manifestation is shown in the result from

from 4x0.mega stream. For the 64B granularity, 70% of the PMF s mass is located in the

[4,8) bin. While increasing the granularity to both 4KiB and 2MiB captures some of the

mass to the right of this bin in the 64B case, the shape of the distribution remains largely

unchanged.

The shifting (or not) of the PMF from higher to lower reuse distances bins as the granularity

increases serves as a measure for how spatially dense the memory references are. A shift is

indicative of memory references that reside on different data blocks at one granularity but

reside on the same data block at a larger granularity. For example, refer back to the example

reference trace in Section 4.2.2 and assume the granularity to be 64B. If references a, b, and

c all reside on the same 4KiB data block, then when the reuse distance analysis is conducted

at 4KiB granularity, then the reuse distance becomes 0 for all references. This is because

the 64B data blocks that a, b, and c resided on were subsumed by the same 4KiB block.

This is representative of the first prototypical behavior. If references a, b, and c reside on

different 4KiB data blocks, then the reuse distances remain the same because they will not

be subsumed by the same 4KiB block. Thus, we are able to observe the spatial locality for

memory references by performing reuse distance analysis at different granularities.

65

Directionality of Mass Shift

Additionally, it is possible to formally prove the directionality of the mass shift that occurs

when comparing the reuse signature of a smaller granularity to a larger one. In general,

if we view the virtual address space of a process divorced from the physical address space

underlying it, then we can view it as a contiguous space A. Realistically this space has a

natural range from 0 to (264−1) for most 64-bit architectures. Calculating the reuse distance

as previously defined in Section 4.2.2, with a single bin size of A would result in a distance

of zero and nothing else. Consider dividing this single space A into two spaces (as illustrated

in Figure 4.3), denoted as set B, A
2
→ {B0,B1} = B. There are two spaces and two possible

reuse distances: zero and one. Each of these spaces has the relation (when comparing the

size of each space, or granularity of reuse bin) of: |A| > |B0| = |B1|. It follows, then, that

regardless of the the reuse bin within set B, when superimposed over the larger set A, the

reuse distance will be zero with regards to that set. Dividing the subsets of B yet again

yields four spaces, which we denote as set C corresponding to four reuse distance bins. All

valid programs must fit within the space of A. The same cannot be said of the subsets of B

or C. It is expected, and required, that the next larger set will subsume smaller ones. These

sets are equivalent to the reuse distance granularities we have chosen, as an example, B

could equal 2MiB, C could equal 4KiB, etc. If, as we have described with the multiple sized

sets, we instead have multiple fixed sizes of reuse distance bins, then the bin widths should

exhibit the same pattern and directionality. That is, if the distributions of each granularity

are ordered with the smallest granularity bin widths in front and the largest granularity

widths in back (if on a three-dimensional axis, the PMF of each reuse distance measurement

would have the probability on the y-axis, the bin count on the x-axis, and the z-axis would

be ordered from smallest to largest), then we would expect the mass when moving from

front to back (with respect to the z-axis) to slide towards the zero bin of the largest granule.

66

X0

X1

X2

Y

Z

Bin

Widths

Increase

X0

X2

X1

Change in mass

(dotted line)

informs spatial

locality

Front View

Top View

0 1 2 3
Reuse distance bin

0 1 2 3
Reuse distance bin

Figure 4.3: Visual representation of trend described in Section 4.3.1. X0 corresponds to
set C, X1 corresponds to set B, X2 corresponds to A. The bottom graph is the view
from “above” of the x and z axis showing the trend of changing mass that is expected of
all applications as the bin size of each Xi approaches infinity. The rate of change in the
mass (essentially slope of the line along this axis) informs the spatial locality, quantitatively
measured in this work as EMD.

When ordered in this way, taking the multi-spectral reuse distance measurement has two

immediate consequences we can exploit: when moving along the z-axis, we can qualitatively

assess spatial density and the degree by which larger granules subsume (or do not subsume)

smaller ones based on changes along the x- and y- axes. Second, with sufficiently large reuse

distance bins, the mass will always converge to a zero reuse distance bin when moving in a

positive direction along the z-axis (smaller reuse distance widths to larger ones).

EMD as a Spatial Locality Measure

The amount of mass that is shifted from one distribution to another is empirically shown

by computing the Earth Mover’s Distance between them, as described in Section 4.2.3. The

results of comparing the 64B and 4KiB distributions and the 4KiB and 2MiB ones are

shown in Figure 4.5. The closer the EMD is to zero, the more similar the distributions are.

67

It follows that EMDs that approach zero demonstrate behavior in which larger data block

granularities do not subsume smaller ones (within the range of granularities measured, as

proven previously, eventually they will always be subsumed), and that their memory reference

patterns are less spatially dense (i.e., having parts close together) than two distributions that

express a large EMD.

For example, the 470.lbm -- 186 benchmark has the highest EMD score among all of the

64B vs. 4KiB comparisons. From Figure 4.2, at the 64B granularity, over 20% of all reuse

distances are at least 4MiB away. However, we observe qualitatively in the shifting of mass

from 64B to 4KiB in Figure 4.2, and quantitatively with Figure 4.5 an EMD that is much

greater than zero, that much of the necessary data for computation is resident on the same

4KiB data blocks. The implications of these observations will be explored in the following

subsections.

4.3.2 Page Sizing and Utilization

Page Sizing

The reuse signatures and their respective EMD results also have implications for selecting

the page size for a given computer system. In many system architectures, it is possible to

alter the page size from 4KiB or 8KiB to something larger to try and exploit spatial locality

and reduce translation overhead. From the spatial locality information that results from

Figures 4.2 and 4.5, it is possible to evaluate whether there are any performance benefits to

increasing page size.

Referring to the 464.h264ref -- 2719 benchmark, we observe mass shifting in its reuse

signatures and EMD scores that are greater than zero. In fact, at the 2MiB granularity, all

68

of the data required for this computation is resident within strides of 0 to 8MiB, i.e., all of

the mass is located in the first bin. This suggests an extremely dense spatial locality access

pattern, which would benefit from larger pages.

Antithetical to this are the results from the 4x0.mega stream -- 370, which qualitatively in

Figure 4.2 shows no shift in mass and has a very small EMD at all granularities. Specifically,

it is shown that at least 75% of all reuse distances are occurring between 8 and 16 at all

granularities. At the largest granularity, 75% of all accesses are touching data resident on

at least 4 different 2MiB pages before that data is reused again. Larger page sizes are not

subsuming the memory references from smaller granularities. Thus, larger page sizes cannot

extract spatial locality from applications in which that spatial locality does not exist.

Page Utilization

The memory footprint data, calculated using 4.5, for each benchmark is presented in Fig-

ure 4.4. Each granularity is normalized to the 64B case. From this, it is possible to determine

how much extraneous data, if any, is paged in when larger pages are used. When looking at

Figure 4.4, any bar that extends past the black dotted line indicates that more memory was

paged in than was necessary. We will investigate this idea further in the remainder of this

section.

The 462.libquantum -- 61 benchmark results from Figures 4.2 and 4.5 show benefits for

increasing larger page sizes, while also fully utilizing the data that is paged in. This is

evidenced by the amount of data paged in at the 2MiB granularity being almost equal to the

amount paged in for the 64B case. Referring to Equation 4.5, the Sblock granularity term will

be larger in the 2MiB case than for the 64B case, but the spatially local accesses at the larger

granularity decrease the Nunique blocks term such that the memory footprint of the two cases

69

are almost equal. We will now examine applications for which non-spatially local accesses

result in bigger discrepancies in memory footprint at their respective measured granularities.

Looking at 464.h264ref -- 2419 and 464.h264ref -- 2719, however, we observe that,

although the 2MiB page size subsumes the smaller granules, the 2MiB page size actually

pages in 10× and 100× more data, respective to each function, than is actually necessary,

assuming that every byte of each 64B data block pulled in is fully utilized (note: this is a

strong assumption given the previous characterizations of Dark Bandwidth[8]). Thus, using

a 2MiB page size for this application puts undue stress on the coherence bus, and wastes a

considerable amount of energy since it has to move 10× and 100× more data than is actually

necessary.

The 4x0.mega stream -- 370 benchmark is particularly interesting because it has been

previously shown that its spatial locality access pattern is not dense, and that larger pages

do not subsume the smaller data block granules and help with spatial locality. However,

virtually all of the data that is paged in, even at the 2MiB granularity, is used as shown in

Figure 4.4. Thus, the page utilization is very good for this application. This result indicates

that it may be a prime candidate for a data layout transformation in order to reduce the

amount of data movement and increase the amount of available physical at any given instant.

The spatial and temporal locality patterns of this benchmark indicate that multiple values

are pulled from each page at any given instant. However, streaming them in a packed fashion

would improve the utilization over any given time window (recall that the overall utilization

is large, but only after the entire application has executed).

70

4.3.3 Data Layout Transformation

The layout of the data necessary for the computation directly impacts the spatial locality

characterization of an application. Recent work such as [7] shows that data movement can

be reduced by transforming the layout of data near memory to better exploit spatial locality

for current memory subsystem and reduce superfluous data movement. Given that a data

layout transformation is possible at multiple levels of the memory hierarchy, it is possible to

better determine at which level to perform the data layout transformation. We can identify

the levels to perform the data layout transformation using the memory footprint analysis

performed in this work.

In the case of 4x0.mega stream, the memory footprint data shows that, even at the largest

page size, all of the data that gets paged in eventually gets used. Since even at such a

large granularity the spatial access is not dense, it would be beneficial to perform the data

layout transformation nearer the data, so that the data that gets paged in is densely packed,

which will reduce the amount of fast physical memory that must be utilized, improve cache

utilization, and lastly reduce the overall energy of computation. The last improvement would

primarily be due to the reduced need to refresh DRAM rows [63] compared to a non-data

layout transformation case (as less physical DRAM need be provisioned). When using a

data layout transformation mechanism such as SPiDRE [7], the data could be streamed as

needed potentially reducing the need to store data in DRAM.

4.4 Conclusion

The problem of efficiently feeding processing elements and finding ways to reduce data move-

ment is a pervasive problem in computing. Efficient modeling of both temporal and spatial

71

Figure 4.4: Memory footprint normalized to 64B granularity.

Figure 4.5: Comparing (64B, 4KiB) and (4KiB, 2MiB) reuse signatures using Earth Mover’s
Distance.

72

locality of memory references is invaluable in identifying superfluous data movement in a

given application.

In this work, we have presented a way to model both spatial and temporal locality using what

we term “multi-spectral reuse distance,” derived from classic reuse distance analysis. Reuse

distance is a metric is traditionally used to determine the temporal locality of an application.

Multi-spectral reuse distance is measured by performing reuse distance measurement at

differing reuse distance granularities, in example, 64B, 4KiB, and 2MiB sizes. This approach

allows for a qualitative observation of spatial locality, through observing the shifting of mass

in an application’s reuse signature at different granularities. Furthermore, this be quantified

through the Earth Mover’s Distance between ordered sets (ordered on reuse distance bin size)

of probability mass functions of an application. It is these sets of PMF s that define the multi-

spectral reuse distance. This characterization was performed on a subset of the SPEC2006

benchmark, as well as a streaming mini-application characteristic of stencil calculations.

From the multi-spectral characterization, it is possible to determine how spatially dense the

memory references of an application are based on the degree to which the mass has shifted

(or not shifted) and how close (or far) the Earth Mover’s Distance is to zero as the data block

granularity is increased. It is also possible to make inferences based on this information as to

the appropriate page size, and whether or not a given page is being fully utilized. From the

applications profiled, it is observed that not all applications will benefit solely from having a

larger page size. Additionally, larger data block granularities subsuming smaller ones suggest

that larger pages will allow for more spatial locality exploitation, but examining the memory

footprint will show whether those larger pages are fully utilized or not. Finally, it is possible

to infer where in the memory hierarchy a data layout transformation could be beneficial in

order to more efficiently move data by observing the data utilization within given data page.

73

In Chapter 6, we will measure multi-spectral reuse distance on the DIBS application, and

use the generated locality measures as an input to an unsupervised learning technique to

quantitatively inform a hardware design choice regarding width versus depth. Before we

explore that, though, we present in the following chapter an evaluation of the Intel HARPv2

CPU+FPGA system, how to architect designs for it, and frame the design of domain specific

hardware in Chapter 6.

74

Chapter 5

Evaluating Portability and

Performance of OpenCL FPGA

Kernels on Intel HARPv2

As the end of Moore’s law draws nearer, researchers across disciplines are looking beyond rely-

ing on performance increases through packing more transistors into CPUs and scaling CPU

clock frequencies. Outside of multicore CPUs, people are turning towards heterogeneous

computing solutions that incorporate hardware coprocessors such as Graphics Processing

Units (GPUs) and Field Progammable Gate Arrays (FPGAs) to accelerate computation.

The former has become ubiquitous in desktop, server, and cloud environments and has an

established and mature ecosystem.

The widespread use of FPGAs, however, is still nascent while their presence is burgeoning.

This forward progress is reflected in industry with companies like Amazon and Microsoft

equipping their data center nodes with FPGAs [107, 25, 5] and Intel acquiring FPGA man-

ufacturer Altera. Additionally, there is a growing research trend toward harnessing the re-

configurability of FPGAs towards accelerating salient applications like neural networks [23,

43, 143], biocomputation [62, 89, 94], and many other applications [88, 117, 125, 142, 150].

75

A common way to incorporate hardware acclerators like GPUs and FPGAs into a computer

system is to attach them through a PCIe card, which keeps hardware costs relatively low.

In spite of this, the use of FPGAs has not experienced the widespread adoption that GPUs

have seen, in part because of all the difficulties inherent in their use. Historically, FPGA

developers have needed to be well versed in electronic circuits and digital logic design. This

includes knowledge of low-level hardware interaction at the register-transfer level (RTL) and

handling timing constraints at a clock cycle granularity, as well as domain-specific knowledge

of computer-aided design tools and workflows specific to FPGA design and development.

This is generally outside of the skillset of most software developers.

One of the steepest barriers to using FPGAs is expressing a design in the first place using

traditional hardware description languages (HDLs) like VHDL and Verilog, which requires

the domain specific knowledge previously mentioned. A current research direction in lowering

the barrier is High Level Synthesis (HLS), which allows a programmer to express a kernel

of computation in a higher level language like C or C++ for deployment onto an FPGA.

This circumvents the problem of having to learn an HDL to express a kernel and its low

level interfaces, reduces the amount that a programmer has to understand about FPGA

microarchitecture, and abstracts away the lower level details of using FPGAs.

One way that companies that build PCIe cards around FPGAs enable the use of HLS is

through making their solutions OpenCL compliant. This involves providing a Board Support

Package (BSP) that provides the interface between host and device, as well as parameters

that are used by an offline compiler to synthesize, place, and route a design onto whatever

FPGA is used on the card. In addition to PCIe cards, Intel has also developed a system

that incorporates both a multicore Xeon CPU and Arria 10 FPGA into the same chip

package (as described in Section 2.4.1). This particular project is known as the Heterogeneous

Accelerator Research Platform, or HARP. In addition to being able to author designs using

76

an HDL, Intel has provided the infrastructure to use the Intel FPGA OpenCL SDK for

FPGA development. While there have been recent publications targeting this system with

a traditional FPGA design flow [4, 28, 117, 122, 135, 144], not much is known about the

experience, feasibility, and performance of targeting a HARP system using OpenCL.

In this chapter, we will target the second iteration of the HARP CPU+FPGA processor

(HARPv2) through HLS using the Intel OpenCL SDK for FPGA to evaluate the portability

and performance of OpenCL FPGA kernels. Specifically, we use OpenCL kernels authored

for an FPGA attached via PCIe card that perform the Needleman-Wunsch algorithm [149]

and port them to the HARPv2 system. Then, we evaluate and compare our results to

ones previously reported, present our findings of portabilty through exploring the hardware

design space, and show the benefit of using the Shared Virtual Memory (SVM) abstraction

implemented for the HARP system.

5.1 Methods

This section describes the kernels built for and deployed on the Intel HARPv2 system.

First, we describe the Needleman-Wunsch algorithm used in our study. We then describe

each of the kernels synthesized for the HARPv2 system. We use the same kernel version

enumeration from [148]. The kernels are built using the offline compiler provided in the

Intel FPGA OpenCL SDK and a custom release of the 16.0.2 version of the Intel Quartus

Prime tool suite that accomodates the HARPv2 system. This is the most recent version of

the Quartus tools that is supported by the test system. Minimal changes were made to the

original host source code during the porting process. The only change made to the kernel

code was correcting an indexing error in Kernel Version 5 that left the last column and the

last two rows unprocessed. The process of exploring the hardware design space is detailed

77

next. Finally, we detail how we enable the HARPv2 system, including using the Shared

Virtual Memory (SVM) abstraction.

5.1.1 Needleman-Wunsch

The workload targeted in this paper is the Needleman-Wunsch algorithm. It is a dynamic

programming algorithm used for globally aligning a pair of protein or nucleotide sequences.

The end result of the algorithm is a substitution matrix that is used to trace back the optimal

global alignment of the two sequences. The general structure of the implementation (without

any notion of blocking or parallelism) is outlined in Algorithm 1.

Algorithm 1: Needleman-Wunsch Algorithm

1: new int subst matrix[N+1][N+1], score matrix[N+1][N+1]
2: new int gap penalty
3: initialize first row and column of subst matrix
4: initialize score matrix
5: initialize gap penalty
6: for i← 1 to N + 1 do
7: for j ← 1 to N + 1 do
8: top = subst matrix[i− 1][j] - gap penalty
9: left = subst matrix[i][j − 1] - gap penalty

10: top left = subst matrix[i− 1][j − 1] + score matrix[i][j]
11: subst matrix[i][j] = max(top, left, top left)
12: end for
13: end for

The size of the substitution matrix is determined by the length of the two strings to be

compared. In this case, the two strings are both of size N , and an extra row and column

are added for initial conditions. The substitution matrix is populated by iterating across

all elements in each row as detailed in the nested for loop starting in line 6. Each element

subst matrix[i][j] is calculated as a function of the elements to the left, top, and top left from

the current element, as well as a similarity score from score matrix[i][j] and a predetermined

78

penalty constant for alignment gaps. An example of calculating subst matrix[2][2] in a 3×3

substitution matrix is shown in Figure 5.1.

Figure 5.1: An example of the left, top, and top left dependencies for calculating
subst matrix[2][2] in a 3× 3 substitution matrix.

The Needleman-Wunsch algorithm is included as part of the Rodinia benchmarking suite

[26] developed by Che et al. In Rodinia, the Needleman-Wunsch algorithm has 3 different

implementations: an OpenMP implementation that targets multicore CPUs, a CUDA imple-

mentation that targets NVIDIA GPUs, and an OpenCL implementation for any accelerator

that is compliant with the OpenCL standard. Zohouri et al. extended this work by author-

ing kernels using the Intel FPGA OpenCL SDK to target FPGAs connected as a card on the

PCIe bus [149, 148]. They do this for a subset of the Rodinia suite and show the advantages

and disadvantages of FPGAs as accelerators compared to GPUs and multicore CPUs. We

use the Needleman-Wunsch FPGA kernels from Zohouri et al. for experimentation in this

work, and detail each version in Section 5.1.2.

5.1.2 Description of Each Kernel Version

The kernel versions used in this paper are from [26, 148, 149] and are described in the

following subsections. Versions 0 and 2 are designed using the NDRange (NDR, and also

referred to as MWI) paradigm, and Versions 1, 3, and 5 use the SWI paradigm. Versions 2

79

and 3 apply basic level optimizations to their preceding versions, and Version 5 implements

a new design using the SWI model. Each kernel was built for and deployed on the Intel

HARPv2 system for comparison to the prior work that evaluates performance with FPGAs

that are connected via PCIe card.

Version 0

This kernel takes the OpenCL implementation from [26], which uses 2D blocking to subdivide

the problem with no modifications and is used as the performance baseline. Its implemen-

tation follows the NDR paradigm. The kernel is divided into two separate kernel functions

that perform the same computation but are indexed differently to compute the upper and

lower trangular, respectively, of a given 2D block. Each function takes advantage of diagonal

parallelism in two ways: thread- and block-level parallelism. Once an element or block of

index (i, j) is computed, it satisfies the dependencies for the (i, j + 1)th and (i + 1, j)th ele-

ments or blocks, and allows them to be computed in parallel. An illustration of this diagonal

parallelism is shown in Figure 5.2. The size of the 2D block is determined by a user-defined

variable named BSIZE.

Version 1

This kernel uses a doubly nested for loop as outlined in Algorithm 1 and takes no steps to

guide the synthesis tools on how to better achieve computational parallelism in the resulting

custom pipeline.

80

Figure 5.2: An illustration of the diagonal parallelism available at the thread and block levels
in the Needleman-Wunsch algorithm. The blue squares are elements that have already been
computed. The green squares are ones that are available to be computed because their top,
left, and top left dependencies have been satisfied. The white sqaures are elements that have
yet to be computed because their dependencies have not yet been satisfied.

Version 2

This kernel applies basic compiler-level optimizations [149] to Version 0 in two ways. The

first is through setting the maximum work group size. This constraint allows the compiler

to perform more aggressive optimizations without wasting precious hardware resources [60].

Additionally, setting the size also enables the second optimization: kernel vectorization.

This is achieved by adding the SIMD attribute to the kernels in order to vectorize them. This

allows work items to execute more data. In this work, the kernels are vectorized by a factor

of 2.

Version 3

Version 3 improves on Version 1 in two ways. The first is by adding a register to cache the

result of the current element so that it can satisfy the left dependency for the next iteration

81

and avoid an external memory access. The second is by adding the compiler pragma ivdep

on the substitution matrix to prevent compiler from assuming false load/store dependencies

on that global buffer (since the current element being computed depends on previously

computed values in that buffer) and to decrease stall cycles per loop iteration.

Version 5

Version 5 is a kernel programmed using the SWI model. Instead of iterating across elements

left to right as in previous SWI implementations, Version 5 takes advantage of diagonal

parallelism similar to the NDR kernel versions. It divides the substitution matrix into

groups of rows, i.e. 1D blocks. The number of rows in each 1D block is set by a tunable

hardware parameter named BSIZE. Each 1D block of the matrix is processed by dividing the

block into column chunks. Specifically, there is a hardware parameter named PAR that sets

how many columns are in each chunk. The chunks of columns are processed in a diagonal

fashion, and wrap around to the next chunk of columns once the current one is finished. The

kernel is done processing once all of the columns of the 1D chunk have been computed. The

exit condition is precomputed on the host side.

While there are other optimizations employed as described in [148], the main optimization

is use of shift registers as local storage to satisfy dependencies. This is done in two ways.

The first is by using shift registers, like the one featured in Figure 5.3, to hold onto computed

elements of the substitution matrix between iterations of the loop.

This is similar to the idea of caching a computed element in Version 3, but the shift registers

act as buffers that satisfy dependencies across multiple rows and columns instead of just the

next element to be computed in the substitution matrix. The size of these shift registers are

a function of BSIZE and PAR. The second way is by creating 2D shift registers and utilizing

82

Figure 5.3: An example of a shift register comprised of 5 D-Flip Flops.

them in a staircase fashion as shown in Figure 5.4. Because each 1D block is traversed in

a diagonal fashion, the access patterns of global memory are not spatially local. To this

end, the staircase shift registers are employed such that reads and writes to global memory

can still be coalesced, but are buffered until they are needed to compute an element in the

substitution matrix. An example of this is shown in Figure 5.5.

5.1.3 Hardware Design Space Search

In [148], Zohouri reports the optimal parameter settings for BSIZE in kernel Versions 0 and

2 and the optimal settings for BSIZE and PAR for Version 5 for the PCIe-connected Stratix V

and Arria 10 FPGAs that he uses in his experimentation. These parameters are effectively

hardware design knobs that are exposed by the kernel designer. BSIZE controls how much

of the substitution matrix was computed for the NDR kernels, and is a parameter for sizing

some shift registers in kernel Version 5. The PAR parameter controls the degree of parallelism

for kernel Version 5, i.e. how many substitution matrix elements can be processed at the

end of a loop iteration, and determines how large to make the staircase shift register array,

as shown in Figure 5.4. In order to find the parameter configurations for the Intel HARPv2

system that produce optimal performance, we define a hardware design space by creating a

range of values that BSIZE can take for Versions 0 and 2, and a range of values that BSIZE

83

Figure 5.4: Hardware effect of staircase shift register when sweeping the PAR parameter. A
2D array of shift registers is allocated in the OpenCL kernel, but only half of the structure
is used. This is represented by boldening the lines of the utilized shift registers and using
dashed lines to represent the shift registers that are unused. The top figure is the shape of
the arrays used to buffer data and coalesce reads from global memory, and the bottom is the
shape used to buffer data and coalesce writes to global memory.

84

Figure 5.5: An illustration of exploiting diagonal parallelism paired with a staircase shift-
register whose purpose is to queue writes to global memory until a contiguous chunk of
memory can be written. The numbers represent the index of an iteration in the computa-
tional loop. Squares that share the same index (and subsequently the same color) imply
that those particular elements are computed during the same iteration. Because of the
shift-registers though, elements computed during the same iteration will be written back at
different times in order to achieve more spatially local writes.

85

and PAR can take for kernel Version 5. This range is defined, in part, by what configurations

the tools are able to successfully build.

5.1.4 Shared Virtual Memory

Though the Intel HARPv2 nodes used in this paper are technically only OpenCL 1.0 com-

pliant (as reported by querying the CL DEVICE VERSION parameter of the device), they do

support the feature of using Shared Virtual Memory (SVM) implemented as an extension

to the OpenCL 1.0 API. It is worth noting, though, that devices compliant with versions of

OpenCL 2.0 and up are required to support SVM.

Instead of having to explicitly enqueue writes and reads to and from the HARPv2 FPGA,

shared memory is allocated on the host side and then is pointed to as a special SVM kernel

parameter from the host code. In order to utilize this feature in the HARPv2 system, the

host code needed to be edited in the following ways: all previously created cl mem objects

created and freed for the device were removed and replaced with shared memory allocated by

clSVMMallocAltera() and clSVMFreeAltera(), respectively. Enqueueing writes and reads

to cl mem objects were removed. Finally, calls to clSetKernelArg() that pointed to cl mem

objects were replaced with calls to clSetKernelArgSVMPointerAltera() that pointed to

shared memory buffers. Conveniently, no changes need to be made to the kernel code to

accomdate using SVM instead of explicit reads and writes. Thus, kernels do not need to be

rebuilt to accomodate using the SVM feature.

86

5.2 Results and Discussion

5.2.1 FPGA Kernel Results

Table 5.1 shows the results of building and evaluating each kernel version described in Section

5.1.2 on the Intel HARPv2 system and compares them to previously reported results in [148].

Specifically, any row that contains ”HARP” in the ”FPGA” column contains our results for

the Intel HARPv2 platform, and all other data is from [148]. The percentages reported are

how much of that particular FPGA resource is utilized relative to the amount available.

The execution times presented are the lowest times over 100 runs of the respective kernels.

The Speedup column is the calculated speedup relative to the Stratix V result from [148] for

kernel Version 0.

Comparing results from [148] to those observed from the HARPv2 system, the trends re-

garding NDR and SWI kernels reported in [148] also appear here. The applied optimizations

to Versions 0 and 1 result in decreases in execution time relative to each kernel’s respective

runtime. Version 2 executes 5.25 faster than Version 0, and Version 3 executes 270.49 times

faster than Version 1. However, our HARPv2 system results, except for Version 2, execute

slower than those from [148], despite the Arria 10 FPGA having more resources to use than

the Stratix V FPGA.

The biggest contributing factor to this is the amount of resources needed to implement

designs. This causes the place and route process of the FPGA to be more difficult, involving

more complex routing solutions that drive the maximum possible clock speed down. In

almost all cases, the Arria 10 FPGA HARPv2 system uses a larger percentage of its available

resources than the Stratix V FPGA does, which has less resources to begin with. In all cases,

fmax for the Arria 10 is lower than the those for the Stratix V.

87

V
er

si
on

O
p
t.

L
ev

el
K

er
n
el

T
y
p

e
F

P
G

A
T

im
e

(s
ec

)
f m

a
x

(M
H

z)
L

og
ic

M
20

K
B

it
s

M
20

K
B

lo
ck

s
D

S
P

S
p

ee
d
u
p

v
0

N
on

e
N

D
R

S
tr

at
ix

V
,

P
C

ie
9.

93
7

26
7.

52
27

%
16

%
30

%
6%

1.
00

A
rr

ia
10

,
H

A
R

P
13

.3
67

21
1.

77
25

%
39

%
25

%
1%

0.
74

v
1

N
on

e
S
W

I
S
tr

at
ix

V
,

P
C

ie
20

3.
86

4
30

4.
50

20
%

5%
17

%
<

1%
0.

05
A

rr
ia

10
,

H
A

R
P

83
0.

13
1

25
6.

6
26

%
9%

18
%

<
1%

0.
01

v
2

B
as

ic
N

D
R

S
tr

at
ix

V
,

P
C

ie
3.

99
9

16
4.

20
38

%
68

%
10

0%
8%

2.
48

A
rr

ia
10

,
H

A
R

P
2.

54
5

16
2.

86
5

50
%

47
%

81
%

1%
3.

90

v
3

B
as

ic
S
W

I
S
tr

at
ix

V
,

P
C

ie
2.

80
3

19
1.

97
19

%
8%

18
%

<
1%

3.
55

A
rr

ia
10

,
H

A
R

P
3.

06
9

17
8.

12
25

%
10

%
19

%
<

1%
3.

24

v
5

A
d
va

n
ce

d
S
W

I
S
tr

at
ix

V
,

P
C

ie
0.

26
0

21
8.

15
53

%
7%

28
%

2%
38

.2
2

A
rr

ia
10

,
P

C
ie

0.
17

6
20

1.
06

28
%

8%
25

%
<

1%
56

.4
6

A
rr

ia
10

,
H

A
R

P
0.

29
0

18
6.

81
40

%
19

%
30

%
<

1%
34

.2
7

D
u
m

m
y

N
/A

N
/A

A
rr

ia
10

,
H

A
R

P
N

/A
35

0.
26

23
%

6%
14

%
0%

N
/A

T
ab

le
5.

1:
R

es
u
lt

s
of

ex
ec

u
ti

n
g

th
e

N
ee

d
le

m
an

W
u
n
sc

h
ke

rn
el

ve
rs

io
n
s

on
th

e
H

A
R

P
v
2

S
y
st

em
an

d
h
ow

th
ey

co
m

p
ar

e
to

re
su

lt
s

in
[1

48
].

T
h
e

va
lu

es
in

th
e

S
pe

ed
u

p
co

lu
m

n
ar

e
re

la
ti

ve
to

th
e

ke
rn

el
V

er
si

on
0

S
tr

at
ix

V
re

su
lt

.
T

h
e

fi
rs

t
tw

o
ro

w
s

fo
r

ke
rn

el
V

er
si

on
5

ar
e

b
ot

h
re

su
lt

s
fr

om
[1

48
].

T
h
e

la
st

ro
w

of
th

e
ta

b
le

is
th

e
re

su
lt

fo
r

b
u
il
d
in

g
a

“D
u
m

m
y
”

ke
rn

el
th

at
is

si
m

p
ly

a
ke

rn
el

th
at

co
n
ta

in
s

n
o

co
m

p
u
ta

ti
on

.

88

This is because of all of the resources necessary to implement the BSP components that

interface to the host CPU to the FPGA. The last row in Table 5.1 shows the resource

utilization for a “Dummy” kernel, which is an OpenCL kernel that contains no computation

in its function body. We use this as a proxy for the resources required to implement the

interface BSP components. As a comparison, consider the Arria 10, PCIe result for kernel

Version 5, which uses the same FPGA. The percentage of total logic blocks used is 28%,

compared to the 23% of logic blocks used just to implement the BSP for the HARPv2 system.

Though addressing this shortcoming is compounded by the opacity of the toolflow for the

Intel FPGA OpenCL SDK, work done by Sanaullah and Herbordt describe a methodology

to isolate the HDL generated from the toolflow [113]. This is done, in part, to classify the

common interfaces generated by the tools and either remove unnecessary parts or modify

unoptimized parts of the OpenCL-generated HDL to reduce the amount of FPGA resources

necessary to build the design and increase performance.

Another inefficiency that is specific to the implementation of kernel Version 5, but applies to

both the PCIe and HARPv2 systems, is the way the staircase shift registers are implemented.

In the kernel source, this is done by allocating local space for a 2D array and then inferring

a shift register from it. Though they are synthesized as a 2D shift register, as shown in

Figure 5.4, only half of it is used. A more efficient approach would be to allocate PAR shift

registers that are the exact size needed to achieve the buffering effect explained in Section

5.1.2. However, this is more complex than just allocating a 2D array and inferring a shift

register because it involves further tweaks to the OpenCL kernel such as manual unrolling

of loops to account for boundary conditions in the algorithm. This problem exemplifies the

tradeoff of productivity versus performance.

89

Kernel
version

PAR BSIZE
Time
(sec)

fmax

(MHz)
Logic

M20K
Bits

M20K
Blocks

DSP
Build Time
(hr:min:sec)

v0 N/A
64 20.530 232.665 30% 16% 28% 1% 11:43:22
128 13.367 211.77 31% 25% 39% 1% 9:8:36
256 15.836 153.985 31% 59% 81% 1% 12:56:10

v2 N/A
8 2.545 162.865 50% 47% 81% < 1% 12:24:00
16 16.735 182.415 35% 40% 58% < 1% 7:26:49

v5

8 256 1.011 215.4 27% 12% 21% < 1% 5:29:05
8 512 1.035 216.26 27% 12% 21% < 1% 5:34:20
8 1024 1.156 213.67 27% 12% 21% < 1% 14:35:26
8 2048 1.210 215.26 28% 12% 21% < 1% 14:22:57
8 4096 1.227 214.17 27% 12% 22% < 1% 13:35:46
8 8192 1.270 213.44 27% 13% 22% < 1% 6:23:05
16 256 0.417 200.8 30% 13% 23% < 1% 9:48:13
16 512 0.410 209.16 30% 13% 23% < 1% 9:27:11
16 1024 0.414 197.86 30% 13% 23% < 1% 15:25:55
16 2048 0.437 205.42 30% 13% 24% < 1% 9:53:23
16 4096 0.449 196.54 30% 14% 24% < 1% 6:00:06
16 8192 1.267 199.84 30% 14% 24% < 1% 15:21:19
32 256 0.338 171.02 40% 19% 30% < 1% 22:30:28
32 512 0.312 180.27 40% 19% 30% < 1% 22:18:48
32 1024 0.298 179.01 40% 19% 30% < 1% 21:41:14
32 2048 0.292 186.81 40% 19% 30% < 1% 18:38:15
32 4096 0.296 179.5 40% 19% 30% < 1% 8:04:14
32 8192 0.297 187.37 40% 19% 30% < 1% 8:27:33
64 2048 0.363 117.85 66% 30% 47% < 1% 31:10:3
64 4096 0.330 129.04 67% 30% 47% < 1% 44:54:53
64 8192 0.332 128.22 67% 31% 48% < 1% 38:16:34

Table 5.2: Results for sweeping the BSIZE parameter for kernel versions 0 and 2 and the
BSIZE and PAR parameters for kernel version 5.

90

Figure 5.6: Graphical depiction of execution times for sweeping across hardware parameters
BSIZE and PAR in kernel Version 5. The bars with greyed-out and diagonal lines represent
parameter configurations for designs that were unable to be fitted for the FPGA.

5.2.2 Hardware Design Space Search

Table 5.2 shows the results for sweeping BSIZE for kernel Versions 0 and 2, as well as the

results for sweeping BSIZE and PAR for kernel Version 5. As in the previous section, the

execution times presented are the lowest times over 100 runs of the respective kernels.

In our experimentation, we define the kernel version design search space for kernel Version

0 as

BSIZE = {64, 128, 256}.

For kernel Version 2, it is

BSIZE = {8, 16}.

91

For kernel Version 5, the search space is the Cartesian product between

BSIZE = {256, 512, 1024, 2048, 4096, 8192}

and

PAR = {8, 16, 32, 64}.

In the case of kernel Versions 0 and 2, the upper bound of the search space was determined by

the largest value that BSIZE could assume while still being synthesizable by the Intel FPGA

OpenCL SDK offline compiler. The upper bounds for kernel Version 5 were determined by

the amount of time required to synthesize a design. It must be noted, though, that for

BSIZE = 256, 512, 1024 and PAR = 64, the compiler was not able to synthesize a design.

Investigating the logs revealed that despite multiple attempts at fitting the design, the

routing was too congested and the fitting phase ultimately failed. Slightly larger designs fit

on the FPGA, i.e. kernels with BSIZE = 2048, 4096, 8192, so we attribute these failures

to shortcomings with the offline compiler.

The optimal settings for BSIZE in kernel Versions 0 and 2 reported in [148] were 128 and 64,

respectively, for the Stratix V FPGA. The optimal HARPv2 BSIZE for Versions 0 and 2 were

found to be 128 and 8, respectively. Thus, the setting matches the optimal setting in [148]

for Version 0 but not for 2. The design space for Version 2 on HARPv2 did not include the

optimal setting from [148], yet it outperformed [148] by a factor of 1.57 and with a smaller

BSIZE. For kernel Version 5, BSIZE and PAR are set to 4096 and 64, respectively, for both

the Stratix V and the Arria 10 FPGA to achieve optimal performance in [148]. However,

the configuration that was optimal in [148] was not the most performant configuration for

the HARPv2 system; the result in [148] is 1.64 times faster. While we expect the best

configuration not to align for different FPGAs, this speaks to the portability of kernels

92

designed for FPGAs connected through a PCIe slot versus the HARPv2 system even when

the FPGAs are the same. Some of this performance difference can be attributed to the large

amount of resources used to implement the CPU/FPGA interface as previously discussed.

While the performance difference is relatively small, this result also suggests that further

consideration must be given when authoring kernels specific to the HARPv2. This is similar

to the claim that OpenCL kernels intended for one type of accelerator will not be the most

performant for another type made in [149] when describing GPUs and FPGAs.

The build times of the different configurations of the kernels are also shown in Table 5.2.

Perhaps the most startling result is the amount of time spent buiding kernels for Version 5.

The longest build time was for BSIZE = 4096 and PAR = 64, which took nearly two days. In

total, it took 14 days to build all the kernels in order to search the design space and find the

most optimal kernel. The amount of time it takes to search the design space by brute force

necessitates the need for performance models, using facets of the kernel and its estimated

resources as inputs, that can be more intelligently searched. To this end, work done by Wang

et al. has demonstrated progress in this area by modeling OpenCL workloads on FPGAs for

the NDR model [134]. Additionally, it would be beneficial to isolate the parameters of such

analytic models which affect performance the most in order to prune the search space of

lower weight parameters. Consider Figure 5.6, which graphically shows the execution times

for all the configurations of kernel Version 5.

When PAR is small (i.e., PAR = 8), execution time increases as BSIZE increases because the

effects of the inefficient staircase register allocation outweighs the benefits of processing a

small number of the substitution matrix in a pipeline-parallel fashion. However, as PAR

grows, the effects of processing more and more columns in parallel has a greater impact

on performance than sweeping the BSIZE parameter. Holding BSIZE to some constant and

sweeping the PAR parameter, which has only 4 discrete values, would lead to finding the

93

optimal setting of 32 for PAR. In this case, the range of execution times for the different

values of BSIZE is 46 ms at 4 days of kernel build time, while the global range is 978 ms at

14 days. This then becomes a tradeoff between an approximate answer found quickly versus

a precise answer found slowly.

5.2.3 SVM Performance

Since the kernel built for the runs with explicit reads and writes is the same one used for

the runs using SVM, the FPGA resource utilization remains the same between the two.

Figure 5.7 shows the benefit in modifying the host code to use the SVM abstraction, as

described in Section 5.1.4, for kernel Version 5 at the best performing parameter configuration

for the HARPv2 system: BSIZE = 2048 and PAR = 32. The execution time reported is the

smallest out of 100 runs.

Figure 5.7: Execution times for kernel Version 5 with BSIZE = 2048 and PAR = 32 for host
code that enqueues reads and writes explicitly to the device and host code that uses the
SVM abstraction.

94

The left bar shows total amount of time the kernel took to execute, as well as the explicit

reads and writes to global memory. Both the explicit reads and writes take longer than

the execution of the kernel and increase the running time by a factor of 4. The right bar

shows the execution time using the modified host code that uses the SVM abstraction. The

time taken to allocate shared buffers was also recorded, but takes 10s of milliseconds and is

negligible relative to the execution time. The time taken to explicitly read and write buffers

was not recorded in [148], but conservatively assuming that explicit reads and writes execute

in one-eighth the time that it does on the HARPv2 system would still have the HARPv2

outperforming the Arria 10 FPGA connected via PCIe slot.

This coherent, low-latency access to shared memory has important implications that require

rethinking current paradigms of offloading computation to accelerators. Most commonly for

compute-intensive tasks marked for accelerator offload, all data necessary for the computa-

tion is moved from from host to device. Since data movement is such an expensive operation,

it is beneficial to perform as much computation as possible on the accelerator before ship-

ping the results back to the host. This is the model used in all of the Needleman-Wunsch

kernel versions in this work when using explicit reads and writes. The initial state for the

substitution matrix and the entirety of the score matrix are moved to the FPGA. Once all of

the substitution matrix has been computed, the updated substitution matrix is moved back

to the host for reading.

The tighter integration present in the HARPv2 system, however, would allow for more fine-

grained interactions between host and device without the overhead currently of explicitly

moving data from CPU to FPGA memory. Huang et al. have investigated the tradeoffs

associated in partitioning tasks and data in heterogeneous systems that collaboratively use

CPUs and FPGAs attached via a PCIe bus [59]. They find that both partitioning schemes

improve the execution time over systems that do not use any kind of collaborative execution.

95

Future OpenCL FPGA kernels targeting the HARPv2 system, then, should take advantage

of the low latency communication between shared memory and the FPGA. Additionally,

application designers should find ways to collaboratively use the CPU and FPGA for a

computation region of interest, instead of relying on one or the other to perform the entirety

of that region.

5.3 Conclusion

FPGAs offer a heterogenous compute solution to the problem of diminishing returns and

physical limits of transistor scaling by enabling the creation of application-specific hard-

ware that accelerates computation. While the barrier to entry has historically been steep,

advances in High Level Synthesis (HLS) are making FPGAs more accessible. Specifically,

the Intel FPGA OpenCL SDK allows software designers to abstract away low level details

of architecting hardware on an FPGA and allows them to author computational kernels in

higher level languages. Furthermore, Intel has developed a system that incorporates both

a multicore Xeon CPU and Arria 10 FPGA into the same chip package, as part of the

Heterogeneous Accelerator Research Program (HARP), that can be targeted by their SDK.

In this work, we targeted the second iteration of the HARP platform (HARPv2) using

HLS through porting OpenCL kernels written for FPGAs connected via PCIe card. We

evaluate their performance against previously reported results, explore the portability of

kernels intended for PCIe-connected FPGAs through a hardware design space search, and

empirically show the benefits of using the SVM abstraction over explicit reads and writes

to the FPGA. Additionally, all artifacts associated with this chapter (code and data) are

available through WashU OpenScholarship [18].

96

Having completed this evaluation of the Intel HARPv2 system, we take the lessons learned

and apply them to the design of domain specific hardware in Chapter 6.

97

Chapter 6

Designing Domain Specific Compute

Systems

As mentioned in Chapter 1, John Hennessey and David Patterson use the slowing of Moore’s

law to signal a new “golden age of computer architecture” and suggested that the path to

a post-Moore’s law world is paved, in part, by domain specific computing. This key idea

means less emphasis on the paradigm of improving general purpose processors and more

towards hardware and surrounding infrastructure for processors that focus on a class or

domain of applications in a high-performing manner. The hardware flexibility of FPGAs,

paired with incrementally easier programmability through HLS, can be used to realize the

vision of post-Moore systems that incorporate heterogeneous compute components.

At present, domains are comprised of applications that align with the dictionary definition

of the area, e.g., support vector machines and convolutional neural networks are types of

machine learning applications so they fall under the domain of machine learning. While

we gleaned valuable insights from our definition and characterization of the domain of data

integration, we aim to further our understanding of the domain by making quantitative

design choices.

98

Specifically, the quantitative decisions we want to make are about designing domain specific

hardware. The question is:

How do you architect hardware for a domain?

In the previous chapter, we made our initial evaluation of using OpenCL to design hardware

for the HARPv2 system. OpenCL enables the design of hardware at a much higher level

of abstraction than RTL, but this increase in programmability is not without its own chal-

lenges. While FPGA hardware can be described using a higher level of abstraction, it can be

unclear what hardware results from a specified kernel of computation. Often, the inclusion

or exclusion of one line or even a keyword can imply a non-trivial amount of hardware and

can have a large impact on the design that is inferred. In particular, we learned in Chapter

5 how impactful the execution model and the tuning of hardware parameters can be towards

performance.

In this chapter, we take the lessons learned from Chapters 3, 4, and 5 in order to refine our

knowledge of the data integration domain and architect domain specific hardware. We apply

our multi-spectral reuse distance technique to the DIBS applications in order to generate

outputs that will serve as features to an unsupervised clustering technique. We then use

these clusters to create sub-domains of our original domain that inform the hardware design

choice of width versus depth, i.e., should a design be architected as a wide vectorized com-

pute unit that executes multiple threads or a deeply pipelined compute unit that is controlled

by a single thread? Each paradigm, additionally, comes with its own coarse-grained design

knobs that are specific to that paradigm. Even when the best execution model is chosen, the

knobs must be tuned for optimal performance along with other optimizations that may be

applicable. We will show that, even for seemingly simple kernels, there are design choices and

optimizations to be made whose interaction and performance are not immediately obvious.

99

The situation is, in fact, analogous to the need to optimize codes for good cache performance

in the HPC community, which is primarily an empirical task [137], even today [77] Addition-

ally, we present our methodology for overcoming limitations of the currently available tools

for OpenCL kernel development on the platform and justifying design decisions through this

methodology.

6.1 Methods

6.1.1 Clustering of Domain Applications

In our initial analysis of DIBS, we observed that data movement operations comprised a

large fraction of the dynamic instruction mix. We will explore this notion further, and

leverage multi-spectral reuse distance to quantitatively assess both the temporal and spatial

locality of data references within the benchmark suite, and then use the outputs of this tool

as features to an unsupervised learning technique.

Specifically, we use k -means clustering, with k = 2, to cluster the DIBS applications into

two groups. The results are shown in Figure 6.1, where the two axes are the Earth Mover’s

Distance (EMD) measure [110] separating two different granularities of reuse distance. The

x axis is EMD for 64-byte vs. 4-KiB granularity and the y axis represents 4-KiB vs. 2-MiB

granularity. The resulting two clusters are shown as distinct colored points on the graph.

Based on this result, we see that there is a division of the applications within the originally

specified domain of the benchmarking suite. We posit that these clusters might reasonably

represent sub-domains of the initial data integration domain, and the cluster that a given

100

Figure 6.1: k -means clustering of the DIBS applications.

application is in will allow us to determine whether it will benefit from a wide or deep

implementation.

6.1.2 Evaluating the Hardware

Once the sub-domain identification phase is complete, the target hardware platform must

be selected, which, in our case, is the Intel HARPv2 CPU+FPGA system. The benefits

of using this platform are threefold. The first is that we are able to take advantage of

the reconfigurable nature of FPGAs. This functionality provides the basis of being able to

hardware architect specific to the domain. The second is that the location of the FPGA

on fabric alongside the Xeon cores allows for lower latencies and higher data transfer rates.

This is beneficial because the workload characterization of DIBS shows a prevalence of data

101

movement. Finally, the system can be targeted using the Intel FPGA OpenCL SDK. As

opposed to using an HDL, this allows hardware designers to think about hardware design

in a way that is semantically closer to the application, which lowers the technical barrier to

using FPGAs. Moreover, it allows for an easier parameterization of the hardware design,

enabling a more user-friendly way of tuning the design for optimal performance.

6.1.3 Kernel Development

When authoring FPGA designs using OpenCL, an important design choice is whether to

architect a hardware kernel as a widely vectorized compute unit or deep pipeline, as shown

in 6.2.

Figure 6.2: A block diagram showing (top) a design using the MWI execution model with
multiple threads executing on multiple processing elements and (bottom) a deep pipeline
orchestrated by one thread.

Insights and heuristics from the literature contend that the most performant design paradigm

is to opt for the deeply pipelined approach. However, there are applications for which the

102

SIMD choice is more performant, e.g., a tiled matrix-multiply unit for convolutional neural

networks. One of the intended contributions of this work is to be able to inform this decision

based on the quantitative assessment from Section 6.1.1.

Specifically, we use the application groupings resulting from the k -means analysis to make

this choice. Noting that applications with EMD scores closer to 0 exhibit a higher degree

of spatial locality, we posit that the applications in the lighter colored group will benefit

from a wide SIMD architecture. This is because spatially local memory accesses are easier

to coalesce to take full advantage of widely vectorized architectures. In order to evaluate

this hypothesis, we select three applications from each cluster.

6.1.4 Hardware Design Parameters

When designing OpenCL FPGA kernels, there are coarse-grained design knobs associated

with each design paradigm. Each of these knobs has a set of assumable values that creates

a hardware design space. The configuration of these knobs ultimately determines how much

hardware is generated and how much of the FPGA’s on-chip resources are utilized.

Deeply pipelined architectures are referred to as single-work item (SWI) kernels in the

OpenCL literature. This is because the entirety of the computation is authored as a single-

threaded task that is contained within a loop or set of loops. As such, the coarse-grained

knob associated with SWI kernels is the unrolling of loops within the task, or the loop

unrolling factor.

The loop unrolling factor allows for more iterations of a loop to be completed once the

pipeline is fully saturated. Additionally, it gives the Intel FPGA OpenCL SDK compiler

more opportunities to create optimizations between loop iterations.

103

Widely vectorized architectures are referred to as multiple-work item (MWI) kernels. This

compute paradigm is more aligned with massively-threaded SIMD architectures like GPUs,

in contrast to the single-threaded tasks in the SWI case. Kernels designed in this paradigm

generally benefit from little to no dependencies between loop iterations, because synchro-

nization can be costly. Additionally, irregular applications characterized by an abundance

of conditional execution are also not suitable for this type of design paradigm.

In order to evaluate the performance between paradigms, we take the Cartesian product of

all knobs, and synthesize hardware for each configuration. The description of the hardware

design spaces of the kernels and their design are outlined in the following section.

6.2 Kernels

To determine the most performant execution model, we implement an MWI and SWI version

for our chosen subset of the DIBS applications and perform a design space search using the

coarse-grained hardware knobs specific to each execution model. As stated in Chapter 3,

most of our applications consist of a sequential loop over all of the data records of a given

input and performing the integration task. This is reflected, as well, in the design of the

MWI and SWI implementations of each kernel. Broadly, SWI kernels mostly resemble their

sequential CPU implementation, since this OpenCL execution model relies on a single thread.

MWI kernels differ slightly in that the for loop is removed in favor of multiple threads execute

the original loop body and which sequential iteration it corresponds to is determined by the

thread’s local ID and the work-group to which it belongs.

When implementing OpenCL kernels for each of these applications, we needed to isolate

which component of a given application was to be accelerated by the HARPv2 system.

104

The original ebcdic txt, idx tiff, and fix float applications, by design, consisted of few

tasks and so it was easy to isolate which component of those applications to accelerate.

The applications edgelist csr, fa 2bit, and 2bit fa, were all applications taken from the

literature for which we needed to isolate the data integration tasks from their respective

original applications. However, the number of data integration tasks was more than the first

three applications. In order to isolate which components to accelerate, we use the Linux

perf utility to generate a function call graph with the percentage of all counted CPU cycles

spent in a given function. The command to generate this call graph, in general, takes the

following form:

perf record -F 1024 --call-graph dwarf -- <app binary> <app arg0> <...>

where the -F option specifies the frequency (in HZ), to record profiling information (number

of CPU cycles by default), --call-graph dwarf indicates a call graph is to be generated

by employing the DWARF debugging information format, <app binary> is the application

binary, and <app arg0> <...> are the associated application arguments. For the latter three

applications, we elaborate on which task is selected to get an OpenCL FPGA implementation

in Sections 6.2.4, 6.2.5, and 6.2.6.

In the following subsections, we will describe the design coarse-grained knobs for each ap-

plication for which we implemented FPGA designs. We describe the subset of all kernels

architected, but use the ebcdic txt application as an in-depth example.

105

1 __attribute__((num_compute_units(NUMCOMPUNITS)))

2 __attribute__((reqd_work_group_size(WGSIZE,1,1)))

3 __attribute__((num_simd_work_items(NUMSIMD)))

4 __kernel void

5 k_e2a(__global const uchar* restrict src,

6 __global uchar* restrict dst) {

7 unsigned char e2a_lut[256] =

8 {

9 0, 1, 2, 3,156, 9,134,127, /* e2a chars 0-7

*/

10 151,141,142, 11, 12, 13, 14, 15, /* 8-15 */

11 ...

12 48, 49, 50, 51, 52, 53, 54, 55, /* 240-247 */

13 56, 57,250,251,252,253,254,255 /* 248-255 */

14 };

15
16 unsigned int i = get_global_id(0);

17 uchar orig_char = src[i];

18 uchar xformd_char;

19
20 xformd_char = e2a_lut[orig_char];

21
22 dst[i] = xformd_char;

23 }

Listing 6.1: Baseline Implementation of the MWI ebcdic txt kernel using the OpenCL API
and syntax.

6.2.1 ebcdic txt

The pseudocode for the MWI implementation of ebcdic txt is shown in Listing 6.1, and

largely follows the sequential implementation found in the original application.

The conversion is performed by using the EBCDIC character as an index (line 20, Listing

6.1) into a 256 character look up table (line 7-14, Listing 6.1) that maps the input EBCDIC

character to the appropriate ASCII character.

Memory Access Hardware Compiler Hints

The const keyword is applied to the global input buffer src (line 5, Listing 6.1) to tell the

hardware compiler that this buffer is read-only. The hardware compiler, in turn, will be given

permission to perform more aggressive optimizations regarding loads from this buffer [60].

Both the src and dst (lines 5 and 6, Listing 6.1) global memory buffers are both preceded

by the restrict keyword. This hints to the hardware compiler to “trust” the programmer’s

106

global memory accesses–this is a guarantee that there will be no pointer aliasing among

these global buffers, and that there is no need to account for load and/or store dependencies

between the buffers.

MWI Implementation

For the MWI model, there are three knobs: number of compute unit replicates

(NUMCOMPUNITS), the required work-group size (WGSIZE, i.e., the number of local

work items that will belong to a work-group), and the SIMD factor (NUMSIMD), i.e., how

many times to replicate the data path). These knobs are set in lines 1-3 of Listing 6.1.

The design space for this kernel is shown in Equation 6.1.

WG = {128, 256, 512, 1024}

NCU = {1, 2, 4, 8}

NS = {1, 2, 4, 8, 16}

(6.1)

We find that, generally, MWI kernels benefit mostly from increasing the knobs to their high-

est assumable values, which we will use as a design heuristic in Section 6.3.3. In particular,

larger work-group sizes allow for work to be chunked in a spatially local way. Increasing

NUMCOMPUNITS and NUMSIMD increases throughput by inferring multiple I/O in-

terfaces and widening those interfaces, respectively. Additionally for the latter case, these

wider interfaces allow for more data to be statically coalesced for access, which makes better

use of the available bandwidth.

SWI Implementation

The SWI kernel code, shown in Listing 6.2, is similar to the MWI kernel, even though their

execution models are orthogonal.

107

1 __attribute__((max_global_work_dim(0)))

2 __kernel void

3 k_e2a(__global const uchar* restrict src,

4 __global uchar* restrict dst),

5 unsigned int total_work_items) {

6 unsigned char e2a_lut[256] = { ... }

7 uchar orig_char, xformd_char;

8 unsigned int i;

9
10 #pragma unroll UNROLL

11 for (i = 0; i < total_work_items; ++i)

12 {

13 orig_char = src[i];

14 xformd_char = e2a_lut[orig_char];

15 dst[i] = xformd_char;

16 }

Listing 6.2: Implementation of SWI ebcdic txt kernel.

One difference is the extra argument that tells the kernel how many times to perform the

data transformation (total work items in line 6, Listing 6.2). All of the work to be executed

is wrapped in a for loop whose exit is conditioned on total work items. Another difference

is that there is only one coarse-grained knob associated with this execution model: the loop

unroll factor for the for loop in line 11 of Listing 6.2. This is supplied as a compiler hint set

by the tunable parameter UNROLL in line 10 of Listing 6.2.

The design space for this kernel is shown in Equation 6.2.

UNROLL = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} (6.2)

6.2.2 idx tiff

The pseudocode for the MWI implementation of idx tiff is shown in Algorithm 2. The

MWI implementation of this kernel follows the same structure as the original sequential CPU

implementation. The main difference is that we exploit the task parallelism inherent in the

creation of each TIFF image; since the creation of one TIFF image does not depend on the

108

creation of other TIFF images, we assign the creation of each image its own work-group so

that it may be scheduled concurrently. The design space for this kernel is shown in Equation

6.3.

Algorithm 2: OpenCL kernel pseudocode for MWI idx tiff implementation.

1: work-group threads read TIFF header data from input buffer and write to output
buffer

2: work-group threads read IDX3 pixel data and write to output buffer
3: work-group threads read TIFF header data from input buffer and write to output

buffer

WG = {64, 128, 256, 512}

NCU = {1, 2, 4, 8}

NS = {1, 2, 4, 8, 16}

(6.3)

The pseudocode for the SWI implementation is shown in Algorithm 3. The implementation

is largely the same as the MWI implementation, except that the transformation of each

image is handled by a single thread as opposed to multiple threads and work-groups, and

the boundary condition num images is passed as a kernel argument. The design space for

this kernel is shown in Equation 6.4.

Algorithm 3: OpenCL kernel pseudocode for SWI idx tiff implementation.

1: for i← 0 to num images do
2: read TIFF header data from input buffer and write to output buffer
3: read IDX3 pixel data and write to output buffer
4: read TIFF header data from input buffer and write to output buffer
5: end for

UNROLL = {1, 2, 4, 8, 16, 32, 64, 128, 256} (6.4)

109

6.2.3 fix float

The pseudocode for the MWI implementation of idx tiff is shown in Algorithm 4. The

MWI implementation of this kernel follows the sequential CPU implementation, but takes

advantage of the fact that the conversion of each fixed-point value does not depend on any

other conversion. Thus, threads in any work-group can be scheduled to execute concurrently.

The design space for this kernel is shown in Equation 6.5.

Algorithm 4: OpenCL kernel pseudocode for MWI fix float implementation.

1: work-group threads read fixed point values from input
2: work-group threads cast fixed point values to float type
3: work-group threads calculate 1 << Qvalue to determine binary point and then cast

to float type
4: work-group threads divide by fixed point value by binary point to get float type

representation point and then cast to float type
5: work-group threads write converted data to output buffer

WG = {128, 256, 512, 1024}

NCU = {1, 2, 4, 8}

NS = {1, 2, 4, 8, 16}

(6.5)

The pseudocode for the SWI implementation is shown in Algorithm 5. The SWI implemen-

tation is the same as the MWI implementation, except that only one thread handles the

entirety of the conversions, and the boundary condition num fix vals is passed as a kernel

argument. The design space for this kernel is shown in Equation 6.6.

UNROLL = {1, 2, 4, 8, 16, 32, 64, 128}. (6.6)

110

Algorithm 5: OpenCL kernel pseudocode for SWI fix float implementation.

1: for i← 0 to num fix vals do
2: read fixed point value from input
3: cast fixed point value to float type
4: calculate 1 << Q− value to determine binary point and then cast to float type
5: divide by fixed point value by binary point to get float type representation point

and then cast to float type
6: write converted data to output buffer
7: end for

6.2.4 edgelist csr

Upon profiling edgelist csr with the Linux perf utility, we found that over 50% of the

time spent generating the CSR representation from the input edgelist is spent in sorting the

function sorting the adjacency lists for each vertex. The original downstream application

for this conversion was breadth first search, and sorting each adjacency list is a precursor to

deduplicating vertices since multiple edges to the same vertex is redundant for this applica-

tion. Because the majority of time spent generating the CSR representation is spent sorting,

we decide to focus on building sorting kernel. Gautier et al., as part of an OpenCL FPGA

benchmarking suite called Spector [47], provide the OpenCL kernel source code for a merge

sort implementation that we adapt for our data integration application. The MWI OpenCL

kernel pseudocode for merge sort is shown in Algorithm 6. The design space for this kernel

is shown in Equation 6.7.

Though we use the knob nomenclature from Spector, the knobs still largely match our

methodology of defining a design space with coarse-grained knobs for a given execution

model. The subset of the design space that we use is shown below.

111

Algorithm 6: OpenCL kernel pseudocode for MWI merge sort in edgelist csr application.

1: work-group threads read chunks of local sort size into local memory
2: work-group threads sort chunks using mergesort

3: work-group threads write sorted chunks back to global memory

NUMWORKITEMS = {1, 2, 4, 8, 16}

NUMWORKGROUPS = {1}

NUMCOMPUTEUNITS = {1, 2}

UNROLLLOCAL = {1, 2, 4, 8, 16}.

(6.7)

For this kernel, the total number of global work items is set to

nnum work items × nnum work groups

where

nnum work items ∈ NUMWORKITEMS

and

nnum work groups ∈ NUMWORKGROUPS

.

Before this kernel, each of the prior kernels’ total global work item size was a function of

the input data size. In this case, it is solely a function of the knob configuration. The

112

amount of work that each work item completes, however, is still a function of the input

data size and the knob configuration. The knob UNROLLLOCAL determines the loop

unroll factor for how many concurrent reads of input data and writes of sorted data occur.

NUMWORKITEMS is the same as work-group size.

Algorithm 7: OpenCL kernel pseudocode for SWI merge sort in edgelist csr application.

1: for i← 0 to num chunks do
2: read chunk of local sort size into local memory
3: sort chunk using mergesort

4: write sorted chunk back to global memory
5: end for

For the SWI implementation, we restrict the number of work items, work groups, and com-

pute units to 1 in order to force the synthesis of a single work item kernel. The pseudocode

for this kernel is shown in Algorithm 7, and the boundary condition num chunks is passed

as a kernel argument. The resulting design space subset is shown in Equation 6.8.

UNROLLLOCAL = {1, 2, 4, 8, 16}. (6.8)

6.2.5 2bit fa

The Linux perf profiling results for this application revealed that 25.64% of the counted

CPU cycles were spent in the function toUpperN, which takes a pointer to a char buffer of

FASTA bases characters and the size of that buffer. The function iterates over the entire

buffer and transforms each base to its upper-case representation if it is not already upper

case. The actual upper-case transformation is provided by the C standard library. Examining

this source code shows that the conversion is made by referencing a look-up table.

113

When designing the OpenCL kernel for this transformation, we instead take advantage of

the fact that the difference between the upper and lower case values is equal to 32, which,

in binary, can be added or removed by setting the 5th bit in an n-bit binary value. To take

advantage of this, we apply a mask of 0xDF to each character to isolate the 5th bit and

remove it. If the character is lower case, the mask will un-set the 5th bit. If the character

is already upper-case, then the mask preserves the character’s original value. The MWI

OpenCL kernel pseudocode for merge sort is shown in Algorithm 8. The design space for

this kernel is shown in Equation 6.9.

Algorithm 8: OpenCL kernel pseudocode for MWI upper case conversion in 2bit fa ap-
plication.

1: initialize mask ← 0xDF for each thread
2: work-group threads read FASTA characters
3: work-group threads compute FASTA characters ∧mask
4: work-group threads write converted characters back to global memory

WG = {128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768}

NCU = {1, 2, 4, 8}

NS = {1, 2, 4, 8, 16}

(6.9)

The SWI implementation is largely the same as the MWI implementation, except there

is only one thread coordinating all of the upper-case transformations, and the boundary

condition seq size is passed as a kernel argument. The pseudocode for this kernel is shown

in Algorithm 9 and the design space is shown in Equation 6.10.

UNROLL = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}. (6.10)

114

Algorithm 9: OpenCL kernel pseudocode for SWI upper case conversion in 2bit fa appli-
cation.

1: initialize mask ← 0xDF for each thread
2: for i← 0 to seq size do
3: read FASTA characters
4: compute FASTA character ∧mask
5: write converted characters back to global memory
6: end for

6.2.6 fa 2bit

The Linux perf report for this application showed that approximately 44% the counted

CPU cycles are split evenly between four, similar functions: The first two functions count

the number of blocks of the character {n,N} and the number of blocks of lower case bases,

respectively. The other two functions store the indices of of {n,N} and lower case blocks.

We opt to accelerate one of the latter two functions: specifically, the function that stores the

indices of lower case blocks. Though we present the implementation for only this function,

similar kernels could be constructed for each of the other applications. We leave this to

future work.

The pseudocode is for this implementation is shown in Equation 10. In the original, sequen-

tial implementation of the lower case block counting function, a variable is used to track

whether or not the base from the previous loop iteration was lower case or not. If the base of

the current loop iteration is also lower case, the current lower case block has not yet ended.

If this is not the case, the current character is upper case, which marks the end of the lower

case block, and its size and initial position is recorded. Because of the loop dependency

between iterations, we use a map-reduce approach to parallelize the function. The total

number of bases is divided by the work-group size of the kernel being run, e.g., a kernel

built with a work-group size of 2048 means that there are total bases
2048

chunks of the original

size, and thus total bases
2048

work-groups. Each work-group will locally track its positions of

115

lower-case blocks. Once all work-groups have completed, a single-thread will combine all of

the local information tracking the indices of the local lower case blocks with their respective

sizes and write them into a global buffer.

Algorithm 10: OpenCL kernel pseudocode for MWI lower case block tracker in fa 2bit

application.

1: work-group threads track lower case blocks in blk size chunks by keeping track of the
start and stop indices of consecutive lower case bases

2: one thread reduces chunks to track lower case blocks across entire input and writes
results to output buffers

The design space for this kernel is shown in 6.11.

WG = {128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144}

NCU = {1}

NS = {1}

(6.11)

The SWI implementation for this application is shown in 11. This implementation follows

the implementation of the original, sequential implementation and is orchestrated by one

thread. The boundary condition seq size is passed as a kernel argument.

Algorithm 11: OpenCL kernel pseudocode for SWI lower case block tracker in fa 2bit

application.

1: for i← 0 to seq size do
2: track lower case blocks in entire input by recording the start and stop indices of

consecutive lower case bases
3: end for

116

The design space is shown in Equation 6.12.

UNROLL = {1, 2, 4, 8, 16} (6.12)

6.3 Other Design Considerations

In this section, we confirm the benefit of using the SVM abstraction used in Chapter 5 and

how we can visualize OpenCL-level design choices, despite the available tools for OpenCL

kernel development on the platform, in order to make smarter design choices. We also discuss

the implications of further adding optimizations to a kernel for which the most performant

execution has been found. Specifically, we evaluate the impact of vectorizing the uchar

datatype in the MWI version of the ebcdic txt application.

6.3.1 Overlapping Data Transfer and Execution

A key feature of the OpenCL environment specific to the Intel HARPv2 platform is that

external memory is shared between the CPU and FPGA. This removes the problem of having

to transfer data from host memory to FPGA memory and vice versa. This also allows for

data transfer to directly overlap execution instead of waiting for explicit reads and writes

between host and device memories. The interface to this memory is made available as an

extension to the OpenCL 1.0 specification. Here, we allocate the src and dst buffers on

the host side using the extension. Figure 6.3 shows the benefit of this method, which is

congruent with related work [17].

117

Figure 6.3: Execution times of explicit reads and writes to memory and using the OpenCL
1.0 SVM extension.

6.3.2 Visualizing the Hardware

Figure 6.4: Approximate cycle schedule of the control flow data graphs (CDFGs) that rep-
resent unbounded (left) and bounded (right) versions of the ebcdic txt kernel.

A challenge of using HLS to design hardware is the lack of ability to visualize what the

hardware compiler will synthesize based on the OpenCL kernel that is authored. To this

end, more recent versions of the Intel tools allow for an abstracted system level view of the

hardware to be synthesized, by representing the operations to be executed as a control data

118

flow diagram (CDFG) without having to fully synthesize a kernel. Historically in high level

synthesis, viewing the abstracted hardware in this form is used to help reason about data

dependencies and what cycle(s) to schedule operations on [93]. In this work, we will use this

visualization as an aid to understand how a design choice made during the OpenCL kernel

design process will impact the hardware that results. While this newer version of the tools

is not supported by our target platform, we can still use them to effectively visualize design

choices. This is valuable as the issue of tool versions is a general problem. We now show a

use of this technique that allowed us to prune the design space and make an informed design

decision by allowing us visualize a poor design choice made at the OpenCL kernel level and

subsequently ignore it.

A requirement of MWI OpenCL kernels is that the work-group size evenly divides the number

of global work-items (the total amount of work to be done). This is often not a naturally

occurring feature when trying to accelerate applications. Consider, for example, that the

optimal work-group size of the ebcdic txt kernel was found to be 1024. Since the global

work-item size is not a multiple of 1024, this requirement is not met. In order to address

the “loose ends,” a common solution is to inflate the global work-item size to satisfy the

requirement. In our case, we could pad the input file sizes with NULL characters until the

input size is a multiple of 1024 and modify the ebcdic txt kernel to implement bounds

checking to make sure that the kernel only processes meaningful input items. This is done

by wrapping lines 16-22 of Listing 6.1 in an if statement conditioned on the true global

work item size, as shown in Listing 6.3.

While this is a seemingly innocuous design choice for kernels targeting CPUs or GPUs with

hardware support for conditional code, this is a costly operation when synthesizing hardware

for the FPGA. Every operation (excluding dead code) specified in the kernel results in logic

that gets synthesized into real hardware. The negative impact of this conditioned execution

119

...

if (i < total_work_items)

{

unsigned int i = get_global_id(0);

uchar orig_char = src[i];

uchar xformd_char;

xformd_char = e2a_lut[orig_char];

dst[i] = xformd_char;

}

Listing 6.3: Using bounds checking to avoid the “loose ends.”

on the hardware may not be immediately obvious, so we leverage the system level viewer of

a more recent version of the Intel tools to help better understand the impact of this choice.

Figure 6.4 shows the system level view of two versions of the MWI ebcdic txt kernel and the

approximate cycle schedules of the CDFGs for an FPGA in the same product line (Arria 10)

as our target platform. We will refer to the kernel version with no bounds checking as the

unbounded case, and kernels with bounds checking as the bounded case. The left figure

represents the CDFG and schedule for the unbounded case and the data path is replicated

by a factor of N (i.e., NUMSIMD = N). It is also the same schedule for the bounded case,

but only when NUMSIMD = 1. The right figure represents the bounded case where the

data path is replicated 4 times.

The intuition behind this juxtaposition is that the schedule of the unbounded case does not

change as the data path is replicated while the bounded case serializes accesses to global

memory to maintain correctness. The total number of cycles for multiple replicas in the

unbounded case scales well as NUMSIMD increases because the hardware compiler is able

to infer a wider I/O interface to global memory. The bounded case shows that each replica

of the data path requires an additional serial global memory access, thereby increasing the

cycle count when a work-item is scheduled. Thus, by performing this visualization, we opted

120

to design the MWI kernel using the unbounded approach and take care of the remaining

global work-items on the host side.

Going a step further, we observe the estimated resource utilization and work-item latencies

for the unbounded and bounded cases when WGSIZE = 512, NUMCOMPUNITS = 8,

and NUMSIMD = 16. We observe that the bounded case takes up at least 4× more

resources than the unbounded case with respect to available look-up tables, flip-flops, and

RAMs. In fact, the bounded case uses up 108% of the FPGA’s RAMs, which would not

be synthesizable. Additionally, we can see the effect of serialization in that the latency

of the bounded case is > 16× larger than the unbounded case. Thus, by performing this

visualization using a newer version of the tools, it allows us to ignore a design choice that

would be blatantly detrimental to overall performance.

6.3.3 Widening the Data Type

We now build upon the baseline ebcdic txt MWI kernel configuration established in Section

6.2.1. In this section, we detail an OpenCL design optimization to aid the hardware compiler

in inferring even wider I/O interfaces and further statically coalescing memory accesses. This

is accomplished by increasing the width of the data types in the ebcdic txt kernel, we we

do by leveraging the OpenCL specification for vectorized data types. Specifically, we can

modify the uchar type to uchar{2,4,8,16}. The modified kernel version using uchar4 is

shown in Listing 6.4, where the src, dst, orig char, and xformd char variables all reflect

the new data type. While the kernel description is unaffected by the data type vectorization,

this optimization implicitly modifies the global work item size by a factor of the new data

type width and effectively creates additional “loose ends.” We must account for this in the

host side code.

121

1 ...

2 __kernel void

3 k_e2a(__global const uchar4* restrict src,

4 __global uchar4* restrict dst)

5 {

6 unsigned char e2a_lut[256] = { ... };

7
8 unsigned int i = get_global_id(0);

9 uchar4 orig_char = src[i];

10 uchar4 xformd_char;

11
12 xformd_char.s0 = e2a_lut[orig_char.s0];

13 xformd_char.s1 = e2a_lut[orig_char.s1];

14 xformd_char.s2 = e2a_lut[orig_char.s2];

15 xformd_char.s3 = e2a_lut[orig_char.s3];

16
17 dst[i] = xformd_char;

18 }

Listing 6.4: Kernel with vectorized uchar types.

In order to understand the effects of this optimization as it interacts with the existing knobs

of the baseline MWI kernel, we create versions of the kernel with each available widened

data type and use a reduced design space as guided by the heuristic outline in Section 6.2.1.

The new design space becomes

WG = {512, 1024}

NCU = {1, 2, 4, 8}

NS = {1, 2, 4, 16}

(6.13)

In this case, there are 32 unique configurations that we consider in order to evaluate this

optimization.

Once the most performant kernel is found, we measure the impact of input scaling on this

kernel. This is done by using the original file to create differently-sized versions (roughly

powers of 2 in file size) up to 1 GB.

122

6.4 Results

The results of the design space search using all possible knob configurations outlined in

Section 6.2 are presented in Section 6.4.1. Each application was run with 1GB of input

data except for the edgelist csr and fa 2bit applications; those applications used input

sizes of 2MB and 256MB respectively. The former is due to limitations in the hardware

compiler caused by the complexity of the merge sort kernel. While the applications produced

functionally correct outputs using 1GB of input data during the hardware emulation phase,

the actual hardware for that application was never able to finish. The latter is due to the

MWI implementation requiring multiple, large memory allocations from the available 4GB

of memory shared between the CPU and FPGA. An input size of 256MB was the largest

possible input to stay within the shared memory budget.

The input data for each application remained the same for each application, i.e., each ap-

plication used the same dataset and the size never varied. For 5 out of the 6 applications,

this would cause minimal or no performance variation. However, the sort implemented in

the edgelist csr application is susceptible to the contents of the input edge list even if the

size remains the same. Consider an edge list with n edges. If the origin for each edge in the

edge list is the same for all n edges, only one sort needs to execute. However, if there are 2

origins, at least two instances of the sort need to execute. As the number of origins increases,

so does the number of sorts that need to occur. Issuing multiple instances of the sort kernel

to the command queue may incur non-trivial overheads as the number of items to be sorted

in each kernel instance decreases. This, in turn, may result in performance degradation.

An overview of the most performant knob configuration for each execution model is shown

in Table 6.2. When performance is mentioned, it is always assumed that the performance

metric is data rate. Claims of “optimal” designs and performance are optimal for the design

123

space that is defined in this work for a given kernel. In Section 6.4.2, we present the results of

our performance predictions from Section 6.1.1. Finally, we present the results of widening

the datatype in the MWI implementation of the ebcdic txt application in Section 6.4.3.

6.4.1 Design Space Search Sweeps

SWI Design Space Search Results

In 4 of the 6 applications–idx tiff, fix float, edgelist csr, and 2bit fa–display the

same trend of a monotonically increasing and then decreasing data rate when increasing the

amount that the computation loop is unrolled. The SWI sweep results for these applications

are featured in Figures 6.5, 6.6, 6.7, and 6.8, respectively.

Figure 6.5: Result of sweeping across loop unrolling factor for idx tiff application.

The cause of this result is similar to the effects of scaling knobs as described in Section 5.2.1.

As the knobs are set to higher values, the complexity, area, and FPGA resource utilization of

the hardware to be synthesized also increases. This, in turn, increases the difficulty in routing

all of the logic elements and memories (and hardened floating-point units when applicable),

124

Figure 6.6: Result of sweeping across loop unrolling factor for fix float application.

Figure 6.7: Result of sweeping across loop unrolling factor for mergesort implementation of
the edgelist csr application.

125

Figure 6.8: Result of sweeping across loop unrolling factor for toUpper implementation of
the 2bit fa application.

and causes the hardware compiler to reduce the maximum clock frequency in order to meet

timing constraints.

The hardware implementations for ebcdic txt and fa 2bit each have different trends. The

SWI design space sweep for these applications is shown in Figures 6.9 and 6.10, respectively.

In the case of ebcdic txt, a loop unrolling factor of 1, i.e. no loop unrolling, is the second

best performing SWI kernel for this application. From loop unrolling factors 2 through 1024,

the performance is monotonically increasing through the rest of the design space. Intuitively,

the monotonically increasing performance as the loop is unrolled is to be expected because

unrolling the loop further exposes more parallelism, and there are no dependencies between

loop iterations. This means the kernel iterations should be launched successively with no

stalling. Additionally, the benefit of loop unrolling outweighs the effects of higher FPGA

resource utilization and lower clock speeds, since the performance monotonically increases.

However, the high performance with no loop unrolling is uninuitive. We attribute this to

effects introduced by the hardware compiler. When the loop unrolling pragma is set to 1, it

is effectively ignored by the hardware compiler. By not setting the loop unrolling pragma,

126

Figure 6.9: Result of sweeping across loop unrolling factor for ebcdic txt application.

this, in turn, may allow the hardware compiler to try more aggressive optimizations that it

would otherwise be limited when unrolling the loop.

For the fa 2bit implementation, the performance of each design as the loop unrolling factor

is scaled up is monotonically decreasing. The performance of the implementation with no

loop unrolling is 45× faster than the unrolling the loop by a factor 2. The partially unrolled

loop has a data dependency between iterations; a write to memory in one iteration directly

depends on a state variable written in the previous iteration. In the version with no loop

unrolling, the hardware compiler is able to pipeline the original data path and still execute

an iteration of the loop on every clock cycle. Once the loop becomes partially unrolled,

however, the hardware compiler stalls the pipeline until the previous writes to the state

variable have been resolved. Thus, successive iterations cannot be launched every cycle.

In general, then, we observe that the presence of data dependencies in a SWI kernel loop

suggests that the loop will not benefit from being unrolled because the hardware compiler

will introduce stalls between iterations in order to resolve the dependency; the performance

without loop unrolling will be superior. However, when there is no data dependency present,

127

Figure 6.10: Result of sweeping across loop unrolling factor for storeBlocksOfLower imple-
mentation of the fa 2bit application.

there is a global maximum that exists in the search space, such that past a certain level of

partial loop unrolling, the effects of exposing that iteration-level parallelism is outweighed by

the amount of resources and routing complexity that arises when more operations required

to realize that parallelism.

MWI Design Space Search Results

Figures 6.11, 6.12, 6.13, and 6.14, represent the MWI results for the MWI implementations

of the edgelist csr, ebcdic txt, fix float, and 2bit fa applications, respectively.

From these results, we observe that, in general, increasing the work group size of a kernel

will increase the performance. Taking the average of the performance for the subset of the

design space at each work-group size (e.g., the Cartesian product of all possible values of

NUMCOMPUNITS and NUMSIMD when holding WGSIZE fixed) for the aforemen-

tioned kernels results in better performance as WGSIZE increases. The average data rates

of these kernels for fixed work group sizes are shown in Table 6.1.

128

Figure 6.11: Result of sweeping across all possible of configurations within the ebcdic txt

MWI hardware design space. The set of possible WG, NCU and NS combinations are
evaluated.

Figure 6.12: Result of sweeping across all possible of configurations within the fix float

MWI hardware design space.

129

Figure 6.13: Result of sweeping across all possible of configurations within the mergesort

implementation of the edgelist csr application.

Figure 6.14: Result of sweeping across all possible of configurations within the toUpper

implementation of the 2bit fa application.

130

Application
Work-Group

Size
Data Rate

(GB/s)

ebcdic txt

128 0.430

256 0.651

512 0.886

1024 1.076

fix float

128 0.799

256 1.205

512 1.610

512 1.943

edgelist csr

128 1.123e−4

256 1.511e−4

512 1.669e−4

512 1.677e−4

2bit fa

128 0.434

256 0.664

512 0.898

1024 1.114

2048 1.242

4096 1.333

8192 1.373

16384 1.406

32768 1.418

Table 6.1: Average data rates of the MWI kernel for which there is a positive relationship
between work-group size and performance.

131

While the performance is not monotonically increasing in idx tiff and fig:fa 2bit, the

results for which are shown in Figures 6.15 and 6.16, respectively, the most performant

versions of these kernels occur when the work-group size is of the respective kernels are set

to their maximum values.

Figure 6.15: Result of sweeping across all possible of configurations within the idx tiff

MWI hardware design space. The set of possible NS, WG and NCU combinations are
evaluated.

And while there are exceptions to this in our empirical results, another general trend ob-

servable in our results is that a kernel’s performance at the smallest assumable value for the

SIMD datapath replication factor, i.e., 1, the performance monotonically increases as the

factor is increased. A similar trend exists for the number of compute units.

In Section 5.2.2, we noted how long the kernel synthesis process was for the Needleman

Wunsch kernels, and performing the same kind of design space search here is no exception,

which necessitates strategies for efficiently searching and intelligently pruning the design

space. Towards the latter, it may be beneficial to restrict the kernels built to a subset with

the larger of the assumable knob values. Using our empirical results as a test set, we would

132

Figure 6.16: Result of sweeping across all possible of configurations within the
storeBlocksOfLower implementation of the fa 2bit application.

find the optimal configurations for 3 of the 6 applications, and never be more than 5.54%

away from the optimal solution (assuming the configurations where all of the knobs take

their maximum values. As mentioned previously in 5.2.2, pruning the design space in this

way is a trade-off–finding the true optimal configuration at the expense of time or finding a

near-optimal kernel that sacrifices optimality–that must be made by the kernel designer.

The idx tiff application is unaffected by the number of SIMD datapath replication and

compute units. Upon further inspection of logs generated by the hardware compiler, we

found that the hardware compiler could not replicate the data path and, at most, only two

work-groups would ever run concurrently. Intuitively, this application should be able to take

advantage of multiple compute units and replicated data paths. Future work would involve

redesigning this kernel in a way that allows the computation to take advantage of multiple

processing elements.

133

Interestingly, the optimal configuration for the fix float replicates the data path 16 times,

but has a compute unit replication factor of 1, i.e., no replication. This is attributed to the

non-spatially local accesses that may arise depending on which work-groups are concurrently

executing. Specifically, one work-group may be accessing one region of memory while the

other N−1 work-groups currently executing are all reading/writing memory in very different

regions of memory. It should be noted, though, that the replicated data path does aid in

spatially local memory access because the compiler can coalesce reads and writes for a given

compute unit. Additionally, we observe from the kernel build logs that the hardened DSP

blocks are being utilized in each of the kernels (because the percent DSP block utilization

is non-zero). We assume that each compute unit gets its own 32-bit floating point divide

unit (because the percent DSP block utilization increases as the number of compute units

increases), i.e., not shared among compute units, and that those units are also replicated in

the data path (because of increased DSP block utilization when the SIMD factor increases)

such that operations can happen concurrently among and within compute units. Still, one

compute unit is more performant for this particular kernel. Another benefit to using one

compute unit is that it is much easier for the hardware scheduler to schedule a work-group

for execution if there is only compute unit for which to execute work-groups.

In Figures 6.6 and 6.9, the black dotted lines represent the comparison to the most performant

multithreaded CPU implementation for that kernel using OpenCL. For fix float, there are

8 designs that achieve better performance than its multi-threaded CPU counterpart, but no

ebcdic txt designs achieve better performance. We explore this further in Section 6.4.3,

as we build upon the result of finding the most performant execution model. Future work

would include finding the knob configurations of the CPU OpenCL kernels and comparing

their performance to their FPGA-accelerated versions. However, the main thrust of this

thesis is to understand how to make the right execution model choice.

134

6.4.2 MWI versus SWI Implementations

In ebcdic txt, idx tiff, fix float, edgelist csr, and 2bit fa, all of the computation

that was handled by multiple work-groups and threads in the MWI implementation is han-

dled by a single thread in the SWI implementation. Effectively, a single for loop in the SWI

version of a given kernel replaces the global/local/work-group indexing required to correctly

execute computation in the MWI model. In this case, when a SWI kernel performs bet-

ter than an MWI kernel, that means that the kernel benefits more from unrolling the loop

of computation and pipelining that unrolled loop as opposed to using multiple processing

elements to complete that same computation. The fact that this is not immediately ob-

vious just by looking at the OpenCL kernels themselves accentuates the necessity for this

approach, and more generally, the quantification of application domains to enable this kind

of experimentation.

In fa 2bit, the MWI and SWI OpenCL implementations do not share the relationship

outlined above. Recalling from Section 6.2.6, the SWI implementation follows the original

sequential CPU implementation, while the MWI version uses a map reduce approach by

dividing all of the bases into sub-problems, and finding lower case blocks in those sub-

problems and then using a single thread to combine all of the sub-problems. Because of

this difference, the CPU kernel that was profiled using multi-spectral reuse distance may not

accurately reflect the new implementation implemented in the MWI case. Additionally, the

reduce step of the map-reduce step is usually handled by a single processing element; it might

have been beneficial to split the map portion of the computation into a MWI kernel and the

reduce portion into a SWI kernel. Furthermore, the reduce step could be more performant

on the host side instead of on the accelerator side. Future work, then, would examine what

to do in the instances where the MWI implementation differs from the SWI implementation

more than outlined in the previous paragraph. Additionally, quantitaively determining what

135

parts of a kernel or kernels would be beneficial on a particular platform, e.g., a CPU, GPU,

or FPGA. This could be done similarly to the k -means analysis and using more features to

better answer those questions.

The results of the most performant execution model for each application are shown in Table

6.2, and a comparison of the most performant data rate for the different execution models

compared to the sequential CPU data rates are shown in Figure 6.17.

Figure 6.17: Comparison between the most performant configurations of each execution
model and their sequential CPU data rate.

Our prediction of the most performant execution model using the k -means clustering of the

DIBS applications proved to be correct in each application for which we implemented FPGA

hardware. The correctness is, in part, attributed to how prevalent data movement, and

therefore locality, is in the DIBS applications. Recall that in 3.5.3, the dynamic instruction

mix in 10 of the 12 DIBS applications were comprised of 50% data movement instructions.

Additionally, the MWI and SWI execution models are inherently affected by data movement.

Applications that are more performant as MWI implementations benefit from contiguous and

spatially local accesses in order to fully utilize all of the available compute units that become

136

Application
Execution

Model
of

Designs
Knob Configuration Logic

M20K
Bits

M20K
Blocks

Data Rate
(GB/s)

ebcdic txt
MWI 80

WGSIZE = 1024

28% 8% 23% 5.49NUMCOMPUNITS = 8

NUMSIMD = 16

SWI 11 UNROLL = 1024 43% 35% 78% 0.26

idx tiff
MWI 80

WGSIZE = 512

26% 8% 17% 0.25NUMCOMPUNITS = 8

NUMSIMD = 16

SWI 9 UNROLL = 64 32% 12% 23% 0.34

fix float
MWI 80

WGSIZE = 128

25% 6% 15% 6.48NUMCOMPUNITS = 1

NUMSIMD = 16

SWI 8 UNROLL = 64 31% 10% 18% 0.40

edgelist csr
MWI 50

NUMWORKITEMS = 16

39% 22% 37% 1.75e−3
NUMWORKGROUPS = 1

NUMCOMPUNITS = 2

UNROLLLOCAL = 4

SWI 5 UNROLLLOCAL = 2 29% 11% 21% 5.06e−3

2bit fa
MWI 180

WGSIZE = 32768

26% 7% 16% 13.61NUMCOMPUNITS = 4

NUMSIMD = 16

SWI 12 UNROLL = 128 25% 9% 17% 13.58

fa 2bit
MWI 12

WGSIZE = 262144

32% 49% 68% 0.007NUMCOMPUNITS = 1

NUMSIMD = 1

SWI 5 UNROLL = 1 25% 7% 15% 0.97

Table 6.2: Results for the most performant configuration of each execution model for each
application.

137

available through compute unit and data path replication. Memory accesses that are not

spatially local, then, adversely affect performance because the compute pipeline must stall

in order to read/write the necessary data from/to global memory. Orthogonally, one of the

benefits of the SWI model is that the hardware compiler can deepen the pipeline and account

for irregular memory accesses while still launching successive iterations of the loop on every

clock cycle. In the MWI model, the hardware compiler does not allow compute pipelines to

launch successive iterations in the presence of loops.

When looking at the predictions made in Figure 6.1, we see that clusters are effectively

dividing the DIBS application into two different regions of spatial locality, recalling that

applications that are closer to the origin point are more spatially local than those that aren’t.

The applications that were predicted to be more performant as widely vectorized (MWI)

kernels are in the region with more spatially local accesses. The applications predicted to be

more performant as deeply pipelined applications are less spatially local. Computationally,

these kernels are not compute intensive. Thus, using metrics that measure data movement to

predict the most performant execution model was a successful method for making this design

choice, for this particular domain. However, when generalizing the use of multi-spectral reuse

distance and EMD, it should be noted that if the spatial locality is large enough, a spatially

un-local application may “alias” as a spatially local one. This would be the case if the reuse

distance granularities of a given application contain significant mass at bin sizes away from

the origin and the EMD scores are still low. This was not a problem in our domain of choice,

but is worth noting when extending this approach to other application domains.

138

246
Da

ta
 V

ec
to

riz
at

io
n

Fa
ct

or
 =

 1
Da

ta
 V

ec
to

riz
at

io
n

Fa
ct

or
 =

 2
Da

ta
 V

ec
to

riz
at

io
n

Fa
ct

or
 =

 4
Da

ta
 V

ec
to

riz
at

io
n

Fa
ct

or
 =

 8
Da

ta
 V

ec
to

riz
at

io
n

Fa
ct

or
 =

 1
6

24681012

512-1-1
512-1-2
512-1-4

512-1-16
512-2-1
512-2-2
512-2-4

512-2-16
512-4-1
512-4-2
512-4-4

512-4-16
512-8-1
512-8-2
512-8-4

512-8-16
1024-1-1
1024-1-2
1024-1-4

1024-1-16
1024-2-1
1024-2-2
1024-2-4

1024-2-16
1024-4-1
1024-4-2
1024-4-4

1024-4-16
1024-8-1
1024-8-2
1024-8-4

1024-8-16

24681012

512-1-1
512-1-2
512-1-4

512-1-16
512-2-1
512-2-2
512-2-4

512-2-16
512-4-1
512-4-2
512-4-4

512-4-16
512-8-1
512-8-2
512-8-4

512-8-16
1024-1-1
1024-1-2
1024-1-4

1024-1-16
1024-2-1
1024-2-2
1024-2-4

1024-2-16
1024-4-1
1024-4-2
1024-4-4

1024-4-16
1024-8-1
1024-8-2
1024-8-4

1024-8-16

24681012

512-1-1
512-1-2
512-1-4

512-1-16
512-2-1
512-2-2
512-2-4

512-2-16
512-4-1
512-4-2
512-4-4

512-4-16
512-8-1
512-8-2
512-8-4

512-8-16
1024-1-1
1024-1-2
1024-1-4

1024-1-16
1024-2-1
1024-2-2
1024-2-4

1024-2-16
1024-4-1
1024-4-2
1024-4-4

1024-4-16
1024-8-1
1024-8-2
1024-8-4

1024-8-16

24681012

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data Rate (GB/sec)

F
ig

u
re

6.
18

:
D

es
ig

n
sp

ac
e

se
ar

ch
fo

r
d
at

a
ve

ct
or

iz
at

io
n

fa
ct

or
s
{1

,
2,

4,
8,

16
}.

T
h
e

x
-a

x
es

re
p
re

se
n
t

th
e

co
ar

se
-g

ra
in

ed
co

n
fi
gu

ra
ti

on
W
G
S
I
Z
E
-
N
U
M
C
O
M
P
U
N
I
T
S
-
N
U
M
S
I
M
D

fo
r

th
e

gi
ve

n
d
at

a
ve

ct
or

iz
at

io
n

fa
ct

or
.

T
h
e

y
-a

x
es

sh
ow

th
e

re
su

lt
in

g
d
at

a
ra

te
.

139

D
at

a
V

ec
to

ri
za

ti
o
n

W
o
rk

-g
ro

u
p

S
iz

e
#

C
om

p
u

te
U

n
it

s
S

IM
D

F
ac

to
r

f m
a
x

(M
H

z)
L

og
ic

M
20

K
B

it
s

M
20

K
B

lo
ck

s
D

at
a

R
at

e
(G

B
/s

)
S

p
ee

d
u

p

1
1
0
24

8
16

23
8.

77
28

%
8%

23
%

5.
52

9
0.

86
5

1
0
24

1
16

28
0.

19
24

%
6%

16
%

4.
17

6
0.

65
4

2
1
0
24

8
16

23
7.

19
29

%
9%

28
%

9.
69

4
1.

51
7

1
0
24

8
4

25
4.

71
28

%
7%

21
%

7.
07

1
1.

10
7

4
5
12

1
16

26
8.

81
24

%
7%

17
%

1
1
.9

3
3

1
.8

6
8

1
0
24

1
16

26
8.

81
24

%
7%

17
%

11
.8

56
1.

85
6

8
1
0
24

4
4

25
8.

26
26

%
8%

21
%

11
.4

00
1.

78
4

1
0
24

1
16

24
7.

77
24

%
8%

20
%

11
.0

58
1.

73
1

1
6

1
0
24

4
1

28
2.

56
26

%
7%

19
%

11
.5

87
1.

81
4

5
12

1
4

25
5.

75
24

%
7%

17
%

11
.4

43
1.

79
1

T
ab

le
6.

3:
R

es
ou

rc
e

u
ti

li
za

ti
on

an
d

re
su

lt
s

fo
r

th
e

tw
o

b
es

t
co

ar
se

-g
ra

in
ed

co
n
fi
gu

ra
ti

on
s

fo
r

ea
ch

le
ve

l
of

d
at

a
ty

p
e

ve
ct

or
iz

at
io

n
.

140

256KB 1MB 4MB 16MB 64MB 256MB 1GB
Approximate Input File Sizes

2

4

6

8

10

12

Da
ta

 R
at

e
(G

B/
se

c) Device
CPU
FPGA

Figure 6.19: Input file size sweep for best vectorized configuration.

6.4.3 Results of Widening The Datatype

Figure 6.18 shows the result of the design space search detailed in Section 6.3.3. Each

sub-graph represents a different data vectorization factor.The x-axes show every kernel con-

figuration for its respective vectorization factor, where each label represents:

WGSIZE-NUMCOMPUNITS-NUMSIMD.

On the y-axes are the observed data rates for each configuration. The two differently colored

bars in Figure 6.18(e) represent configurations that could not be physically realized by the

hardware compiler. The dotted black line represents the best data rate for a OpenCL MWI

kernel targeting a Intel Core i7 Kaby Lake processor. The line is situated at 6.39 GB/s.

Thus, any configuration whose respective bar is below the dotted line has a lower data rate

than the multi-core CPU version and a higher data rate if a bar is above the line.

When the data vectorization is set to 1, all configurations in this group perform worse than

the best CPU implementation. As shown in Table 6.3, we see that the most performant

version without data type vectorization is 0.865× the CPU data rate. However after the

first level of type vectorization, i.e., the vectorization factor is set to 2, we observe four

141

configurations that perform better than the CPU. This indicates that while the kernel con-

figuration with just the coarse-grained knobs has been tuned, there is still further room for

improvement. Specifically, as the data types become wider 4, 8, and 16, we observe that ad-

ditional configurations become more performant than the CPU case. This further validates

our heuristic from Section 6.2.1 for pruning the design space for MWI kernels.

The main performance benefit of vectorized types comes from aiding the hardware compiler

to statically coalesce memory accesses. Without this optimization, the widest interface that

can be created for a single compute unit instance of a kernel is by replicating the data path

up to 16 times. With the wider data type, a single data path can read and write N uchars,

where N is the data vectorization factor. Additionally, this aids the burst-coalesced load-store

unit (LSU) generated by the hardware compiler. Because of the vectorized types, a single

address points to multiple data items, as opposed to just one data item. These addresses are

queued up and coalesced in the LSU for a burst access. Thus, a burst access can grab up to

N× more data in the best case when compared to the coarse-grained configuration without

data type vectorization.

We also observe evidence supporting the heuristic in Table 6.3, which shows the Intel

HARPv2 FPGA resource utilization, data rate, and speedup relative to the CPU for the two

best configurations for each level of data type vectorization. We observe that the speedup for

uchar{8,16} are only 4.7% and 3.0% slower, respectively, than the optimal configuration.

This is a reasonable heuristic to follow when one is willing to make the tradeoff of the locally

optimal configuration for one that is relatively close to optimal found in less time.

Finding the optimum requires more experimentation, as shown in Figure 6.18. When holding

WGSIZE and NUMCOMPUNITS constant, we observe in Figure 6.18 for data vector-

ization values of 1, 2, and 4 that increasing NUMSIMD results in a monotonically increasing

142

data rate. However, this monotonic behavior ends when the data vectorization factor is

set to 8 and 16. In this case, replicating the data path with wider types creates enough

contention for the global memory resources such that the performance degrades by having

to orchestrate these accesses.

From the table, we observe that the overall best performing configuration is (4, 512, 1, and

16) for the data vectorization factor, WGSIZE, NUMCOMPUNITS, and NUMSIMD, respectively. Its

data rate is 11.933 GB/s–over one-third of the theoretical read/write bandwidth [42]–and

a speedup of 1.868× over the CPU implementation. We observe that the best result does

not have the widest data vector type or any replicated compute units. In this case, there is

less contention for global memory among compute unit replicates. Additionally, it is easier

for the OpenCL runtime to schedule work-groups for execution because there is only one

compute unit for which to issue commands. These system-level observations can be aided

by observing the reported resource utilization numbers and maximum clock speeds in Table

6.3. (Historically, related work [149] as well as our results from Chapter 5 have been able

to account for differences in performance, in part, by using such results.) Future work could

include being able to incorporate this data to model the performance impact of interactions

like these between design choices in order to more efficiently search the design space.

Figure 6.19 compares the performance of the best kernel configuration to the best CPU

version when scaling the input size from approximately 256 KB to 1 GB. The CPU data rate

performance starts to plateau at when the input file size is 16 MB, and the best achievable

data rate is 6.55 GB/s. The Intel HARPv2 platform data rate begins to plateau when the

input size is greater than 16 MB, and the best achievable data rate is 12.76 GB/s. The

speedup factor of the Intel HARPv2 performance over the CPU is 1.95×. Although the

kernel is relatively simple, input sizes of 16 MB and up are sufficient to stress the system

into the asymptotic limit for data rate.

143

6.5 Conclusion

We have illustrated the use of our multi-spectral reuse distance tool to measure locality on

the DIBS application, and the use of those results as inputs to a clustering algorithm to to

classify applications within the data integration domain. The two resulting clusters formed

two distinct sub-domains. Our hypothesis was that applications within each sub-domain will

benefit from different hardware implementations. Because these clusters effectively divided

these applications into two different classes of locality performance, and because these appli-

cations are comprised mostly of data movement, the multi-spectral reuse data proved to be

an accurate predictor of which hardware execution model to choose. Our evaluation of this

hypothesis was comprised of selecting two representative applications from each sub-domain,

performing a comprehensive search of the design space for each of these representative ap-

plications, and using those results to assess our hypothesis.

Additionally, we presented the use of CDFGs to visualize the pre-synthesized hardware in

order to make more informed design decisions. We also develop a design heuristic for MWI

kernels to prune the space design space, trading the optimal configuration for a near-optimal

one using less development time. By sweeping the the target kernel’s hardware knobs, we

show that the interactions between knobs are non-trivial. Specifically, we show that there is

a benefit to vectorizing data types for buffers that will be accessed contiguously. However,

global memory contention induced when knob settings were near their maximum values

necessitates a finer tuning of the configuration to achieve optimal performance. Finally, we

show that scaling the input size in our case study stressed our platform enough to reach the

asymptotic data rate.

144

Chapter 7

Conclusion and Future Work

In this dissertation, we presented our work towards domain specific computing. We ad-

dressed two fundamental research questions regarding domain identification and domain

specific hardware design. Towards the end of domain specific computing, we outlined our

methodology for specifying a domain. We created a definition for the domain of data integra-

tion by crafting a definition for this domain and then creating a benchmark suite comprised

of applications that aligned with our definition. From there, we used metrics from the lit-

erature to characterize these applications and to provide insights to what features might be

beneficial to hardware designed specifically for this domain. Specifically, we gleaned the im-

portance of data movement and locality based on our initial characterization. This approach

of crafting a domain definition, creating a suite of applications to reflect that definition, and

then characterizing them using a battery of metrics is generalizable to the identification of

most if not all domains of interest.

We evaluated the Intel HARPv2 system using OpenCL as our domain specific hardware

design platform and design framework. First, we evaluated the portability and performance

of the HARPv2 system. Before our work, the literature regarding targeting the HARPv2

system using OpenCL was sparse. We contributed to this area by using OpenCL kernels

originally designed for FPGAs attached via PCIe card, synthesizing them for the HARPv2

145

system, and comparing the performance between the two. From this evaluation, we showed

that OpenCL FPGA design techniques intended for PCIe card FPGAs were also beneficial

on the HARPv2. The measured results from the PCIe card FPGA were better than those of

the HARPv2, but when accounting for the benefit of shared memory between HARPv2 CPU

and FPGA, we showed that the HARPv2 system was much more efficient at moving data

between host and device. Going forward, any hardware developers targeting the HARPv2

platform should utilize the shared memory region of the HARPv2 system in order to create

the most performant HARPv2 designs.

Guided by the identification and characterization of our domain, as well as the lessons learned

in our evaluation of the HARPv2 system, we demonstrated our work towards architecting

domain specific hardware. Using our novel multi-spectral reuse distance tool, we quantified

the spatial and temporal locality of our benchmarking suite, and used the outputs generated

by this tool as features into an unsupervised clustering technique. We posited that the

resulting clusters represented a hardware design choice regarding “width” versus “depth”.

Specifically, is a given kernel better designed as a widely vectorized or deeply pipelined

compute unit. To evaluate our predictions, we used a subset of the DIBS applications and

architected both wide and deep versions of these applications, and provided new methods

and insights to designing HARPv2 OpenCL kernels and additional optimizations to add once

the most performant execution model was found. In the end, the predictions made by our

method correctly chose the most performant execution model for each application we tested.

We showed that the prevalence of data movement in these applications validated our choice

of using locality measures to cluster the applications into sub-domains. This technique, then,

is promising, and should be applicable to the data-driven design of domain specific hardware.

146

7.1 Future Work

There are many possibilities for future work. Here, we describe several such possibilities.

Intelligent Design Space Search

We observed in Chapters 5 and 6 that the amount of time spent synthesizing kernels OpenCL

kernels may be prohibitive to applying our design space search methods to kernels for which

the design space is considerably larger. Related work shows that, with appropriate models of

the hardware and application, the time spent finding the most performant knob configuration

could be drastically shortened by not synthesizing every possible configuration [134]. An

avenue of future work, then would be to build and evaluate models of the HARPv2 system

and target applications to save weeks of compute time spent synthesizing the entire design

space.

What/Where to Accelerate

As evidenced by our acceleration of the fa 2bit application, we observed that even within

a kernel of computation, the correct choice of execution model may not be uniform across

the whole kernel. Additionally, we relied on the Linux perf utility to tell us where to focus

our hardware design efforts. Because the next wave of computing is becoming increasingly

heterogeneous (e.g., high-bandwidth memories, processing near memories, TPUs, GPUs,

FPGAs), tooling to determine what parts of applications would be beneficial on which hard-

ware platform would be a fruitful future endeavor. Additionally, this heterogeneity begs the

question of how to orchestrate all of this heterogeneity. Recently, there has been work to-

wards single-source programming models like SYCL [139] that aim to coordinate the power

of heterogeneous systems using a single source programming model.

147

A New Domain

We claim that the methods presented in this dissertation are general. To test this claim,

another direction of future work would be to find another domain for which to perform this

analysis in order to craft hardware specific to that domain. In this work, we were able to

exploit the prevalence of data movement in our target domain and use features that describe

data movement as effective predictors of OpenCL hardware design choices. However, there

are other possible features that could be used in addition to the outputs generated by our

multi-spectral reuse distance tool.

Hardware Design Patterns

Design patterns are a concept utilized by software engineers in order to craft solutions to

problems without having to reinvent the wheel. Similar work by DeHon et al. has proposed

the same kind of approach using FPGA design [37], and leveraging a library of composable

components to create hardware designs. This is especially important because FPGA design

using traditional approaches like Verilog and VHDL are difficult. To extend this to OpenCL

FPGA research, another research direction would be to compile a set of commonly-used

components when targeting FPGAs through using OpenCL, e.g., sliding windows and stencil

computations, and create a parameterizable framework and library in order to make OpenCL

FPGA development more palatable.

148

The Right Programming Language Abstraction

While OpenCL makes the use of FPGAs easier than using traditional methods, an open

question is whether or not OpenCL C is the best programming language to target FPGAs,

in part, because it is unclear if it is the right level of abstraction with respect to the hardware-

software stack [100]. For example, common, performant hardware constructs such as shift

registers for latency hiding are often used in FPGAs. It is possible to author OpenCL code

such that the hardware compiler will synthesize a shift register, but the notation is clunky

and does not intuitively convey a parallel operation that happens on one clock cycle. This

problem, then, becomes a fascinating intersection between hardware design and programming

languages.

149

References

[1] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C Smith,
Berk Hess, and Erik Lindahl. GROMACS: High Performance Molecular Simulations
Through Multi-level Parallelism from Laptops to Supercomputers. SoftwareX, 1:19–25,
2015.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: An
Extensible System for design and execution of scientific orkflows. In Proc. of 16th Int’l
Conf. on Scientific and Statistical Database Management, pages 423–424, June 2004.

[3] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic Local Alignment Search Tool. Journal of Molecular Biology, 215(3):403–410,
1990.

[4] Fredy Augusto M Alves, Peter Jamieson, Lucas B da Silva, Ricardo S Ferreira, and
José Augusto M Nacif. Designing a Collision Detection Accelerator on a Heterogeneous
CPU-FPGA Platform. In Proc. of Int’l Conf. on ReConFigurable Computing and
FPGAs, 2017.

[5] Amazon EC2 Instance Types, 2019.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing Hardware in
a Scala Embedded Language. In Proc. of 49th Design Automation Conference, pages
1212–1221, 2012.

[7] Jonathan C Beard. The Sparse Data Reduction Engine (spidre): Chopping Sparse
Data One Byte at a Time. In Proc. of 2nd International Symposium on Memory
Systems. ACM, October 2017.

[8] Jonathan C Beard and Joshua Randall. Eliminating Dark Bandwidth: A Data-centric
View of Scalable, Efficient Performance, Post-Moore. In Proc. of International Con-
ference on High Performance Computing, pages 106–114. Springer, 2017.

[9] Mirza Beg and Peter Van Beek. A Graph Theoretic Approach to Cache-conscious
Placement of Data for Direct Mapped Caches. ACM SIGPLAN Notices, 45(8):113–
120, 2010.

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
Benchmark Suite: Characterization and Architectural Implications. In Proc. of the

150

17th International Conference on Parallel Architectures and Compilation Techniques,
pages 72–81, New York, NY, USA, 2008. ACM.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and
David A. Wood. The gem5 Simulator. SIGARCH Comput. Archit. News, 39(2):1–
7, August 2011.

[12] Mark Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. IEEE
Solid-State Circuits Society Newsletter, 12(1):11–13, 2007.

[13] Shawn Bowers and Bertram Ludäscher. An Ontology-Driven Framework for Data
Transformation in Scientific Workflows. In Erhard Rahm, editor, Data Integration in
the Life Sciences, volume 2994 of Lecture Notes in Computer Science, pages 1–16.
Springer Berlin Heidelberg, 2004.

[14] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent Dynamic Instru-
mentation. ACM SIGPLAN Notices, 47(7):133–144, 2012.

[15] Randal E Bryant and David R O’Hallaron. Computer Systems: A Programmer’s
Perspective. Prentice Hall Upper Saddle River, 2003.

[16] P. Buneman, S.B. Davidson, K. Hart, C. Overton, and L. Wong. A Data Transforma-
tion System for Biological Data Sources. In Proc. of 21st Int’l Conf. on Very Large
Data Bases, pages 158–169, September 1995.

[17] Anthony M Cabrera and Roger D Chamberlain. Exploring Portability and Performance
of OpenCL FPGA Kernels on Intel HARPv2. In Proc. of Int’l Workshop on OpenCL.
ACM, April 2019.

[18] Anthony M. Cabrera and Roger D. Chamberlain. Exploring Portability and Perfor-
mance of OpenCL FPGA Kernels on Intel HARPv2: Research Artifacts. https:

/doi.org/10.7936/m2yq-a123, April 2019.

[19] Anthony M Cabrera and Roger D Chamberlain. Designing Domain Specific Computing
Systems. In 2020 IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 221–221. IEEE, 2020.

[20] Anthony M Cabrera, Roger D Chamberlain, and Jonathan C Beard. Multi-spectral
Reuse Distance: Divining Spatial Information from Temporal Data. In Proc. of High
Performance Extreme Computing Conference (HPEC), pages 1–8. IEEE, 2019.

[21] Anthony M Cabrera, Clayton Faber, Kyle Cepeda, Robert Deber, Cooper Epstein,
Jason Zheng, Ron K Cytron, and Roger Chamberlain. Data Integration Benchmark
Suite v1. 2018.

151

https:/doi.org/10.7936/m2yq-a123
https:/doi.org/10.7936/m2yq-a123

[22] Anthony M Cabrera, Clayton J Faber, Kyle Cepeda, Robert Derber, Cooper Epstein,
Jason Zheng, Ron K Cytron, and Roger D Chamberlain. DIBS: A Data Integration
Benchmark Suite. In Companion of the 2018 ACM/SPEC International Conference
on Performance Engineering, pages 25–28, 2018.

[23] Srihari Cadambi, Abhinandan Majumdar, Michela Becchi, Srimat Chakradhar, and
Hans Peter Graf. A Programmable Parallel Accelerator for Learning and Classification.
In Proc. of 19th Int’l Conf. on Parallel Architectures and Compilation Techniques,
pages 273–284, 2010.

[24] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Ja-
son H Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: High-level Synthesis
for FPGA-Based Processor/Accelerator Systems. In Proc. of 19th ACM/SIGDA Int’l
Symp. on Field Programmable Gate Arrays, pages 33–36, 2011.

[25] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods,
Sitaram Lanka, Derek Chiou, and Doug Burger. A Cloud-scale Acceleration Architec-
ture. In Proc. of 49th IEEE/ACM Int’l Symp. on Microarchitecture, pages 7:1–7:13,
2016.

[26] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
Rodinia: A Benchmark Suite for Heterogeneous Computing. In Proc. of IEEE Inter-
national Symposium on Workload Characterization, pages 44–54, October 2009.

[27] Razvan Cheveresan, Matt Ramsay, Chris Feucht, and Ilya Sharapov. Characteristics
of Workloads Used in High Performance and Technical Computing. In Proc. of ACM
21st Int’l Conf. on Supercomputing, pages 73–82, 2007.

[28] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and Peng
Wei. A Quantitative Analysis on Microarchitectures of Modern CPU-FPGA Platforms.
In Proc. of 53rd Design Automation Conference, pages 109:1–109:6, 2016.

[29] Peter JA Cock, Christopher J Fields, Naohisa Goto, Michael L Heuer, and Peter M
Rice. The Sanger FASTQ File Format for Sequences with Quality Scores, and the
Solexa/Illumina FASTQ Variants. Nucleic acids research, 38(6):1767–1771, 2009.

[30] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. Customizable Domain-
specific Computing. IEEE Design & Test of Computers, 28(2):6–15, 2010.

[31] Thomas M Conte and Wen-mei W Hwu. Benchmark Characterization for Experimental
System Evaluation. In Proc. of 23rd Hawaii Int’l Conf. on System Sciences, volume 1,
pages 6–18. IEEE, 1990.

152

[32] M. O. Cruz, H. Macedo, and A. Guimares. Grouping Similar Trajectories for Carpool-
ing Purposes. In Proc. of Brazilian Conference on Intelligent Systems, pages 234–239,
November 2015.

[33] William J Dally. GPU Computing: To Exascale and Beyond, 2010.

[34] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data Cleaning.
John Wiley & Sons, Inc., 2003.

[35] Tom Deakin, Wayne Gaudin, and Simon McIntosh-Smith. On the Mitigation of Cache
Hostile Memory Access Patterns on Many-core CPU Architectures. In Proc. of Inter-
national Conference on High Performance Computing, pages 348–362. Springer, 2017.

[36] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kessel-
man, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, et al. Pegasus:
A Framework for Mapping Complex Scientific Workflows onto Distributed Systems.
Scientific Programming, 13(3):219–237, 2005.

[37] André DeHon, Joshua Adams, Michael DeLorimier, Nachiket Kapre, Yuki Matsuda,
Helia Naeimi, Michael Vanier, and Michael Wrighton. Design Patterns for Reconfig-
urable Computing. In 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 13–23. IEEE, 2004.

[38] Peter J Denning. The Working Set Model for Program Behavior. Communications of
the ACM, 11(5):323–333, 1968.

[39] Zineb El Akkaoui and Esteban Zimanyi. Defining ETL Worfklows Using BPMN and
BPEL. In Proc. of ACM Int’l Workshop on Data Warehousing and OLAP, pages
41–48, 2009.

[40] Clayton J Faber, Anthony M Cabrera, Orondé Booker, Gabe Maayan, and Roger D
Chamberlain. Data Integration Tasks on Heterogeneous Systems Using OpenCL. In
Proceedings of the International Workshop on OpenCL, pages 1–1, 2019.

[41] Thomas Faict. Exploring OpenCL on a CPU-FPGA Heterogeneous Architecture. Mas-
ter’s thesis, Ghent University, 2018.

[42] Thomas Faict, Erik D’Hollander, Dirk Stroobandt, and Bart Goossens. Explor-
ing OpenCl on a CPU-FPGA Heterogeneous Architecture Research Platform. In
Proc. of Int’l Conf. on High Performance and Embedded Architectures and Compil-
ers (HiPEAC), 2019.

[43] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. CNP: An FPGA-
based Processor for Convolutional Networks. In Proc. of Int’l Conf. on Field Pro-
grammable Logic and Applications, pages 32–37, 2009.

153

[44] James D Foley, Andries Van Dam, Steven K Feiner, John F Hughes, and Richard L
Phillips. Introduction to Computer Graphics, volume 55. Addison-Wesley Reading,
1994.

[45] Giancarlo Fortino and Paolo Trunfio, editors. Internet of Things Based on Smart
Objects. Springer, 2014.

[46] Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. AJAX: An
Extensible Data Cleaning Tool. SIGMOD Rec., 29(2):590, June 2000.

[47] Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. Spector: An
OpenCL FPGA Benchmark Suite. In 2016 International Conference on Field-
Programmable Technology (FPT), pages 141–148. IEEE, 2016.

[48] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. BigBench: Towards an Industry Standard Bench-
mark for Big Data Analytics. In Proc. of ACM SIGMOD Int’l Conf. on Management
of Data, pages 1197–1208, June 2013.

[49] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in Memory: The Terasys
Massively Parallel PIM Array. Computer, 28(4):23–31, 1995.

[50] Maya Gokhale, Jan Stone, Jeff Arnold, and Mirek Kalinowski. Stream-oriented FPGA
Computing in the Streams-C High Level Language. In Proc. of IEEE Symp. on Field-
Programmable Custom Computing Machines, pages 49–56, 2000.

[51] Martin Gollery. Bioinformatics: Sequence and Genome Analysis. Clinical Chemistry,
51(11):2219–2219, 2005.

[52] Xiaoming Gu, Ian Christopher, Tongxin Bai, Chengliang Zhang, and Chen Ding. A
Component Model of Spatial Locality. In Proc. of ACM Int’l Symp. on Memory
Management, pages 99–108, 2009.

[53] Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and Jeffrey Heer. Proactive Wran-
gling: Mixed-initiative End-user Programming of Data Transformation Scripts. In
Proc. of 24th ACM Symp. on User Interface Software and Technology, pages 65–74,
2011.

[54] Philip Jia Guo. Software Tools to Facilitate Research Programming. PhD thesis,
Stanford Univ., May 2012.

[55] Saurabh Gupta, Ping Xiang, Yi Yang, and Huiyang Zhou. Locality Principle Revis-
ited: A Probability-based Quantitative Approach. Journal of Parallel and Distributed
Computing, 73(7):1011–1027, 2013.

154

[56] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In Proc.
of Fourth IEEE International Workshop on Workload Characterization, pages 3–14,
December 2001.

[57] John L Henning. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH Com-
puter Architecture News, 34(4):1–17, 2006.

[58] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench Benchmark Suite:
Characterization of the MapReduce-based Data Analysis. In Proc. of IEEE 26th In-
ternational Conference on Data Engineering Workshops, pages 41–51, March 2010.

[59] Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia De Gonzalo, Juan Gómez-
Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan Milojicic, Onur Mutlu,
Deming Chen, et al. Analysis and Modeling of Collaborative Execution Strategies for
Heterogeneous CPU-FPGA Architectures. April 2019.

[60] Intel. Intel R© FPGA SDK for OpenCLTM Pro Edition Best Practices Guide, September
2019.

[61] Intel. Intel R© FPGA SDK for OpenCLTM Pro Edition Programming Guide, December
2019.

[62] Arpith Jacob, Joseph Lancaster, Jeremy Buhler, Brandon Harris, and Roger D. Cham-
berlain. Mercury BLASTP: Accelerating Protein Sequence Alignment. ACM Trans.
Reconfigurable Technol. Syst., 1(2):9:1–9:44, June 2008.

[63] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann, 2010.

[64] Jiantong Jiang, Zeke Wang, Xue Liu, Juan Gómez-Luna, Nan Guan, Qingxu Deng,
Wei Zhang, and Onur Mutlu. Boyi: A Systematic Framework for Automatically De-
ciding the Right Execution Model of OpenCL Applications on FPGAs. In Proc. of
ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays, pages 299–309, 2020.

[65] Zheming Jin and Hal Finkel. Evaluating an OpenCL FPGA Platform for HPC: A
Case Study with the HACCmk Kernel. In Proc. of IEEE High Performance Extreme
Computing Conference, 2018.

[66] Zheming Jin and Hal Finkel. Evaluation of MD5Hash Kernel on OpenCL FPGA Plat-
form. In Proc. of IEEE International Parallel and Distributed Processing Symposium
Workshops, pages 1026–1032, 2018.

[67] Zheming Jin and Hal Finkel. Nuclear Reactor Simulation on OpenCL FPGA: A Case
Study of RSBench. In Proc. of International Workshop on OpenCL, pages 2:1–2:9,
2018.

155

[68] Zheming Jin and Hal Finkel. Performance-oriented Optimizations for OpenCL Stream-
ing Kernels on the FPGA. In Proc. of International Workshop on OpenCL, pages
1:1–1:8. ACM, 2018.

[69] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the
44th Annual International Symposium on Computer Architecture, pages 1–12, 2017.

[70] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank van Ham,
Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and Paolo
Buono. Research Directions in Data Wrangling: Visualizations and Transformations
for Usable and Credible Data. Information Visualization, 10(4):271–288, October 2011.

[71] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: Inter-
active Visual Specification of Data Transformation Scripts. In Proc. of SIGCHI Conf.
on Human Factors in Computing Systems, pages 3363–3372, 2011.

[72] W James Kent. BLAT–the BLAST-like alignment tool. genome research, 12(4):656–
664, 2002.

[73] G Kestor, R Gioiosa, D J Kerbyson, and A Hoisie. Quantifying the Energy Cost of
Data Movement in Scientific Applications. In Proc. of IEEE Int’l Symp. on Workload
Characterization, pages 56–65, September 2013.

[74] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[75] Sanjeev Kumar and Christopher Wilkerson. Exploiting Spatial Locality in Data Caches
Using Spatial Footprints. In Proc. of 25th Int’l Symp. on Computer Architecture, pages
357–368, 1998.

[76] George Kurian, Omer Khan, and Srinivas Devadas. The Locality-aware Adaptive
Cache Coherence Protocol. ACM SIGARCH Computer Architecture News, 41(3):523–
534, 2013.

[77] Jakub Kurzak, Yaohung M Tsai, Mark Gates, Ahmad Abdelfattah, and Jack Dongarra.
Massively Parallel Automated Software Tuning. In Proc. of 48th Int’l Conf. on Parallel
Processing, 2019.

[78] Thierry Lafage and André Seznec. Choosing Representative Slices of Program Execu-
tion for Microarchitecture Simulations: A Preliminary Application to the Data Stream.
In L K John and A M G Maynard, editors, Workload Characterization of Emerging
Computer Applications, volume 610 of SECS, pages 145–163. 2001.

156

[79] Christoph Lameter. NUMA (Non-uniform Memory Access): An Overview. Queue,
11(7):40, 2013.

[80] Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sevcik. Quan-
titative System Performance: Computer System Analysis Using Queueing Network
Models. Prentice-Hall, Inc., 1984.

[81] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communicatons Systems. In
Proc. of 30th ACM/IEEE International Symposium on Microarchitecture, pages 330–
335, 1997.

[82] Byron C. Lewis and Albert E. Crews. The Evolution of Benchmarking as a Computer
Performance Evaluation Technique. MIS Quarterly, 9(1):7–16, March 1985.

[83] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, and Richard Durbin. The Sequence Alignment/Map Format
and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[84] M. Lichman. UCI Machine Learning Repository, 2013.

[85] David J Lipman and William R Pearson. Rapid and Sensitive Protein Similarity
Searches. Science, 227(4693):1435–1441, 1985.

[86] Scott Lloyd and Maya Gokhale. In-memory Data Rearrangement for Irregular, Data-
intensive Computing. Computer, (8):18–25, 2015.

[87] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation. In Proc. of ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
190–200, New York, NY, USA, 2005. ACM.

[88] Ryouhei Maeda and Tsutomu Maruyama. An Implementation Method of Poisson
Image Editing on FPGA. In Proc. of 27th Int’l Conf. on Field Programmable Logic
and Applications, pages 1–6, 2017.

[89] Atabak Mahram and Martin C Herbordt. FMSA: FPGA-accelerated ClustalW-based
Multiple Sequence Alignment Through Pipelined Prefiltering. In Proc. of IEEE 20th
Int’l Symp. on Field-Programmable Custom Computing Machines, pages 177–183,
2012.

[90] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. Everything You Always
Wanted to Know About Multicore Graph Processing but were Afraid to Ask. In Proc. of
USENIX Annual Technical Conference (USENIX ATC), pages 631–643, Santa Clara,
CA, July 2017. USENIX Association.

157

[91] Matt Massie, Frank Nothaft, Christopher Hartl, Christos Kozanitis, Andre Shumacher,
Anthony D. Joseph, and David A. Patterson. ADAM: Genomics Formats and Process-
ing Patterns for Cloud Scale Computing. Technical Report UCB/EECS-2013-207, UC
Berkeley, December 2013.

[92] Richard L Mattson, Jan Gecsei, Donald R Slutz, and Irving L Traiger. Evaluation
Techniques for Storage Hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[93] Michael C McFarland, Alice C Parker, and Raul Camposano. The High-level Synthesis
of Digital Systems. Proceedings of the IEEE, 78(2):301–318, 1990.

[94] Nathaniel McVicar, Chih-Ching Lin, and Scott Hauck. K-mer Counting Using Bloom
Filters with an FPGA-Attached HMC. In Proc. of IEEE 25th Int’l Symp. on Field-
Programmable Custom Computing Machines, pages 203–210, 2017.

[95] William K. Michener. Building SEEK: The Science Environment for Ecological Knowl-
edge. In DataBits: An Electronic Newsletter for Information Managers, 2003.

[96] Sparsh Mittal. A Survey of Recent Prefetching Techniques for Processor Caches. ACM
Computing Surveys (CSUR), 49(2):35, 2016.

[97] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas. Predict-
ing Taxi–Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1393–1402, September 2013.

[98] H DeGroot Morris. Probability and Statistics: Classic Version. Prentice Hall, Inc.,
2018.

[99] Richard C Murphy and Peter M Kogge. On the Memory Access Patterns of Supercom-
puter Applications: Benchmark Selection and its Implications. IEEE Transactions on
Computers, 56(7):937–945, 2007.

[100] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei
Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. Predictable Accelerator Design
with Time-Sensitive Affine Types. arXiv preprint arXiv:2004.04852, 2020.

[101] Tom Oinn, Mark Greenwood, Matthew Addis, M Nedim Alpdemir, Justin Ferris, Kevin
Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin, et al. Taverna:
Lessons in Creating a Workflow Environment for the Life Sciences. Concurrency and
Computation: Practice and Experience, 18(10):1067–1100, 2006.

[102] John Palmer. The Intel R© 8087 Numeric Data Processor. In Proceedings of the 7th
annual symposium on Computer Architecture, pages 174–181. ACM, 1980.

[103] Milan Pavlovic, Nikola Puzovic, and Alex Ramirez. Data Placement in HPC Archi-
tectures with Heterogeneous Off-chip Memory. In Proc. of Int’l Conf. on Computer
Design, pages 193–200. IEEE, 2013.

158

[104] Georgios Petrousis. An Evaluation of Decoupled Access Execute on ARMv8. Master’s
thesis, Uppsala University, 2017.

[105] Abhinav Podili, Chi Zhang, and Viktor Prasanna. Fast and Efficient Implementation of
Convolutional Neural Networks on FPGA. In Proc. of 28th Int’l Conf. on Application-
specific Systems, Architectures and Processors, pages 11–18. IEEE, 2017.

[106] Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. TPC-DI: The
First Industry Benchmark for Data Integration. Proceedings of the VLDB Endowment,
7(13):1367–1378, 2014.

[107] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan
Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim,
Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric for Accelerating Large-
scale Datacenter Services. In Proc. of 41st Int’l Symp. on Computer Architecuture
(ISCA), pages 13–24, 2014.

[108] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s Wheel: An Interactive Data
Cleaning System. In Proc. of 27th Int’l Conf. on Very Large Data Bases, pages 381–
390, September 2001.

[109] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks.
Machsuite: Benchmarks for Accelerator Design and Customized Architectures. In Proc.
of IEEE Int’l Symp. on Workload Characterization, pages 110–119, 2014.

[110] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The Earth Mover’s Distance as a
Metric for Image Retrieval. International Journal of Computer Vision, 40(2):99–121,
2000.

[111] Yousef Saad. Iterative Methods For Sparse Linear Systems. SIAM, 2003.

[112] Ahmed Sanaullah and Martin C Herbordt. FPGA HPC Using OpenCL: Case Study in
3D FFT. In Proc. of 9th Int’l Symp. on Highly-Efficient Accelerators and Reconfigurable
Technologies, pages 7:1–7:6, 2018.

[113] Ahmed Sanaullah and Martin C Herbordt. Unlocking Performance-Programmability
by Penetrating the Intel FPGA OpenCL Toolflow. In Proc. of IEEE High Performance
Extreme Computing Conference, 2018.

[114] Ahmed Sanaullah, Rushi Patel, and Martin Herbordt. An Empirically Guided Opti-
mization Framework for FPGA OpenCL. In Proc. of Int’l Conf. on Field-Programmable
Technology, pages 46–53. IEEE, 2018.

[115] Robert R Schaller. Moore’s Law: Past, Present and Future. IEEE spectrum, 34(6):52–
59, 1997.

159

[116] SG Shirinivas, S Vetrivel, and NM Elango. Applications of Graph Theory in Computer
Science: An Overview. International Journal of Engineering Science and Technology,
2(9):4610–4621, 2010.

[117] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. Accelerating Pattern
Matching Queries in Hybrid CPU-FPGA Architectures. In Proc. of ACM International
Conference on Management of Data, pages 403–415, 2017.

[118] Harsha Vardhan Simhadri. Program-Centric Cost Models for Locality and Parallelism.
PhD thesis, Carnegie Mellon University, 2013.

[119] Elizabeth S Sorenson and J Kelly Flanagan. Cache Characterization Surfaces and
Predicting Workload Miss Rates. In Proc. of IEEE Int’l Workshop on Workload Char-
acterization, pages 129–139, 2001.

[120] Elizabeth S Sorenson and J Kelly Flanagan. Evaluating Synthetic Trace Models Using
Locality Surfaces. In Proc. of IEEE Int’l Workshop on Workload Characterization,
pages 23–33, 2002.

[121] Jeffrey R Spirn and Peter J Denning. Experiments with Program Locality. In Proc.
of ACM Fall Joint Computer Conference, Part I, AFIPS, pages 611–621, 1972.

[122] Greg Stitt, Abhay Gupta, Madison N. Emas, David Wilson, and Austin Baylis. Scal-
able Window Generation for the Intel Broadwell+Arria 10 and High-bandwidth FPGA
Systems. In Proc. of ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 173–182, 2018.

[123] Yushan Su, Michael Anderson, Jonathan I Tamir, Michael Lustig, and Kai Li. Com-
pressed Sensing MRI Reconstruction on Intel HARPv2. In Proc. of 27th Int’l Symp.
on Field-Programmable Custom Computing Machines, pages 254–257. IEEE, 2019.

[124] Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf,
Martin Odersky, and Kunle Olukotun. Forge: Generating a High Performance DSL
Implementation from a Declarative Specification. In Proc. of 12th Int’l Conf. on Gen-
erative Programming: Concepts & Experiences, pages 145–154, 2013.

[125] Qing Y. Tang and Mohammed A. S. Khalid. Acceleration of k-means Algorithm Using
Altera SDK for OpenCL. ACM Trans. Reconfigurable Technol. Syst., 10(1):6:1–6:19,
December 2016.

[126] Clark Tibbetts. Raw Data File Formats, and the Digital and Analog Raw Data Streams
of the ABIPRISMTM 377 DNA Sequencer c©. Unpublished. Available online at: www.

cs. cmu. edu/ afs/ cs/ project/ genome/ ftp/ other/ 377RawData. ps , 1995.

[127] Mustafa M Tikir, Laura Carrington, Erich Strohmaier, and Allan Snavely. A Genetic
Algorithms Approach to Modeling the Performance of Memory-bound Computations.
In Proc. of ACM/IEEE Conf. on Supercomputing, 2007.

160

www.cs.cmu.edu/afs/cs/project/genome/ftp/other/377Raw Data.ps
www.cs.cmu.edu/afs/cs/project/genome/ftp/other/377Raw Data.ps

[128] Panos Vassiliadis, Zografoula Vagena, Spiros Skiadopoulos, Nikos Karayannidis, and
Timos Sellis. ARKTOS: Towards the Modeling, Design, Control and Execution of
ETL Processes. Information Systems, 26(8):537–561, December 2001.

[129] Fritz Venter and Andrew Stein. Images & Videos: Really Big Data. Analytics Maga-
zine, pages 14–47, 2012.

[130] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating System
Support for Improving Data Locality on CC-NUMA Compute Servers. ACM SIGPLAN
Notices, 31(9):279–289, 1996.

[131] Virtual Astronomical Observatory. VAO Annual Report, April 2013.

[132] Panagiotis D Vouzis and Nikolaos V Sahinidis. GPU-BLAST: Using Graphics Proces-
sors to Accelerate Protein Sequence Alignment. Bioinformatics, 27(2):182–188, 2010.

[133] Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos. Capturing the Spatio-
Temporal Behavior of Real Traffic Data. Performance Evaluation, 49(1-4):147–163,
2002.

[134] Shuo Wang, Yun Liang, and Wei Zhang. FlexCL: An Analytical Performance Model
for OpenCL Workloads on Flexible FPGAs. In Proc. of 54th Design Automation
Conference, 2017.

[135] Yu Wang. Accelerating Graph Processing on a Shared-Memory FPGA System. PhD
thesis, Carnegie Mellon University, 2018.

[136] Jonathan Weinberg, Michael O McCracken, Erich Strohmaier, and Allan Snavely.
Quantifying Locality in the Memory Access Patterns of HPC Applications. In Proc.
of ACM/IEEE Conference on Supercomputing, 2005.

[137] R Clint Whaley, Antoine Petitet, and Jack J Dongarra. Automated Empirical Op-
timizations of Software and the ATLAS Project. Parallel Computing, 27(1-2):3–35,
2001.

[138] T. Wolf and M. Franklin. CommBench–A Telecommunications Benchmark for Network
Processors. In Proc. of IEEE International Symposium on Performance Analysis of
Systems and Software, pages 154–162, 2000.

[139] Michael Wong, Andrew Richards, Maria Rovatsou, and Ruyman Reyes. Khronoss
OpenCL SYCL to Support Heterogeneous Devices for C++, 2016.

[140] Andrew Yang. Deep Learning Training at Scale Spring Crest Deep Learning Accel-
erator (Intel R© Nervana NNP-T). In Proc. of Hot Chips 31 Symposium (HCS), pages
1–20. IEEE, 2019.

161

[141] Takashi Yokota, Kanemitsu Ootsu, and Takanobu Baba. Potentials of Branch Predic-
tors: From Entropy Viewpoints. In Proc. of International Conference on Architecture
of Computing Systems, pages 273–285. Springer, 2008.

[142] Masato Yoshimi, Yasin Oge, and Tsutomu Yoshinaga. Pipelined Parallel Join and
its FPGA-based Acceleration. ACM Trans. Reconfigurable Technol. Syst., 10(4):28:1–
28:28, December 2017.

[143] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks.
In Proc. of ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays, pages 161–
170, 2015.

[144] Chi Zhang and Viktor Prasanna. Frequency Domain Acceleration of Convolutional
Neural Networks on CPU-FPGA Shared Memory System. In Proc. of ACM/SIGDA
Int’l Symp. on Field-Programmable Gate Arrays, pages 35–44, 2017.

[145] Jialiang Zhang, Soroosh Khoram, and Jing Li. Efficient Large-scale Approximate
Nearest Neighbor Search on OpenCL FPGA. In Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition, pages 4924–4932, 2018.

[146] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining Interesting Locations and
Travel Sequences from GPS Trajectories. In Proc. of 18th International Conference on
World Wide Web, pages 791–800, 2009.

[147] Yutao Zhong, Xipeng Shen, and Chen Ding. Program Locality Analysis Using Reuse
Distance. ACM Transactions on Programming Languages and Systems, 31(6):20:1–
20:39, 2009.

[148] Hamid Reza Zohouri. High Performance Computing with FPGAs and OpenCL. PhD
thesis, Tokyo Institute of Technology, August 2018.

[149] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and Satoshi
Matsuoka. Evaluating and Optimizing OpenCL Kernels for High Performance Comput-
ing with FPGAs. In Proc. of Int’l Conf. on High Performance Computing, Networking,
Storage and Analysis, pages 409–420, 2016.

[150] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. Combined spatial and
temporal blocking for high-performance stencil computation on fpgas using opencl. In
Proc. of ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 153–162, 2018.

162

Vita

Anthony Michael Cabrera

Degrees Ph.D. Computer Engineering

Washington University in St. Louis

August 2020

M.S. Computer Science

Washington University in St. Louis

August 2018

B.S. Computer Engineering

Second Major, Computer Science

Washington University in St. Louis

May 2015

B.S.A.S. Electrical Engineering

Washington University in St. Louis

May 2015

B.A. Chemical Physics

Minor, Music

Hendrix College

May 2013

Publications Anthony M. Cabrera and Roger D. Chamberlain, “Design and

Performance Evaluation of Optimizations for OpenCL FPGA Ker-

nels”, in Proc. of IEEE High-Performance Computing Conference

(HPEC), September 2020.

Anthony M. Cabrera and Roger D. Chamberlain, “Designing Do-

main Specific Compute Systems”, in Proc. of 18th IEEE Annual In-

ternational Symposium on Field-Programmable Custom Computing

Machines (FCCM), May 2020.

Anthony M. Cabrera, Roger D. Chamberlain, and Jonathan C.

Beard, “Multi-spectral Reuse Distance: Divining Spatial Information

163

from Temporal Data,” in Proc. of IEEE High-Performance Comput-

ing Conference (HPEC), September 2019.

Anthony M. Cabrera and Roger D. Chamberlain, “Exploring Porta-

bility and Performance of OpenCL FPGA Kernels on Intel HARPv2,”

in Proc. of 7th International Workshop on OpenCL (IWOCL), May

2019. Received Best Presentation award.

Clayton J. Faber, Anthony M. Cabrera, Oronde Booker, Gabe

Maayan, and Roger D. Chamberlain, “Data Integration Tasks on

Heterogeneous Systems Using OpenCL,” in Proc. of 7th International

Workshop on OpenCL (IWOCL), May 2019.

Anthony M. Cabrera, Clayton J. Faber, Kyle Cepeda, Robert

Derber, Cooper Epstein, Jason Zheng, Ron K. Cytron, and Roger

D. Chamberlain, “DIBS: A Data Integration Benchmark Suite,” in

Proc. of ACM/SPEC International Conference on Performance En-

gineering (ICPE) Companion, April 2018.

August 2020

164

Domain Specific Computing, Cabrera, Ph.D. 2020

	Domain Specific Computing in Tightly-Coupled Heterogeneous Systems
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter Introduction
	Research Questions
	Contributions
	Outline

	Chapter Background and Related Work
	Domain Specific Computing
	Data Integration
	Quantitative Characterization Techniques
	FPGA
	Intel HARPv2
	HARP for Acceleration
	Designing Kernels with OpenCL
	High Level Synthesis and Design

	Chapter DIBS: A Data Integration Benchmarking Suite
	Overview of Benchmark Suite and Integration Tasks
	Benchmark Application Descriptions
	Computational Biology
	Image Processing
	Enterprise
	Internet of Things (IoT)
	Graph Processing

	Characterization of Data Integration Tasks
	Locality
	Determinism/Branch Entropy
	Instruction Mix

	Characterization Methods
	Results of Characterization
	Locality
	Branch Entropy
	Instruction Mix
	Discussion

	Conclusion

	Chapter Multi-spectral Reuse Distance: Divining Spatial Information from Temporal Data
	The Data Movement Problem
	Methods
	Benchmark Applications
	Reuse Distance
	Earth Mover's Distance
	Memory Footprint

	Results and Discussion
	Spatially Dense Memory Accesses
	Page Sizing and Utilization
	Data Layout Transformation

	Conclusion

	Chapter Evaluating Portability and Performance of OpenCL FPGAKernels on Intel HARPv2
	Methods
	Needleman-Wunsch
	Description of Each Kernel Version
	Hardware Design Space Search
	Shared Virtual Memory

	Results and Discussion
	FPGA Kernel Results
	Hardware Design Space Search
	SVM Performance

	Conclusion

	Chapter Designing Domain Specific Compute Systems
	Methods
	Clustering of Domain Applications
	Evaluating the Hardware
	Kernel Development
	Hardware Design Parameters

	Kernels
	ebcdic_txt
	idx_tiff
	fix_float
	edgelist_csr
	2bit_fa
	fa_2bit

	Other Design Considerations
	Overlapping Data Transfer and Execution
	Visualizing the Hardware
	Widening the Data Type

	Results
	Design Space Search Sweeps
	MWI versus SWI Implementations
	Results of Widening The Datatype

	Conclusion

	Chapter Conclusion and Future Work
	Future Work

	References
	Vita

